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CLUSTERING

Given n points In Re split them into & similar groups.
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CLUSTERING

Given n points In Re split them into & similar groups.

This talk: k-means clustering:

Find & centers, C that minimize Z Icﬂélg |z — cll3
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WHY MEANS?

Objective: Find k centers, C that minimize Z mm |l
CUEX

For one cluster: Find y that minimizes Z I — il
reX

Easyl Y = Z L
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LLOYD’S METHOD: K-MEANS

Initialize with random clusters



LLOYD’S METHOD: K-MEANS

Assign each point to nearest center



LLOYD’S METHOD: K-MEANS

Recompute optimum centers [means]




LLOYD’S METHOD: K-MEANS

Repeat: Assign points to nearest center



LLOYD’S METHOD: K-MEANS

Repeat. Recompute centers



LLOYD’S METHOD: K-MEANS

Repeat...



LLOYD’S METHOD: K-MEANS

Repeat...Until clustering does not change



ANALYSIS

How good is this algorithm?

Finds a local optimum

That is potentially arbitrarily worse than optimal solution



APPROXIMATING K-MEANS

e Mountetal: 9+ e approximation in time O(n?/e?)
e HarPeledetal: 1+ ¢ intime O(n + k*t2¢7 2% 10g" (n/e))

e Kumaretal: 1+ ¢intime 2<k/€)o(1>nd
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e Mountetal: 9+ e approximation in time O(n?/e?)
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Lloyd’'s method:

e \Worst-case time complexity: 98:a/m)

e Smoothed complexity: e



APPROXIMATING K-MEANS

e Mountetal: 9+ e approximation in time O(n?/e?)
e HarPeledetal: 1+ ¢ intime O(n + k*t2¢7 2% 10g" (n/e))

e Kumaretal: 1+ ¢intime 2<k/€)o(1>nd

Lloyd’'s method:
For example, Digit Recognition dataset (UCI):
n = 60, 000 d — 600

Convergence to a local optimum in 60 iterations.



CHALLENGE

Develop an approximation algorithm for k-means clustering
that Is competitive with the k-means method in speed and
solution quality.

Easiest line of attack: focus on the initial center positions.

Classical k-means: pick £ points at random.



K-MEANS ON GAUSSIANS
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K-MEANS ON GAUSSIANS
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EASY FIX

Select centers using a furthest point algorithm (2-approximation
to k-Center clustering].
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EASY FIX

Select centers using a furthest point algorithm (2-approximation
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EASY FIX

Select centers using a furthest point algorithm (2-approximation
to k-Center clustering].
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EASY FIX

Select centers using a furthest point algorithm (2-approximation
to k-Center clustering].

o
o
0
©0%©
¢ S0
o 080
00 %%
o o)
o o o
oo o853
o %o e



SENSITIVE TO OUTLIERS
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K-MEANS++

Interpolate between the two methods:

Let D(xz) be the distance between x and the nearest
cluster center. Sample proportionally to (D(x))® = D% (x)

Original Lloyd's: o = 0
Furthest Point;, & — o0

k-means++: o=

Contribution of 2 to the overall error



K-MEANS++




K-MEANS++

Theorem: k-means++ is ©(log k) approximate in expectation.

Ostrovsky et al. [06]: Similar method is O(1) approximate
under some data distribution assumptions.



PROOF - 1ST

Fix an optimal clustering C-

Pick first center uniformly at random

Bound the total error of that cluster.

CLUSTER



PROOF - 1ST CLUSTER

Let A be the cluster. c &
Each point ag € A equally likely ® e
to be the chosen center. . o
0
0
o
Expected Error: e =
1
El¢(A)] = > 4] > la — aol?
ap€A acA
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PROOF - OTHER CLUSTERS
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Suppose next center came from a new cluster in OPT.

Bound the total error of that cluster.



OTHER CLUSTERS

Let B be this cluster, and by the point selected.

Then:
Z Z me b), ||b — bo|)?
bo€EB veB D beB
Key step: o OOO
o
0
D(bo) < D(b) + [[b — bo| o
0o
o
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CONT.
Beanyih: De(by) < 2D%(b) + 2||b — b |*

Avg. over all b: D?(by) § ZDQ Z 16— bol|?
€B oy

b
Same for all b /

Cost in uniform sampling



CONT.

EaEivss D-(by) < 2D4(b) + 2||b— byl

2
Avg. over all b: D?(by) < = Z Z 16— bol|?
B beB bEB
Recall
Elp(B)] = > Z me ), [ — bol|)
boEB ven D beB

YYHZ? boll* = 84*(B)

boGB beB




WRAP UP

If clusters are well separated, and we always pick a center
from a new optimal cluster, the algorithm is 8- competitive.
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Intuition: if no points from a cluster are picked, then it
probably does not contribute much to the overall error.



WRAP UP

If clusters are well separated, and we always pick a center
from a new optimal cluster, the algorithm is 8- competitive.

Intuition: if no points from a cluster are picked, then it
probably does not contribute much to the overall error.

Formally, an inductive proof shows this method is ©(log &)
competitive.



EXPERIMENTS

Tested on several datasets:

Synthetic

* 10k points, 3 dimensions
Cloud Cover (UCI Repository]

e 10k points, 54 dimensions
Color Quantization

e 16k points, 16 dimensions
Intrusion Detection (KDD Cup]

e 500k points, 35 dimensions



TYPICAL RUN

Error
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Total Error

Synthetic
Cloud Cover
Color

Intrusion

Time:

EXPERIMENTS

k-means km-Hybrid k-means++
0.016 0.015 0.014
b6 < 10 6.02 < L0 5.95 x 10°
7! el 670
85020 10 = 3.4 < 10

k-means++ 1% slower due to initialization.



FINAL MESSAGE

Friends don't let friends use k-means.
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