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Objective: Find    centers,     that minimize

Why Means?
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Lloyd’s Method: k-means

Initialize with random clusters



Lloyd’s Method: k-means

Assign each point to nearest center



Lloyd’s Method: k-means

Recompute optimum centers (means)



Lloyd’s Method: k-means

Repeat: Assign points to nearest center



Lloyd’s Method: k-means

Repeat: Recompute centers



Lloyd’s Method: k-means

Repeat...



Lloyd’s Method: k-means

Repeat...Until clustering does not change



Analysis

How good is this algorithm?

Finds a local optimum

That is potentially arbitrarily worse than optimal solution



Approximating k-means

• Mount et al.:            approximation in time

• Har Peled et al.:            in time 

• Kumar et al.:           in time 
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Lloyd’s method:

• Worst-case time complexity: 

• Smoothed complexity: 
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Approximating k-means

• Mount et al.:            approximation in time

• Har Peled et al.:            in time 

• Kumar et al.:           in time 

Lloyd’s method:

9 + ε O(n3/εd)

1 + ε O(n + kk+2ε−2dk logk(n/ε))

1 + ε 2
(k/ε)O(1)

nd

For example, Digit Recognition dataset (UCI):

n = 60, 000 d = 600

Convergence to a local optimum in 60 iterations.



Challenge

Develop an approximation algorithm for k-means clustering 
that is competitive with the k-means method in speed and 
solution quality.

Easiest line of attack: focus on the initial center positions. 

Classical k-means: pick     points at random. k



k-means on Gaussians



k-means on Gaussians



Easy Fix

Select centers using a furthest point algorithm (2-approximation 
to k-Center clustering).
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Interpolate between the two methods:

Let             be the distance between    and the nearest 
cluster center. Sample proportionally to (D(x))α = D

α(x)

k-means++

D(x) x

Original Lloyd’s:  α = 0

Contribution of    to the overall errorx

α = ∞Furthest Point: 

α = 2k-means++: 



k-Means++



k-Means++

Theorem: k-means++ is                 approximate in expectation. Θ(log k)

Ostrovsky et al. [06]: Similar method is            approximate 
under some data distribution assumptions.

O(1)



Proof - 1st cluster

Fix an optimal clustering    .C∗

Pick first center uniformly at random

Bound the total error of that cluster.



Proof - 1st cluster

Let       be the cluster.

Each point               equally likely 
to be the chosen center. 

A

a0 ∈ A

= 2

∑

a∈A

‖a − Ā‖2 = 2φ∗(A)

E[φ(A)] =
∑

a0∈A

1

|A|

∑

a∈A

‖a − a0‖
2

Expected Error:



Proof - Other Clusters

Suppose next center came from a new cluster in OPT.

Bound the total error of that cluster.



Other CLusters

Let       be this cluster, and       the point selected.

Then: 

B b0

E[φ(B)] =
∑

b0∈B

D2(b0)∑
b∈B

D2(b)
·
∑

b∈B

min(D(b), ‖b − b0‖)
2

Key step:

D(b0) ≤ D(b) + ‖b − b0‖



Cont.

For any b: D
2(b0) ≤ 2D

2(b) + 2‖b − b0‖
2

Same for all b0

Cost in uniform sampling

D
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∑

b∈B

‖b − b0‖
2Avg. over all b:

Cont.

For any b: D
2(b0) ≤ 2D

2(b) + 2‖b − b0‖
2

Recall:

E[φ(B)] =
∑

b0∈B

D2(b0)∑
b∈B

D2(b)
·
∑

b∈B

min(D(b), ‖b − b0‖)
2

≤
4

|B|

∑

b0∈B

∑

b∈B

‖b − b0‖
2 = 8φ∗(B)



Wrap Up

If clusters are well separated, and we always pick a center 
from a new optimal cluster, the algorithm is    - competitive.8
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Wrap Up

If clusters are well separated, and we always pick a center 
from a new optimal cluster, the algorithm is    - competitive.

Intuition: if no points from a cluster are picked, then it 
probably does not contribute much to the overall error. 

Formally, an inductive proof shows this method is                 
competitive.

8

Θ(log k)



Experiments

Tested on several datasets:

Synthetic

• 10k points, 3 dimensions

Cloud Cover (UCI Repository]

• 10k points, 54 dimensions

Color Quantization

• 16k points, 16 dimensions

Intrusion Detection (KDD Cup)

• 500k points, 35 dimensions
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Experiments

Total Error 

Time: 

     k-means++ 1% slower due to initialization.

k-means km-Hybrid k-means++

Synthetic

Cloud Cover

Color

Intrusion

6.02 × 10
5

5.95 × 10
5

6.06 × 10
5

670741 712

0.016 0.015 0.014

32.9 × 10
3

3.4 × 10
3

−



Final Message

Friends don’t let friends use k-means.



Thank You
Any Questions?


