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1Data Access
Copy Repository Entry

Copy Repository .. .

t h r t h r An operator to copy a repository entry to another repository loca-
tion.

Description
Copies an entry to a new parent folder. If destination references a folder, the source entry is
copied to that folder. If it references an existing entry and overwriting is not enabled (default
case), an exception is raised. If overwriting is enabled the existing entry will be overwritten. If
it references a location which does not exist, say, “/root/folder/leaf”, but the parent exists (in
this case “/root/folder”), a new entry named by the last path component (in this case “leaf”) is
created.

Input Ports
input (inp)

Output Ports
output (out)

Parameters
source entry Entry that should be copied

destination Copy destination

overwrite Overwrite elements at copy destination?

1
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Delete Repository Entry

Delete Repositor. . .

t h r t h r An operator to delete a repository entry within a process.

Description
An operator to delete a repository entry within a process.

Input Ports
input (inp)

Output Ports
output (out)

Parameters
entry to delete Entry that should be deleted

2



Move Repository Entry

Move Repository . . .

t h r t h r An operator to move a repository entry to another repository lo-
cation.

Description
Moves an entry to a new parent folder. If destination references a folder, the source entry is
moved to that folder. If it references an existing entry and overwriting is not enabled (default
case), an exception is raised. If overwriting is enabled the existing entry will be overwritten. If
it references a location which does not exist, say, “/root/folder/leaf”, but the parent exists (in
this case “/root/folder”), a new entry named by the last path component (in this case “leaf”) is
created.

Input Ports
input (inp)

Output Ports
output (out)

Parameters
source entry Entry that should be moved

destination Destination for move action

overwrite Overwrite elements at move destination?
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Rename Repository Entry

Rename Reposito. . .

t h r t h r An operator to rename repository a entry within a process.

Description
An operator to rename a repository entry. The user can select the entry that should be renamed,
a new name and if an already existing entry should be overwritten or not. If overwriting is not
allowed (default case) a user error is thrown if there already exists another element with the new
name.

Input Ports
input (inp)

Output Ports
output (out)

Parameters
entry to rename Entry that should be renamed

new name New entry name

overwrite Overwrite already existing entry with same name?

4



Retrieve

Retr ieve

out
This Operator can access stored information in the Repository and
load them into the Process.

Description
The Retrieve Operator loads a RapidMiner Object into the Process. This Object is often an Ex-
ampleSet but it can also be a Collection or a Model. Retrieving data this way also provides the
meta data of the RapidMiner Object.

Differentiation
This Operator is like the different Read <source> Operators in the Data Access group. Storing
the data inside a repository gives one the advantage thatmeta data properties are stored as well.
Meta data gives you additional information about the RapidMiner Object you retrieve. For an
ExampleSet this is e.g. the names and types of Attributes, their range and how many missing
values there are. Meta data allows you to easily configure parameters of other Operators, for
example you can select Attributes from a list of available Attributes.
The data stored in the Repository can only be changed within a RapidMiner Process. Data

stored on disk or within database can be changed by other means.

Output Ports
output (out) It returns the RapidMiner Object whose path was specified in repository entry pa-

rameter.

Parameters
repository entry The path to the RapidMiner Object which should be loaded. This parameter

references an entry in the repository, which will be returned as output of this Operator.

Repository locations are resolved relative to the Repository folder containing the current
Process. Folders in theRepository are separatedbya forward slash (’/’). A ‘..’ references the
parent folder. A leading forward slash references the root folder of the Repository contain-
ing the current Process. A leading double forward slash (’//’) is interpreted as an absolute
path starting with the name of a Repository. The list below shows the different methods:

• ‘MyData’ looks up an entry ‘MyData’ in the same folder as the current Process

• ‘../Input/MyData’ looks up an entry ‘MyData’ located in a folder ‘Input’ next to the
folder containing the current Process

• ‘/data/Model’ looks up an entry ‘Model’ in a top-level folder ‘data’ in the Repository
holding the current Process

• ‘//Samples/data/Golf’ looks up the Iris data set in the ‘Samples’ Repository.

When using the “Select the repository location” button, it is possible to check if the path
should be resolved relative. This is useful when sharing Processes with others.
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1. Data Access

Tutorial Processes

Load Example Data using the Retrieve Operator

Process

Retr ieve

outinp res

res

Figure 1.1: Tutorial process ‘Load Example Data using the Retrieve Operator’.

This Process loads the Golf data set from repository. The repository entry parameter is pro-
vided as an absolute path ‘//Samples/data/Golf’. Thus the Golf data set is returned from the
Samples repository and the sub-folder data.
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Store

Store

inp th r This operator stores an IO Object in the data repository.

Description

This operator stores an IO Object at a location in the data repository. The location of the object
to be stored is specified through the repository entry parameter. The stored object can be used
by other processes by using the Retrieve operator. Please see the attached Example Processes to
understand the basicworking of this operator. The Store operator is used to store anExampleSet
and a model in the Example Processes.

Input Ports

input (inp) This port expects an IO Object. In the attached Example Processes an ExampleSet
and a model are provided as input.

Output Ports

through (thr) The IO Object provided at the input port is delivered through this output port
without any modifications.This is usually used to reuse the same IO Object in further op-
erators of the process.

Parameters

repository entry (string) This parameter is used to specify the location where the input IO
Object is to be stored.

Tutorial Processes

Storing an ExampleSet using the Store operator

This Process shows how the Store operator can be used to store an ExampleSet. The ‘Golf’ data
set and the ‘Golf-Testset’ data set are loaded using the Retrieve operator. These ExampleSets
aremerged using theAppend operator. The resultant ExampleSet is named ‘Golf-Complete’ and
stored using the Store operator. The stored ExampleSet is used in the third Example Process.

Storing a model using the Store operator

This Process shows how the Store operator can be used to store a model. The ‘Golf’ data set is
loaded using the Retrieve operator. The Naive Bayes operator is applied on it and the resultant
model is stored in the repository using the Store operator. The model is stored with the name
‘Golf-Naive-Model’. The stored model is used in the third Example Process.
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1. Data Access

Process

Golf

out

Golf-Testset

out

Append

exa

exa

exa

mer

Store(Golf)

inp th r

inp

res

res

Figure 1.2: Tutorial process ‘Storing an ExampleSet using the Store operator’.

Using the objects stored by the Store operator

This Process shows how a stored IO Object can be used. The ‘Golf-Complete’ data set stored in
the first Example Process and the ‘Golf-Naive-Model’ stored in the second Example Process is
loaded using the Retrieve operator. The Apply Model operator is used to apply the ‘Golf-Naive-
Model’ on the ‘Golf-Complete’ data set. The resultant labeled ExampleSet can be viewed in the
Results Workspace.

8



1.1. Files

Process

Golf

out

Naive Bayes

t ra mod

exa

Store (Model)

inp th r

inp

res

res

Figure 1.3: Tutorial process ‘Storing a model using the Store operator’.

1.1 Files
1.1.1 Read
Read ARFF

Read ARFF

f i l ou t This operator is used for reading an ARFF file.

Description

This operator can read ARFF (Attribute-Relation File Format) files known from the machine
learning libraryWeka. AnARFFfile is anASCII text file that describes a list of instances sharing a
set of attributes. ARFF files were developed by theMachine Learning Project at the Department
of Computer Science of The University of Waikato for use with the Weka machine learning soft-
ware. Please study the attached Example Process for understanding the basics and structure of
theARFFfile format. Please note thatwhen anARFFfile is written, the roles of the attributes are
not stored. Similarly when an ARFF file is read, the roles of all the attributes are set to regular.

Input Ports

file (fil) An ARFF file is expected as a file object which can be created with other operators with
file output ports like the Read File operator.
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Process

Golf-Complete

out

Golf-Naive-Model

out

Apply Model

mod

unl

lab

mod

inp

res

res

Figure 1.4: Tutorial process ‘Using the objects stored by the Store operator’.

Output Ports
output (out) This port delivers the ARFF file in tabular form along with the meta data. This

output is similar to the output of the Retrieve operator.

Parameters
data file (filename) The path of the ARFF file is specified here. It can be selected using the

choose a file button.

encoding (selection) This is an expert parameter. A long list of encoding is provided; users
can select any of them.

read not matching values as missings (boolean) This is an expert parameter. If this pa-
rameter is set to true, values that do not match with the expected value type are consid-
ered as missing values and are replaced by ‘?’. For example if ‘abc’ is written in an integer
column, it will be treated as a missing value. Question mark (?) in ARFF file is also read as
missing value.

decimal character (char) This character is used as the decimal character.

grouped digits (boolean) This parameter decideswhether grouped digits should be parsed or
not. If this parameter is set to true, the grouping character parameter should be specified.

grouping character (char) This parameter is available only when the grouped digits param-
eter is set to true.This character is used as the grouping character. If it is found between
numbers, the numbers are combined and this character is ignored. For example if “22-14”
is present in the ARFF file and “-” is set as grouping character, then “2214” will be stored.
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1.1. Files

infinity string (string) This parameter can be set to parse a specific infinity representation
(e.g. “Infinity”). If it is not set, the local specific infinity representation will be used.

Tutorial Processes

The basics of the ARFF

Process

I r is

out

Write  Arf f

inp th r

f i l

inp res

res

Figure 1.5: Tutorial process ‘The basics of the ARFF’.

The ‘Iris’ data set is loaded using the Retrieve operator. TheWrite ARFF operator is applied on
it to write the ‘Iris’ data set into an ARFF file. The example set file parameter is set to ‘D:\Iris’.
Thus an ARFF file is created in the ‘D’ drive of your computer with the name ‘Iris’. Open this file
to see the structure of an ARFF file.
ARFF files have two distinct sections. The first section is the Header information, which is

followed by the Data information. The Header of the ARFF file contains the name of the Rela-
tion and a list of the attributes. The name of the Relation is specified after the @RELATION
statement. The Relation is ignored by RapidMiner. Each attribute definition starts with the
@ATTRIBUTE statement followed by the attribute name and its type. The resultant ARFF file
of this Example Process starts with the Header. The name of the relation is ‘RapidMinerData’.
After the name of the Relation, six attributes are defined.
Attribute declarations take the form of an ordered sequence of @ATTRIBUTE statements.

Each attribute in the data set has its own @ATTRIBUTE statement which uniquely defines the
name of that attribute and its data type. The order of declaration of the attributes indicates the
column position in the data section of the file. For example, in the resultant ARFF file of this
Example Process the ‘label’ attribute is declared at the end of all other attribute declarations.
Therefore values of the ‘label’ attribute are in the last column of the Data section.
Thepossibleattribute types inARFFare: numeric integer real {nominalValue1,nominalValue2,...}

for nominal attributes string for nominal attributes without distinct nominal values (it is how-
ever recommended to use the nominal definition above as often as possible) date [date-format]
(currently not supported by RapidMiner)
You can see in the resultant ARFF file of this Example Process that the attributes ‘a1’, ‘a2’, ‘a3’

and ‘a4’ are of real type. The attributes ‘id’ and ‘label’ are of nominal type. The distinct nominal
values are also specified with these nominal attributes.
The ARFF Data section of the file contains the data declaration line @DATA followed by the

actual example data lines. Each example is represented on a single line, with carriage returns
denoting the end of the example. Attribute values for each example are delimited by commas.
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1. Data Access

They must appear in the order that they were declared in the Header section (i.e. the data cor-
responding to the n-th @ATTRIBUTE declaration is always the n-th field of the example line).
Missing values are represented by a single question mark (?).
A percent sign (%) introduces a comment andwill be ignored during reading. Attribute names

or example values containing spaces must be quoted with single quotes (’). Please note that in
RapidMiner the sparse ARFF format is currently only supported for numerical attributes. Please
use one of the other options for sparse data files provided by RapidMiner if you also need sparse
data files for nominal attributes.

Reading an ARFF file using the Read ARFF operator

Process

Read ARFF

f i l ou tinp res

res

Figure 1.6: Tutorial process ‘Reading an ARFF file using the Read ARFF operator’.

The ARFF file that was written in the first Example Process using the Write ARFF operator is
retrieved in this Example Process using the ReadARFF operator. The data file parameter is set to
‘D:\Iris’. Please make sure that you specify the correct path. All other parameters are used with
default values. Run the process. You will see that the results are very similar to the original Iris
data set of RapidMiner repository. Please note that the role of all the attributes is regular in the
results of the Read ARFF operator. Even the roles of ‘id’ and ‘label’ attributes are set to regular.
This is so because the ARFF files do not store information about the roles of the attributes.
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1.1. Files

Read Access

Read Access

f i l ou t This operator reads an ExampleSet from a Microsoft Access
database.

Description

The Read Access operator is used for reading an ExampleSet from the specifiedMicrosoft Access
database (.mdb or .accdb extension). Youneed to have at least basic understanding of databases,
database connections and queries in order to use this operator properly. Go through the param-
eters and Example Process to understand the flow of this operator.

Output Ports

output (out) This port delivers the result of the query on database in tabular form along with
the meta data. This output is similar to the output of the Retrieve operator.

Parameters

username (string) This parameter is used to specify the username of the database (if any).

password (string) This parameter is used to specify the password of the database (if any).

define query (selection) Query is a statement that is used to select required data from the
database. This parameter specifies whether the database query should be defined directly,
throughafile or implicitly by a given table name. TheSQLquery canbe auto generated giv-
ing a table name, passed to RapidMiner via a parameter or, in case of long SQL statements,
in a separate file. The desired behavior can be chosen using the define query parameter.
Please note that column names are often case sensitive and might need quoting.

query (string) Thisparameter isonlyavailablewhen thedefinequeryparameter is set to ‘query’.
This parameter is used to define the SQL query to select desired data from the specified
database.

query file (filename) This parameter is only available when the define query parameter is set
to ‘query file’. This parameter is used to select a file that contains the SQL query to select
desired data from the specified database. Long queries are usually stored in files. Storing
queries in files can also enhance reusability.

table name (string) This parameter is only available when the define query parameter is set
to ‘table name’. This parameter is used to select the required table from the specified
database.

database file (filename) Thisparameter specifies thepathof theAccessdatabase i.e. themdb
or accdb file.
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1. Data Access

Process

Golf

out

Write Access

inp th r

Read Access

f i l ou t

inp

res

res

Figure 1.7: Tutorial process ‘Writing and then reading data from an Access database’.

Tutorial Processes

Writing and then reading data from an Access database

The ‘Golf’ data set is loaded using the Retrieve operator. The Write Access operator is used for
writing this ExampleSet into the golf table of the ‘golf_db.mdb’ database. The database file pa-
rameter is provided with the path of the database file ‘golf_db.mdb’ and the name of the desired
table is specified in the table name parameter ( i.e. it is set to ‘golf’). A breakpoint is inserted
here. No results are visible in RapidMiner at this stage but you can see that at this point of the
execution the database has been created and the golf table has been filled with the examples of
the ‘Golf’ data set.
NowtheReadAccessoperator isused for reading thegolf table fromthe ‘golf_db.mdb’database.

The database file parameter is provided with the path of the database file ‘golf_db.mdb’. The de-
fine query parameter is set to ‘table name’. The table name parameter is set to ‘golf’ which is the
name of the required table. Continue the process, youwill see the entire golf table in the Results
Workspace. The define query parameter is set to ‘table name’ if you want to read an entire table
from the database. You can also read a selected portion of the database by using queries. Set
the define query parameter to ‘query’ and specify a query in the query parameter.
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Read BibTeX

Read BibTeX

f i l ou t This operator can read BibTeX files.

Description
This operator can read BibTeX files. It uses Stefan Haustein’s kdb tools.

Input Ports
file (fil) An BibTeX file is expected as a file object which can be created with other operators

with file output ports like the Read File operator.

Output Ports
output (out) This port delivers the BibTeX file in tabular form along with the meta data. This

output is similar to the output of the Retrieve operator.

Parameters
label attribute (string) The (case sensitive) name of the label attribute

id attribute (string) The (case sensitive) name of the id attribute

weight attribute (string) The (case sensitive) name of the weight attribute

datamanagement (selection) Determines, how the data is represented internally

data file (filename) The file containing the data
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Read C4.5

Read C4.5

out This operator can read data and meta given in C4.5 format.

Description

Loads data given in C4.5 format (names and data file). Both files must be in the same directory.
You can specify one of the C4.5 files (either the data or the names file) or only the filestem.
For a dataset named “foo”, you will have two files: foo.data and foo.names. The .names file

describes the dataset, while the .data file contains the examples which make up the dataset.
The files contain series of identifiers and numberswith some surrounding syntax. A | (vertical

bar) means that the remainder of the line should be ignored as a comment. Each identifier con-
sists of a string of characters that does not include comma, question mark or colon. Embedded
whitespce is also permitted but multiple whitespace is replaced by a single space.
The .names file contains a series of entries that describe the classes, attributes and values

of the dataset. Each entry can be terminated with a period, but the period can be omited if it
would have been the last thing on a line. The first entry in the file lists the names of the classes,
separated by commas. Each successive line then defines an attribute, in the order in which they
will appear in the .data file, with the following format:
attribute-name : attribute-type
The attribute-name is an identifier as above, followedby a colon, then the attribute typewhich

must be one of

• continuous: If the attribute has a continuous value.

• discrete [n]: Theword ‘discrete’ followedbyan integerwhich indicateshowmanyvalues the
attribute can take (not recommended, please use the method depicted below for defining
nominal attributes).

• [list of identifiers]: This is a discrete, i.e. nominal, attribute with the values enumerated
(this is the prefered method for discrete attributes). The identifiers should be separated
by commas.

• ignore: This means that the attribute should be ignored - it won’t be used. This is not
supported by RapidMiner, please use one of the attribute selection operators after loading
if you want to ignore attributes and remove them from the loaded example set.

Here is an example .names file:
good, bad. dur: continuous. wage1: continuous. wage2: continuous. wage3: continuous.

cola: tc, none, tcf. hours: continuous. pension: empl_contr, ret_allw, none. stby_pay: contin-
uous. shift_diff: continuous. educ_allw: yes, no. ...
Foo.data contains the training examples in the following format: one example per line, at-

tribute values separated by commas, class last, missing values represented by “?”. For example:
2,5.0,4.0,?,none,37,?,?,5,no,11,below_average,yes,full,yes,full,good3,2.0,2.5,?,?,35,none,?,?,?,10,average,?,?,yes,full,bad

3,4.5,4.5,5.0,none,40,?,?,?,no,11,average,?,half,?,?,good3,3.0,2.0,2.5,tc,40,none,?,5,no,10,below-
_average,yes,half,yes,full,bad ...
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1.1. Files

Output Ports
output (out) This port delivers the C4.5 file in tabular form along with the meta data. This

output is similar to the output of the Retrieve operator.

Parameters
c45 filestem (filename) The path to either the C4.5 names file, the data file, or the filestem

(without extensions). Both files must be in the same directory.

datamanagement (selection) Determines, how the data is represented internally.

decimal point character (char) Character that is used as decimal point.

encoding (selection) The encoding used for reading or writing files.
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Read CSV

Read CSV

f i l ou t This Operator reads an ExampleSet from the specified CSV file.

Description
CSV is an abbreviation for Comma-Separated Values. The CSV files store data (both numerical
and text) in plain-text form. All values corresponding to an Example are stored as one line in
the CSV file. Values for different Attributes are separated by a separator character. The separa-
tor remains constant. Each row in the file uses the constant separator for separating Attribute
values. The term ‘CSV’ suggests that the Attribute values would be separated by commas, but
other separators can also be used.
The easiest way to import a CSV file is to use the Import ConfigurationWizard from the Param-

eters panel. All parameters can also directly be set in the Parameters panel. For more details
about the Operator, see the description of the parameters.
Pleasemake sure that the CSVfile is read correctly as an ExampleSet before building a Process

that uses it.

Differentiation
There are many Read <source> Operators in the Data Access group and Files/Read sub-group.
For example, there is Read Excel, Read URL, Read SPSS, Read XML and other Operators, which
can read ExampleSet from different file formats.

Input Ports
file (fil) ACSVfile canbeoptionally passed in as afileobject. This canbe createdwithOperators

having file output ports such as the Read File Operator.

Output Ports
output (out) This port delivers the ExampleSet created from the CSV file provided at the input

port, imported through the Import Configuration Wizard or loaded from the path given to
the csv file parameter.

Parameters
Import Configuration Wizard This user-friendly wizard guides you to easily configure this

Operator to import the CSV file.

csv file The path of the CSV file is specified here. It can also be selected using the ‘Choose a
file’ button.

column separators Column separators for CSV files can be specified here. It can also be pro-
vided as a regular expression. A good understanding of regular expressions can be devel-
oped by studying the description of Select Attributes Operator and its tutorial Processes.
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1.1. Files

trim lines This parameter indicates if lines should be trimmed (removal of empty spaces at
the beginning and the end) before the column split is performed. This option might be
problematic if TABs (’\t’) are used as separators.

use quotes This parameter indicates if quotes should be regarded. Quotes can be used to store
special characters like columnseparators. For example if (,) is set as columnseparatorand (”)
is set as quotes character, then a row (a,b,c,d) will be translated as 4 values for 4 columns.
On the other hand (”a,b,c,d”) will be translated as a single column value a,b,c,d. If this
parameter is set to false, thequotes characterparameter and the escape characterparameter
cannot be defined.

quotes character Thisparameterdefines thequotes character and isonlyavailable ifusequotes
is set to true.

escape character This parameter specifies the character used to escape the quotes and is only
available if use quotes is set to true. For example, if (”) is used as quotes character and (’\’)
is used as escape character, then (”yes”) will be translated as (yes) and (\”yes\”) will be
translated as (”yes”).

skip comments This parameter is used to ignore comments in the CSV file (if any). If this
option is set to true, a comment character should be defined using the comment characters
parameter.

comment characters This parameter is available if comment characters is set to true. Lines
beginning with these characters are ignored. If this character is present in the middle of
the line, anything that comes in that line after this character is ignored. The comment
character itself is also ignored.

parse numbers This parameter specifies whether numbers are parsed or not.

decimal character This character is used as the decimal character.

grouped digits This parameter decides whether grouped digits should be parsed or not. If this
parameter is set to true, a grouping character parameter has to be specified.

grouping character This character is used as the grouping character. If this character is found
between numbers, the numbers are combined and this character is ignored. For example
if “22-14” is present in the CSV file and “-” is set as the grouping character, then “2214”
will be stored.

infinity string (string) This parameter can be set to parse a specific infinity representation
(e.g. “Infinity”). If it is not set, the local specific infinity representation will be used.

date format The parameter specifies the date and time format. Many predefined options exist
but users can also specify a new format. If text in a CSV file column matches this date
format, that column is automatically converted to date type.

Some corrections are automaticallymade on invalid date values. For example, a value ‘32-
March’ will automatically be converted to ‘1-April’.

Columns containing values which cannot be interpreted as numbers will be interpreted
as nominal, as long as they do not match the date and time pattern of the date format
parameter. If they match, this column of the CSV file will be automatically parsed as date
and the corresponding Attribute will be of type date.
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1. Data Access

first row as names If this parameter is set to true, it is assumed that the first line of the CSV
file has the names of the Attributes. If so, the Attributes are automatically named and the
first line of the CSV file is not treated as a data line.

annotations If the first row as names is not set to true, annotations can be added using the
‘Edit List’ button of this parameter, which opens a new menu. This menu allows you to
select any row and assign an annotation to it. Name, Comment and Unit annotations can
be assigned. If row 0 is assigned a Name annotation, it is equivalent to setting the first
row as names parameter to true. If you want to ignore any row, you can annotate them as
Comment. Remember that row number in this menu does not count commented lines.

time zone Users can select any time zone from the list of provided time zones.

locale Users can select any locale from the list of provided locales.

encoding Users can select any encoding from the list of provided encodings.

read all values as polynominal This option allows you to disable the type handling for this
operator. Every column will be read as a polynominal attribute.

data set meta data information This parameter allows to adjust or override the meta data
of the CSV file. Column index, name, type and role can be specified here.

The Read CSV Operator automatically tries to determine an appropriate data type of the
Attributes by reading the first few lines and checking the occurring values. Integer values
are assigned the integer data type, real values the real data type. Values which cannot be
interpreted as numbers are assigned the nominal data type, as long as they do not match
the format of the date format parameter.

With the data set meta data information parameter, this automatic assignment can be ad-
justed or overwritten.

read not matching values as missings If this parameter is set to true, values that do not
match with the expected value type are considered as missing values and are replaced by
‘?’. For example, if ‘abc’ is written in an integer column, it will be treated as a missing
value. A question mark (?) in the CSV file is also read as a missing value.

data management This parameter determines how the data is represented internally. Users
can select any option from the provided list.

Tutorial Processes

Read a CSV file

Save the following text in a text file.
att1,att2,att3,att4 # row 1
80.6, yes , 1996.JAN.21 ,22-14 # row 2
12.43,”yes”,1997.MAR.30,23-22 # row 3
13.5,\”no\”,1998.AUG.22,23-14 # row 4
23.3,yes,1876.JAN.32,42-65# row 5
21.6,yes,2001.JUL.12,xyz # row 6
12.56,”,_?”,2002.SEP.18,15-90# row 7
This is a sampleCSVfile. You can load thiswith the given tutorial Process by providing its path

in the csv file parameter or by using the ‘Choose a file’ button. Run the Process and compare the
results in the Results view with the CSV file. The Process performs the following actions:
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1.1. Files
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Figure 1.8: Tutorial process ‘Read a CSV file’.

‘#’ is defined as a comment character so ‘row {number}’ is ignored in all rows.
As the first row as names parameter is set to true, att1, att2, att3 and att4 are set as Attribute

names.
The Attribute att1 is set as real , att2 as polynominal, att3 as date and att4 as real.
For Attribute att4, the ‘-’ character is ignored in all rows because the grouped digits parameter

is set to true and ‘-’ is specified as the grouping character.
In row 2, the white spaces at the start and end of values are ignored because trim lines param-

eter is set to true.
In row3, quotes are not ignored because use quotes is set to true, the content inside the quotes

is taken as the value for Attribute att2.
In row 4, (\”no\”) is taken as a (no) in quotes, cause the escape character is set to ‘\’.
In row 5, the date value is automatically corrected from ‘JAN.32’ to ‘Feb.1’.
In row 6, an invalid real value for the Attribute att4 is replaced by ‘?’ because the read not

matching values as missings parameter is set to true.
In row 7, quotes are used to retrieve special characters as values including the column sepa-

rator (,) and a question mark.
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1. Data Access

Read dBase

Read DBase

f i l ou t This operator can read dBase files.

Description
This operator can read dBase files. It uses Stefan Haustein’s kdb tools.

Input Ports
file (fil) An dBase file is expected as a file object which can be created with other operators with

file output ports like the Read File operator.

Output Ports
output (out) This port delivers the dBase file in tabular form along with the meta data. This

output is similar to the output of the Retrieve operator.

Parameters
label attribute (string) The (case sensitive) name of the label attribute

id attribute (string) The (case sensitive) name of the id attribute

weight attribute (string) The (case sensitive) name of the weight attribute

datamanagement (selection) Determines, how the data is represented internally.

data file (filename) The file containing the data
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1.1. Files

Read DASYLab

Read DasyLab

f i l ou t This operator can read DASYLab data files.

Description
This operator allows to import data from DASYLab files (.DDF) into RapidMiner. Currently only
universal format 1 is supported. External files (.DDB) and histogram data are currently not sup-
ported.
The parameter timestamp allows to configure whether and what kind of timestamp should be

included in the example set. If it is set to relative, the timestamp attribute captures the amount
ofmilliseconds since the file start time. If it is set to absolute, the absolute time is used to times-
tamp the examples.

Input Ports
file (fil) A DASYLab file is expected as a file object which can be created with other operators

with file output ports like the Read File operator.

Output Ports
output (out) This port delivers theDASYLab file in tabular form alongwith themeta data. This

output is similar to the output of the Retrieve operator.

Parameters
filename (filename) Name of the file to read the data from.

datamanagement (selection) Determines, how the data is represented internally.

timestamp (selection) Specifies whether to include an absolute timestamp, a timestamp rel-
ative to the beginning of the file (in seconds) or no timestamp at all.
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1. Data Access

Read Excel

Read Excel

f i l ou t This operator reads an ExampleSet from the specified Excel file.

Description

This operator canbeused to loaddata fromMicrosoft Excel spreadsheets. This operator is able to
read data fromExcel 95, 97, 2000, XP, and 2003. The user has to definewhich of the spreadsheets
in theworkbook should be used as data table. The tablemust have a format such that each row is
an example and each column represents an attribute. Please note that the first row of the Excel
sheet might be used for attribute names which can be indicated by a parameter. The data table
can be placed anywhere on the sheet and can contain arbitrary formatting instructions, empty
rows and empty columns. Missing data values in Excel should be indicated by empty cells or by
cells containing only “?”.
For complete understanding of this operator read the parameters section. The easiest and

shortest way to import an Excel file is to use the import configuration wizard from the Parameters
panel. The best way, whichmay require some extra effort, is to first set all the parameters in the
Parameters panel and then use the wizard. Please make sure that the Excel file is read correctly
before building a process using it.

Input Ports

file (fil) An Excel file is expected as a file object which can be created with other operators with
file output ports like the Read File operator.

Output Ports

output (out) This port delivers the Excel file in tabular form along with the meta data. This
output is similar to the output of the Retrieve operator.

Parameters

import configuration wizard This option allows you to configure this operator by means of
a wizard. This user-friendly wizard makes the use of this operator easy.

excel file The path of the Excel file is specified here. It can be selected using the choose a file
button.

sheet selection This option allows you to change the sheet selection between sheet number
and sheet name.

sheet number (integer) The number of the sheet which you want to import should be spec-
ified here.

sheet name (string) Thenameof the sheetwhichyouwant to import shouldbe specifiedhere.
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1.1. Files

imported cell range This is a mandatory parameter. The range of cells to be imported from
the specified sheet is given here. It is specified in ‘xm:yn’ format where ‘x’ is the column
of the first cell of range, ‘m’ is the row of the first cell of range, ‘y’ is the column of the last
cell of range, ‘n’ is the row of the last cell of range. ‘A1:E10’ will select all cells of the first
five columns from row 1 to 10.

first row as names (boolean) If this option is set to true, it is assumed that the first line of
the Excel file has the names of attributes. Then the attributes are automatically named
and the first line of Excel file is not treated as a data line.

annotations If the first row as names parameter is not set to true, annotations can be added
using the ‘Edit List’ button of this parameter which opens a new menu. This menu allows
you to select any row and assign an annotation to it. Name,Comment andUnit annotations
can be assigned. If row 0 is assigned Name annotation, it is equivalent to setting the first
row as names parameter to true. If you want to ignore any rows you can annotate them as
Comment.

date format The date and time format is specified here. Many predefined options exist; users
can also specify a new format. If text in an Excel file columnmatches this date format, that
column is automatically converted to date type. Some corrections are automatically made
in the date type values. For example a value ‘32-March’ will automatically be converted
to ‘1-April’. Columns containing values which can’t be interpreted as numbers will be in-
terpreted as nominal, as long as they don’t match the date and time pattern of the date
format parameter. If they do, this column of the Excel file will be automatically parsed as
date and the according attribute will be of date type.

time zone This is an expert parameter. A long list of time zones is provided; users can select
any of them.

locale This is an expert parameter. A long list of locales is provided; users can select any of
them.

read all values as polynominal (boolean) This option allows you to disable the type han-
dling for this operator. Every column will be read as a polynominal attribute. To parse an
excel date afterwards use ‘date_parse(86400000 * (parse(date_attribute) - 25569))’ (- 24107
for Mac Excel 2007) in the Generate Attributes operator.

data set meta data information This option is an important one. It allows you to adjust the
meta data of theExampleSet created from the specifiedExcel file. Column index, name, type
and role can be specified here. The Read Excel operator tries to determine an appropriate
type of the attributes by reading the first few lines and checking the occurring values. If
all values are integers, the attribute will become an integer. Similarly if all values are real
numbers, the attribute will become of type real. Columns containing values which can’t
be interpreted as numbers will be interpreted as nominal, as long as they don’t match the
date and time pattern of the date format parameter. If they do, this column of the Excel
file will be automatically parsed as date and the according attribute will be of type date.
Automatically determined types can be overridden using this parameter.

read not matching values as missings (boolean) If this value is set to true, values that do
not match with the expected value type are considered as missing values and are replaced
by ‘?’. For example if ‘abc’ is written in an integer column, it will be treated as a missing
value. A questionmark (?) or an empty cell in the Excel file is also read as a missing value.

data management This is an expert parameter. A long list is provided; users can select any
option from this list.
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Tutorial Processes

Reading an ExampleSet from an Excel file

Process

Read Excel

f i l ou tinp res

res

Figure 1.9: Tutorial process ‘Reading an ExampleSet from an Excel file’.

For this Example Process you need an Excel file first. The one of this Example Process was
created by copying the ‘Golf’ data set present in the Repositories into a new Excel file which
was named ‘golf’. The data set was copied on sheet 1 of the Excel file thus the sheet number
parameter is given value 1. Make sure that youprovide the correct location of the file in the Excel
file parameter. The first cell of the sheet is A1 and last required cell is E15, thus the imported
cell range parameter is provided value ‘A1:E15’. As the first row of the sheet contains names of
attributes, the first row as names parameter is checked. The remaining parameters were used
with default values. Run the process, you will see almost the same results as you would have
gotten from using the Retrieve operator to retrieve the ‘Golf’ data set from the Repository. You
will see a difference in the meta data though, for example here the types and roles of attributes
aredifferent fromthose in the ‘Golf’ data set. Youcanchange the roleand typeof attributesusing
the data set meta data information parameter. It is always good to make sure that all attributes
are of desired role and type. In this example one important change that you would like to make
is to change the role of the Play attribute. Its role should be changed to label if you want to use
any classification operators on this data set.
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Read SAS

Read SAS

f i l ou t This operator is used for reading an SAS file.

Description
This operator can readSAS (StatisticalAnalysis System)files. Please study the attachedExample
Process for understanding the use of this operator. Please note that when an SAS file is read, the
roles of all the attributes are set to regular. Numeric columns use the “real” data type, nominal
columns use the “polynominal” data type in RapidMiner.

Input Ports
file (fil) An SAS file is expected as a file object which can be created with other operators with

file output ports like the Read File operator.

Output Ports
output (out) This port delivers the SAS file in tabular form along with the meta data. This

output is similar to the output of the Retrieve operator.

Parameters
file (filename) The path of the SAS file is specified here. It can be selected using the choose a

file button.

Tutorial Processes

Use of the SAS operator

Process

Read SAS

f i l ou tinp res

res

Figure 1.10: Tutorial process ‘Use of the SAS operator’.

An SAS file is loaded using the Open File operator and then read via the Read SAS operator.
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Read SPSS

Read SPSS

f i l ou t This operator is used for reading SPSS files.

Description
TheRead SPSS operator can read the data files created by SPSS (Statistical Package for the Social
Sciences), an application used for statistical analysis. SPSS files are saved in a proprietary binary
format and contain a dataset as well as a dictionary that describes the dataset. These files save
data by ‘cases’ (rows) and ‘variables’ (columns).
These files have a ‘.SAV’ file extension. SAV files are often used for storing datasets extracted

fromdatabases andMicrosoft Excel spreadsheets. SPSS datasets can bemanipulated in a variety
ofways, but they aremost commonly used to perform statistical analysis tests such as regression
analysis, analysis of variance, and factor analysis.

Input Ports
file (fil) This optional port expects a file object.

Output Ports
output (out) Data from the SPSS file is delivered through this port mostly in form of an Exam-

pleSet.

Parameters
filename (filename) Thisparameter specifies thepathof theSPSSfile. It canbe selectedusing

the choose a file button.

datamanagement (selection) This parameter determines how the data is represented inter-
nally. This is an expert parameter. There are different options, users can choose any of
them.

attribute naming mode (selection) This parameter determines which SPSS variable prop-
erties should be used for naming the attributes.

use value labels (boolean) This parameter specifies if the SPSS value labels should be used
as values.

recode user missings (boolean) This parameter specifies if the SPSS user missings should
be recoded to missing values.

sample ratio (real) This parameter specifies the fraction of the data set which should be read.
If it is set to 1, the complete data set is read. If it is set to -1 then the sample size parameter
is used for determining the size of the data to read.

sample size (integer) This parameter specifies the exact number of samples which should be
read. If it is set to -1, then the sample ratio parameter is used for determining the size of
data to read. If both are set to -1 then the complete data set is read.
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use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Reading an SPSS file

Process

Read SPSS

f i l ou t

inp

res

res

Figure 1.11: Tutorial process ‘Reading an SPSS file’.

You need to have an SPSS file for this process. In this process, the name of the SPSS file is
airline_passengers.sav and it is placed in the D drive of the computer. The file is read using the
Read SPSS operator. All parameters are used with default values. After execution of the process
you can see the resultant ExampleSet in the Results Workspace.
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Read Sparse

Read Sparse

out This operator is used for reading files written in sparse formats.

Description
This operator reads sparse format files. The lines of a sparse file have the form:
label index:value index:value index:value...
Where indexmay be an integer (startingwith 1) for the regular attributes or one of the prefixes

specified by the prefix map parameter. The following formats are supported:

• xy format: The label is the last token in each line.

• yx format: The label is the first token in each line.

• prefix format: The label is prefixed by ‘l:’

• separate file format: The label is read from a separate file specified by the label file param-
eter.

• no label: The ExampleSet is unlabeled.

Output Ports
output (out) This port delivers the required file in tabular form along with themeta data. This

output is similar to the output of the Retrieve operator.

Parameters
format (selection) This parameter specifies the format of the sparse data file.

attribute description file (filename) The name of the attribute description file is specified
here. An attribute description file (extension: .aml) is required to retrievemeta data of the
ExampleSet. This file is a simple XML document defining the properties of the attributes
(like their name and range) and their source files. The datamay be spread over several files.
This file also contains the names of the files to read the data from. Therefore, the actual
data files do not have to be specified as a parameter of this operator.

data file (filename) This parameter specifies the name of the data file. It is necessary if it is
not specified in the attribute description file.

label file (filename) This parameter specifies the name of the file containing the labels. It is
necessary if the format parameter is set to ‘format separate file’

dimension (integer) This parameter specifies the dimension of the example space. It is nec-
essary if the attribute description file parameter is not set.

sample size (integer) Thisparameter specifies themaximumnumberof exampleswhichshould
be read. If it is set to -1, then all examples are read.
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use quotes (boolean) This parameter indicates if quotes should be regarded. If this option is
set to true, the quotes character parameter can be used for specifying the quotes character.

quotes character (char) This parameter defines the quotes character.

datamanagement (selection) This parameter determines how the data is represented inter-
nally. This is an expert parameter. There are different options, users can choose any of
them.

decimal point character (string) This character is used as the decimal character.

prefix map (list) This parameter maps prefixes to names of special attributes.

encoding (selection) This is an expert parameter. A long list of encoding is provided; users
can select any one of them.

Tutorial Processes

Writing and Reading a sparse file

Process

Golf

out

Write AML

inp th r

Read Sparse

out

inp

res

res

Figure 1.12: Tutorial process ‘Writing and Reading a sparse file’.

This Example Process shows the Write AML operator can be used for writing a sparse file and
how the Read Sparse operator can be used for reading a sparse file. The ‘Golf’ data set is loaded
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using the Retrieve operator. This ExampleSet is provided as input to the Write AML operator.
The example set file parameter is set to ‘D:\golf_data’ thus a file named ‘golf_data’ is created (if
it does not already exist) in the ‘D’ drive of your computer. You can open the written file and
make changes in it (if required). This file has the instances of the ExampleSet. The attribute
description file parameter is set to ‘D:\golf_att’ thus a file named ‘golf_att’ is created (if it does
not already exist) in the ‘D’ drive of your computer. You can open the written file and make
changes in it (if required). This file has the meta data of the ExampleSet. The format parameter
is set to ‘sparse_xy’ towrite the file in xy sparse format. The Read Sparse operator is applied next
to read the ExampleSet from the files. The attribute description file and data file parameters are
set to ‘D:\golf_att’ and ‘D:\golf_data’ respectively. The format parameter is set to ‘xy’ because
thefilewaswritten inxy format. All otherparameters areusedwithdefault values. The resultant
ExampleSet can be seen in the Results Workspace.
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Read Stata

Read Stata

f i l ou t This operator can read Stata data files.

Description
This operator can read Stata files. Currently only Stata files of version 113 or 114 are supported.

Input Ports
file (fil) This optional port expects a file object.

Output Ports
output (out) Data from the Stata file is delivered through this port mostly in form of an Exam-

pleSet.

Parameters
filename (filename) Name of the file to read the data from.

datamanagement (selection) Determines, how the data is represented internally.

attribute naming mode (selection) Determines which variable properties should be used
for attribute naming.

handle value labels (selection) Specifieshowtohandleattributeswithvalue labels, i.e. whether
to ignore the labels or how to use them.

sample ratio (real) The fraction of the data set which should be read (1 = all; only used if
sample_size = -1)

sample size (integer) The exact number of samples which should be read (-1 = all; if not -1,
sample_ratio will not have any effect)

use local random seed (boolean) Indicates if a local random seed should be used.

local random seed (integer) Specifies the local random seed
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Read XML

Read XML

f i l ou t This operator is used for reading an XML file.

Description
This operator can read XML files, where examples are represented by elements which match a
given XPath and features are attributes and text-content of each element and its sub-elements.
This operator tries to determine an appropriate type of the attributes by reading the first few

elements and checking the occuring values. If all values are integers, the attribute will become
integer, if real numbers occur, it will be of type real. Columns containing values which can’t be
interpreted as numbers will be nominal, as long as they don’t match the date and time pattern
of the date format parameter. If they do, this attribute will be automatically parsed as date and
the according feature will be of type date.

Input Ports
file (fil) An XML file is expected as a file object which can be created with other operators with

file output ports like the Read File operator.

Output Ports
output (out) This port delivers the XML file in tabular form along with the meta data. This

output is similar to the output of the Retrieve operator.

Parameters
parse numbers (boolean) Specifies whether numbers are parsed or not.

decimal character (char) This character is used as the decimal character.

grouped digits (boolean) Thisoptiondecideswhethergroupeddigits shouldbeparsedornot.
If this option is set to true, a grouping character parameter should be specified.

grouping character (char) This character is used as the grouping character. If this character
is found between numbers, the numbers are combined and this character is ignored. For
example if “22-14” is present in theCSVfile and“-” is set as grouping character, then “2214”
will be stored.

infinity string (string) This parameter can be set to parse a specific infinity representation
(e.g. “Infinity”). If it is not set, the local specific infinity representation will be used.

date format (string) The date and time format is specified here. Many predefined options
exist; users can also specify a new format. If text in a CSV file column matches this date
format, that column is automatically converted to date type. Some corrections are auto-
matically made in date type values. For example a value ‘32-March’ will automatically be
converted to ‘1-April’. Columns containing values which can’t be interpreted as numbers
will be interpreted as nominal, as long as they don’tmatch the date and time pattern of the
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date format parameter. If they do, this column of the CSV file will be automatically parsed
as date and the according attribute will be of date type.

first row as names (boolean) If this option is set to true, it is assumed that the first line of
the CSV file has the names of the attributes. Then the attributes are automatically named
and first line of the CSV file is not treated as a data line.

annotations (menu) If first row as names is not set to true, annotations can be added using
the ‘Edit List’ button of this parameter which opens a new menu. This menu allows you
to select any row and assign an annotation to it. Name, Comment and Unit annotations
can be assigned. If row 0 is assigned aName annotation, it is equivalent to setting the first
row as names parameter to true. If you want to ignore any rows you can annotate them as
Comment. Remember row number in this menu does not count commented lines.

time zone (selection) This is an expert parameter. A long list of time zones is provided; users
can select any of them.

locale (selection) This is an expert parameter. A long list of locales is provided; users can
select any of them.

read all values as polynominal (boolean) This option allows you to disable the type han-
dling for this operator. Every xpath entry will be read as a polynominal attribute.

data set meta data information (menu) This option is an important one. It allows you to
adjust the meta data of the CSV file. Column index, name, type and role can be specified
here. The Read CSV operator tries to determine an appropriate type of the attributes by
reading the first few lines and checking the occurring values. If all values are integers, the
attribute will become an integer. Similarly if all values are real numbers, the attribute will
become of type real. Columns containing values which can’t be interpreted as numbers
will be interpreted as nominal, as long as they don’t match the date and time pattern of
the date format parameter. If they do, this column of the CSV file will be automatically
parsed as date and the according attribute will be of type date. Automatically determined
types can be overridden using this parameter.

read not matching values as missings (boolean) If this value is set to true, values that do
not match with the expected value type are considered as missing values and are replaced
by ‘?’. For example if ‘abc’ is written in an integer column, it will be treated as a missing
value. A question mark (?) in the CSV file is also read as a missing value.

datamanagement (selection) This is an expert parameter. A long list is provided; users can
select any option from this list.
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Read XRFF

Read XRFF

f i l ou t This operator is used for reading XRFF (eXtensible attribute-
Relation File Format) files.

Description
This operator can read XRFF files known from Weka. The XRFF (eXtensible attribute-Relation
File Format) is an XML-based extension of the ARFF format in some sense similar to the original
RapidMiner file format for attribute description files (.aml). You can see a sample XRFF file by
studying the attached Example Process.
Since the XML representation takes up considerably more space because the data is wrapped

into XML tags, one can also compress the data via gzip. RapidMiner automatically recognizes a
file being gzip compressed, if the file’s extension is .xrff.gz instead of .xrff.
The XRFF file is divided into two portions i.e. the header and the body. The header has the

meta data description and the body has the instances. Via the class=”yes” attribute in the at-
tribute specification in the header, one can define which attribute should be used as a predic-
tion label attribute. Although the RapidMiner terminology for such classes is “label” instead of
“class” we support the terminology class in order to have compatibility with the original XRFF
files.

Input Ports
file (fil) This optional port expects a file object.

Output Ports
output (out) The XRFF file is read from the specified path and the resultant ExampleSet is de-

livered through this port.

Parameters
data file (filename) This parameter specifies thepathof theXRFFfile. It canbe selectedusing

the choose a file button.

id attribute (string) This parameter specifies the name of the id attribute. Please note that
this field is case-sensitive.

datamanagement (selection) This parameter determines how the data is represented inter-
nally. This is an expert parameter. There are different options, users can choose any of
them.

decimal point character (string) This parameter specifies the character that is used as dec-
imal point.

sample ratio (real) This parameter specifies the fraction of the data set which should be read.
If it is set to 1, the complete data set is read. If it is set to -1 then the sample size parameter
is used for determining the size of the data to read.
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sample size (integer) This parameter specifies the exact number of samples which should be
read. If it is set to -1 the sample ratio parameter is used for determining the size of data to
read. If both are set to -1 the complete data set is read.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Writing and Reading an XRFF file

Process

Golf

out

Write XRFF

inp th r

f i l

Read XRFF

f i l ou t

inp

res

res

Figure 1.13: Tutorial process ‘Writing and Reading an XRFF file’.

This Example Process demonstrates the use of the Write XRFF and Read XRFF operators re-
spectively. This Example Process shows how these operators can be used to write and read an
ExampleSet. The ‘Golf’ data set is loaded using the Retrieve operator. This ExampleSet is pro-
vided as input to theWrite XRFF operator. The example set file parameter is set to ‘D:\golf_xrff’
thus a file named ‘golf_xrff’ is created (if it does not already exist) in the ‘D’ drive of your com-
puter. You canopen thewrittenfile andmake changes in it (if required). TheReadXRFFoperator
is applied next. The data file parameter is set to ‘D:\golf_xrff’ to read the file that was just writ-
ten using theWrite XRFF operator. The remaining parameters are used with default values. The
resultant ExampleSet can be seen in the Results Workspace.
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1.1.2 Write
Write ARFF

Write ARFF

inp th r

f i l
This operator is used for writing an ARFF file.

Description
This operator can write data in form of ARFF (Attribute-Relation File Format) files known from
the machine learning library Weka. An ARFF file is an ASCII text file that describes a list of in-
stances sharing a set of attributes. ARFF files were developed by the Machine Learning Project
at the Department of Computer Science of The University of Waikato for use with theWekama-
chine learning software. Please study the attached Example Processes for understanding the
basics and structure of the ARFF file format. Please note that when an ARFF file is written, the
roles of the attributes are not stored. Similarly when an ARFF file is read, the roles of all the
attributes are set to regular.

Input Ports
input (inp) This input port expects an ExampleSet. It is the output of the Retrieve operator in

the attached Example Process.

Output Ports
through (thr) The ExampleSet that was provided at the input port is delivered through this

output port without anymodifications. This is usually used to reuse the same ExampleSet
in further operators of the process.

file (fil) This port buffers the file object for passing it to the reader operators

Parameters
example set file (filename) The path of the ARFF file is specified here. It can be selected

using the choose a file button.

encoding (selection) This is an expert parameter. A long list of encoding is provided; users
can select any of them.

Tutorial Processes

The basics of ARFF

The ‘Iris’ data set is loaded using the Retrieve operator. TheWrite ARFF operator is applied on it
to write the ‘Iris’ data set into an ARFF file. The example set file parameter is set to ‘D:\Iris.txt’.
Thus an ARFF file is created in the ‘D’ drive of your computer with the name ‘Iris’. Open this file
to see the structure of an ARFF file.
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Figure 1.14: Tutorial process ‘The basics of ARFF’.

ARFF files have two distinct sections. The first section is the Header information, which is
followed by the Data information. The Header of the ARFF file contains the name of the Rela-
tion and a list of the attributes. The name of the Relation is specified after the @RELATION
statement. The Relation is ignored by RapidMiner. Each attribute definition starts with the
@ATTRIBUTE statement followed by the attribute name and its type. The resultant ARFF file
of this Example Process starts with the Header. The name of the relation is ‘RapidMinerData’.
After the name of the Relation, six attributes are defined.
Attribute declarations take the form of an ordered sequence of @ATTRIBUTE statements.

Each attribute in the data set has its own @ATTRIBUTE statement which uniquely defines the
name of that attribute and its data type. The order of declaration of the attributes indicates the
column position in the data section of the file. For example, in the resultant ARFF file of this
Example Process the ‘label’ attribute is declared at the end of all other attribute declarations.
Therefore values of the ‘label’ attribute are in the last column of the Data section.
Thepossibleattribute types inARFFare: numeric integer real {nominalValue1,nominalValue2,...}

for nominal attributes string for nominal attributes without distinct nominal values (it is how-
ever recommended to use the nominal definition above as often as possible) date [date-format]
(currently not supported by RapidMiner)
You can see in the resultant ARFF file of this Example Process that the attributes ‘a1’, ‘a2’, ‘a3’

and ‘a4’ are of real type. The attributes ‘id’ and ‘label’ are of nominal type. The distinct nominal
values are also specified with these nominal attributes.
The ARFF Data section of the file contains the data declaration line @DATA followed by the

actual example data lines. Each example is represented on a single line, with carriage returns
denoting the end of the example. Attribute values for each example are delimited by commas.
They must appear in the order that they were declared in the Header section (i.e. the data cor-
responding to the n-th @ATTRIBUTE declaration is always the n-th field of the example line).
Missing values are represented by a single question mark (?).
A percent sign (%) introduces a comment andwill be ignored during reading. Attribute names

or example values containing spaces must be quoted with single quotes (’). Please note that in
RapidMiner the sparse ARFF format is currently only supported for numerical attributes. Please
use one of the other options for sparse data files provided by RapidMiner if you also need sparse
data files for nominal attributes.
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Process

Read ARFF

f i l ou tinp res
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Figure 1.15: Tutorial process ‘Reading an ARFF file using the Read ARFF operator’.

Reading an ARFF file using the Read ARFF operator

The ARFF file that was written in the first Example Process using the Write ARFF operator is
retrieved in this Example Process using the Read ARFF operator. The data file parameter is set
to ‘D:\Iris.txt’. Please make sure that you specify the correct path. All other parameters are
used with default values. Run the process. You will see that the results are very similar to the
original Iris data set of RapidMiner repository. Please note that the role of all the attributes is
regular in the results of the Read ARFF operator. Even the roles of ‘id’ and ‘label’ attributes are
set to regular. This is so because the ARFF files do not store information about the roles of the
attributes.

40



1.1. Files

Write Access

Write Access

inp th r This operator writes an ExampleSet into the specified Microsoft
Access database.

Description
TheWrite Access operator is used for writing an ExampleSet into the specified Microsoft Access
database (.mdb or .accdb extension) using the UCanAccess jdbc driver. You only need to have a
basic understanding of databases in order to use this operator properly. Please go through the
parameters and the attached Example Process to understand the working of this operator.

Input Ports
input (inp) This input port expects an ExampleSet. It is output of the Retrieve operator in the

attached Example Process.

Output Ports
through (thr) The ExampleSet that was provided at the input port is delivered through this

output port without anymodifications. This is usually used to reuse the same ExampleSet
in further operators of the process.

file (fil) This port memory buffers file object for passing it to the reader operators

Parameters
database file (filename) This parameter specifies the path of the Access database ( i.e. the

mdb or accdb file)

username (string) This parameter is used for specifying theusernameof the database (if any).

password (string) This parameter is used for specifying the password of the database (if any).

table name (string) This parameter is used for specifying the name of the required table from
the specified database.

overwrite mode (selection) This parameter indicates if an existing table should be overwrit-
ten or the data should be appended.

access version (selection) If a newdatabase is created this parameter specifies its format ver-
sion. This parameter is not used if the database already exists.

Tutorial Processes

Writing and then reading data from an Access database

The ‘Golf’ data set is loaded using the Retrieve operator. The Write Access operator is used for
writing this ExampleSet into the golf table of the ‘golf_db.mdb’ database. The database file pa-
rameter is provided with the path of the database file ‘golf_db.mdb’ and the name of the desired

41



1. Data Access
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Figure 1.16: Tutorial process ‘Writing and then reading data from an Access database’.

table is specified in the table name parameter ( i.e. it is set to ‘golf’). A breakpoint is inserted
here. No results are visible in RapidMiner at this stage but you can see that at this point of the
execution the database has been created and the golf table has been filled with the examples of
the ‘Golf’ data set.
NowtheReadAccessoperator isused for reading thegolf table fromthe ‘golf_db.mdb’database.

The database file parameter is provided with the path of the database file ‘golf_db.mdb’. The de-
fine query parameter is set to ‘table name’. The table name parameter is set to ‘golf’ which is the
name of the required table. Continue the process, youwill see the entire golf table in the Results
Workspace. The define query parameter is set to ‘table name’ if you want to read an entire table
from the database. You can also read a selected portion of the database by using queries. Set
the define query parameter to ‘query’ and specify a query in the query parameter.
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Write CSV

Write CSV

inp th r

f i l
This operator is used towrite CSVfiles(Comma-SeparatedValues).

Description
A comma-separated values (CSV) file stores tabular data (numbers and text) in plain-text form.
CSVfileshaveall valuesof anexample inone line. Values for different attributes are separatedby
a constant separator. It may havemany rows. Each row uses a constant separator for separating
attribute values. The name suggests that the attributes values would be separated by commas,
but other separators can also be used. This separator can be specified using the column separator
parameter. Missing data values are indicated by empty cells.

Input Ports
input (inp) This input port expects an ExampleSet. It is output of the Retrieve operator in the

attached Example Process.

Output Ports
through (thr) The ExampleSet that was provided at the input port is delivered through this

output port without any modifications.This is usually used to reuse the same ExampleSet
in further operators of the process.

file (fil) The created CSV file is provided as a file object that can be used with other operators
with file input ports like ’Write File’.

Parameters
csv file (filename) path of the CSV file is specified here. It can be selected using the choose a

file button.

column separator (string) Column separators for the CSV file can be specified here.

write attribute names (boolean) This parameter indicates if the attribute names should be
written as the first row of the CSV file.

quote nominal values (boolean) This parameter indicates if the nominal values should be
quoted with double quotes in the CSV file.

format date attributes (boolean) This parameter indicates if the date attributes should be
written as a formatted string or as milliseconds past since January 1, 1970, 00:00:00 GMT.

append to file (boolean) This parameter indicates if new content should be appended to the
file or if the pre-existing file content should be overwritten.

encoding (selection) This is anexpertparameter. Therearedifferentoptions, users canchoose
any of them.
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Tutorial Processes

Writing the Labor-Negotiations data set into a CSV file
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out
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Figure 1.17: Tutorial process ‘Writing the Labor-Negotiations data set into a CSV file’.

The ‘Labor-Negotiations’ data set is loaded using the Retrieve operator. TheWrite CSVopera-
tor is applied on it to write the ‘Labor-Negotiations’ data set in a CSV file. The csv file parameter
is provided with this path: ‘D:\Labor data set’. Thus a CSV file named ‘Labor data set’ is created
in the ‘D’ drive of your computer. All parameters are used with default values. The write at-
tribute names parameter is set to true thus the first line of the resultant CSV file has the names
of the attributes of the ‘Labor-Negotiations’ data set. The quote nominal values parameter is
also set to true, thus all nominal values are quoted with double quotes in the CSV file. Files
written by the Write CSV operator can be loaded in RapidMiner using the Read CSV operator.
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Write Excel

Write Excel

inp th r

f i l

This operator writes an ExampleSet to a Excel spreadsheet file.

Description
The Write Excel operator can be used for writing an ExampleSet into a Microsoft Excel spread-
sheet. This operator creates Excel files that are readable by Excel 95, 97, 2000, XP, 2003 and
newer versions. Missing data values in the ExampleSet are indicated by empty cells in the Excel
spreadsheet. The first row of the resultant Excel file has the names of attributes of the input
ExampleSet. Files written by the Write Excel operator can be loaded in RapidMiner using the
Read Excel operator.

Input Ports
input (inp) This input port expects an ExampleSet. It is output of the Retrieve operator in the

attached Example Process.

Output Ports
through (thr) The ExampleSet that was provided at the input port is delivered through this

output port without any modifications.This is usually used to reuse the same ExampleSet
in further operators of the process.

file (fil) The created Excel file is provided as a file object that can be used with other operators
with file input ports like ’Write File’.

Parameters
excel file (string) Thepathof theExcel file is specifiedhere. It canbe selectedusing the choose

a file button.

file format (selection) Allows the user to specify if the resulting excel sheet should have the
xls or xlsx format.

encoding (selection) This is an expert parameter furthermore it is shown with file format xls
only. There are different options, users can choose any of them.

sheet name (string) This parameter is shown with file format xlsx only. The user can specify
the name of the excel sheet.

date format (string) This is an expert parameter furthermore it is shownwith file format xlsx
only. Format dates should be saved in.

number format (string) This is an expert parameter furthermore it is shown with file format
xlsx only. Format number should be saved in.
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Tutorial Processes

Writing the Labor-Negotiations data set into an Excel file

Process

Labor-Negotiations

out

Write Excel

inp th r

f i l

inp

res

res

Figure 1.18: Tutorial process ‘Writing the Labor-Negotiations data set into an Excel file’.

The Labor-Negotiations data set is loaded using the Retrieve operator. TheWrite Excel opera-
tor is appliedon it towrite theLabor-Negotiationsdata set inaExcelfile. Theexcelfileparameter
is provided with this path: ‘D:\Labor data set.xls’. Thus an Excel file named ‘Labor data set’ is
created in the ‘D’ drive of your computer. Note that the first row of the resultant Excel file has
the names of attributes of the Labor-Negotiations data set. Also note that all missing values in
the Labor-Negotiations data set are represented by empty cells in the Excel file.
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Write PMML

Write  PMML

mod mod This operator will save the givenmodel to anXMLfile of PMML4.0
format.

Description
This operator will write the given model to an XML file of PMML 4.0 format. This format is
a standard for data mining models and is understood by many data bases. It can be used for
applying data mining models directly in the database. This way it can be applied on a regular
basis on huge amounts of data.
This operator supports the following models:

• Decision Tree Models

• Rule Models

• Naive Bayes models for nominal attributes

• Linear Regression Models

• Logistic Regression Models

• Centroid based Cluster models like models of k-means and k-medoids

Input Ports
model input (mod) The model input port.

Output Ports
model output (mod) The model output port.

Parameters
file Specifies the file for saving the pmml.

version Determines which PMML version should be used for export.
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Write Special Format

Write Special For. . .

inp th r This operator writes an ExampleSet or subset of an ExampleSet in
a special user defined format.

Description
The path of the file is specified through the example set file parameter. The special format param-
eter is used for specifying the exact format. The character following the $ character introduces a
command. Additional arguments to this commandmay be supplied by enclosing them in square
brackets. The following commands can be used in the special format parameter:

• $a : This command writes all attributes separated by the default separator.

• $a[separator] : This command writes all attributes separated by a separator (the separator
is specified as an argument in brackets).

• $s[separator][indexSeparator] : This command writes in sparse format. The separator and
indexSeparator are provided as first and second arguments respectively. For all non zero
attributes the following strings are concatenated: the column index, the value of the in-
dexSeparator, the attribute value. The attributes are separated by the specified separator.

• $v[name] : This command writes the values of a single attribute. The attribute name is
specified as an argument. This command can be used for writing both regular and special
attributes.

• $k[index] : This command writes the values of a single attribute. The attribute index is
specified as an argument. The indices start from 0. This command can be used for writing
only regular attributes.

• $l : This command writes the values of the label attribute.

• $p : This command writes the values of the predicted label attribute.

• $d : This commandwrites all predictionconfidences for all classes in the form‘conf(class)=value’

• $d[class] : This commandwrites theprediction confidences for thedefined class as a simple
number. The required class is provided as an argument.

• $i : This command writes the values of the id attribute.

• $w : This command writes the example weights.

• $b : This command writes the batch number.

• $n : This command writes the newline character i.e. newline is inserted when this char-
acter is reached.

• $t : This command writes the tabulator character i.e. tab is inserted when this character
is reached.

• $$ : This command writes the dollar sign.
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• $[ : This command writes the ‘[’ character i.e. the opening square bracket.

• $] : This command writes the ‘]’ character i.e. the closing square bracket.

PleaseMake sure that the format string ends with $n or the add line separator parameter is set
to true if you want examples to be separated by newlines.

Input Ports
input (inp) This input port expects an ExampleSet. It is output of the Apply Model operator in

the attached Example Process. The output of other operators can also be used as input.

Output Ports
through (thr) The ExampleSet that was provided at the input port is delivered through this

output port without anymodifications. This is usually used to reuse the same ExampleSet
in further operators of the process.

Parameters
example set file (filename) The ExampleSet is written into the file specified through this pa-

rameter.

special format (string) This parameter specifies the exact format of thefile. Many commands
are available for specifying the format. These commands are discussed in the description
of this operator.

fraction digits (integer) This parameter specifies the number of fraction digits in the output
file. This parameter is used for rounding off real numbers. Setting this parameter to -1
will write all possible digits i.e. no rounding off is done.

quote nominal values (boolean) Thisparameter indicates ifnominal values shouldbequoted
with double quotes.

add line separator (boolean) Thisparameter indicates if eachexample shouldbe followedby
a line break or not . If set to true, each example is followed by a line break automatically.

zipped (boolean) This parameter indicates if the data file content should be zipped or not.

overwrite mode (selection) This parameter indicates if an existingfile should be overwritten
or data should be appended.

encoding (selection) This is anexpertparameter. Therearedifferentoptions, users canchoose
any of them

Tutorial Processes

Writing labeled data set in a user-defined format

The k-NNclassificationmodel is trained on the ‘Golf’ data set. The trainedmodel is then applied
on the ‘Golf-Testset’ data set using the Apply Model operator. The resulting labeled data set is
written in a file using the Write Special Format operator. Have a look at the parameters of the
Write Special Format operator. You can see that the ExampleSet is written into a file named
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Process
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Figure 1.19: Tutorial process ‘Writing labeled data set in a user-defined format’.

‘special’. The special format parameter is set to ‘ $[ $l $] $t $p $t $d[yes] $t $d[no]’. This format
string is composed of a number of commands, it can be interpreted as: ‘[label] predicted_label
confidence (yes) confidence (no)’. This format string states that four attributes shall be written
in the file i.e. ‘label’, ‘predicted label’, ‘confidence (yes)’ and ‘confidence (no)’. Each attribute
should be separated by a tab. The label attribute should be enclosed in square brackets. Run the
process and see the written file for verification.
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Write XRFF

Write XRFF

inp th r

f i l
Writes the values of all examples into an XRFF-file.

Description
Writes values of all examples into anXRFFfilewhich can be used by themachine learning library
Weka. The XRFF format is described in the XrffExampleSource operator which is able to read
XRFF files to make them usable with RapidMiner.
Please note that writing attribute weights is not supported, please use the other RapidMiner

operators for attribute weight loading and writing for this purpose.

Input Ports
input (inp) This input port expects an ExampleSet.

Output Ports
through (thr) The ExampleSet that was provided at the input port is delivered through this

output port without anymodifications. This is usually used to reuse the same ExampleSet
in further operators of the process.

file (fil) This port buffers the file object for passing it to the reader operators

Parameters
example set file (filename) The path of the XRFF file is specified here. It can be selected

using the choose a file button.

encoding (selection) This is an expert parameter. A long list of encoding is provided; users
can select any of them.
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1.2 Database
Read Database

Read Database

out This operator reads an ExampleSet from a SQL database.

Description
The Read Database operator is used for reading an ExampleSet from the specified SQL database.
You need to have at least basic understanding of databases, database connections and queries
in order to use this operator properly. Go through the parameters and Example Process to un-
derstand the flow of this operator.
When thisoperator is executed, the tabledeliveredby thequerywill be copied into thememory

of your computer. Thiswill give all subsequent operators a fast access on the data. Even learning
schemes like the Support Vector Machine with their high number of random accesses will run
fast.
The java ResultSetMetaData interface does not provide information about the possible values

of nominal attributes. The internal indices the nominal values are mapped to, will depend on
the ordering they appear in the table. Thismay cause problems only when processes are split up
into a training process and a testing process. This is not a problem for learning schemes which
are capable of handling nominal attributes. If a learning scheme like the SVM is used with nom-
inal data, RapidMiner pretends that nominal attributes are numerical and uses indices for the
nominal values as their numerical value. The SVMmay performwell if there are only two possi-
ble values. If a test set is read in another process, the nominal values may be assigned different
indices, and hence the SVM trained is useless. This is not a problem for the label attributes,
since the classes can be specified using the classes parameter and hence all learning schemes
intended to use with nominal data are safe to use. You might avoid this problem if you first
combine both ExampleSets using the Append operator and then split it again using two Filter
Examples operators.

Differentiation
• Execute SQL The Read Database operator is used for loading data from a database into
RapidMiner. The Execute SQL operator cannot be used for loading data from databases. It
can be used for executing SQL statements like CREATE or ADD etc on the database. See
page 834 for details.

Output Ports
output (out) This port delivers the result of the query on database in tabular form along with

the meta data. This output is similar to the output of the Retrieve operator.

Parameters
define connection (selection) This parameter indicates how thedatabase connection should

be specified. It gives you three options: predefined, url and jndi.
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connection (string) This parameter is only available when the define connection parameter is
set to predefined. This parameter is used to connect to the database using a predefined con-
nection. Youcanhavemanypredefinedconnections. Youcanchooseoneof themusing the
drop down box. You can add a new connection or modify previous connections using the
button next to the drop down box. Youmay also accomplish this by clicking on theManage
Database Connections... from theToolsmenu in themainwindow. Anewwindowappears.
Thiswindowasks for several details e.g. Host, Port, Database system, schema, username and
password. The Test button in this new window will allow you to check whether the con-
nection can be made. Save the connection once the test is successful. After saving a new
connection, it can be chosen from the drop down box of the connection parameter. You
need to have basic understanding of databases for configuring a connection.

database system (selection) This parameter is only available when the define connection pa-
rameter is set to url. This parameter is used to select the database system in use. It can
haveoneof the followingvalues: MySQL,PostgreSQL, Sybase, HSQLDB,ODBCBridge (e.g.
Access), Microsoft SQL Server (JTDS), Ingres, Oracle.

database url (string) This parameter is only available when the define connection parameter
is set to url. This parameter is used to define the URL connection string for the database,
e.g. ‘jdbc:mysql://foo.bar:portnr/database’.

username (string) This parameter is only available when the define connection parameter is
set to url. This parameter is used to specify the username of the database.

password (string) This parameter is only available when the define connection parameter is
set to url. This parameter is used to specify the password of the database.

jndi name (string) This parameter is only available when the define connection parameter is
set to jndi. This parameter is used to give the JNDI a name for a data source.

define query (selection) Query is a statement that is used to select required data from the
database. This parameter specifies whether the database query should be defined directly,
throughafile or implicitly by a given table name. TheSQLquery canbe auto generated giv-
ing a table name, passed to RapidMiner via a parameter or, in case of long SQL statements,
in a separate file. The desired behavior can be chosen using the define query parameter.
Please note that column names are often case sensitive and might need quoting.

query (string) This parameter is only available when the define query parameter is set to query.
This parameter is used to define the SQL query to select desired data from the specified
database.

query file (filename) This parameter is only available when the define query parameter is set
to query file. This parameter is used to select a file that contains the SQL query to select
desired data from the specified database. Long queries are usually stored in files. Storing
queries in files can also enhance reusability.

table name (string) This parameter is only available when the define query parameter is set to
table name. This parameter is used to select the required table from the specified database.

prepare statement (boolean) If checked, the statement is prepared, and ‘?’ can be filled in
using the parameters parameter.

parameters (enumeration) Parameters to insert into ‘?’ placeholderswhen statement is pre-
pared.
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Related Documents
• Execute SQL (page 834)

Tutorial Processes

Reading ExampleSet from a mySQL database

Process

Read Database

outinp res

res

Figure 1.20: Tutorial process ‘Reading ExampleSet from a mySQL database’.

The Read Database operator is used to read a mySQL database. The define connection pa-
rameter is set to predefined. The define connection parameter was configured using the button
next to the drop down box. The name of the connection was set to ‘mySQLconn’. The following
values were set in the connection parameter’s wizard. The Database system was set to ‘mySQL’.
The Host was set to ‘localhost’. The Port was set to ‘3306’. The Database scheme was set to
‘golf’; this is the name of the database. The User was set to ‘root’. No password was provided.
You will need a password if your database is password protected. Set all the values and test the
connection. Make sure that the connection works.
The define query parameter was set to ‘table name’. The table name parameter was set to

‘golf_table’ which is the name of the required table in the ‘golf’ database. Run the process, you
will see the entire ‘golf_table’ in the Results Workspace. The define query parameter is set to
‘table name’ if you want to read an entire table from the database. You can also read a selected
portion of the database by using queries. Set the define query parameter to ‘query’ and specify a
query in the query parameter. One sample query is already defined in this example. This query
reads only those examples from ‘golf_table’ where the ‘Outlook’ attribute has the value ‘sunny’.
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Update Database

Update Database

inp th r This operator updates the values of all examples withmatching ID
values in a database.

Description
TheUpdateDatabaseoperator isused forupdatinganexisting table in the specifiedSQLdatabase.
You need to have at least basic understanding of databases and database connections in order
to use this operator properly. Go through the parameters and the attached Example Process to
understand the flow of this operator.
The user can specify the database connection, a table name and ID column names. The most

convenient way of defining the necessary parameters is theManage Database Connections wiz-
ard. The most important parameters (database URL and user name) will be automatically de-
termined by this wizard.
The row(s) to update are specified via the db id attribute name parameter. If the id columns of

the table do not match all the id values of any given example, the row will be inserted instead.
The ExampleSet attribute names must be a subset of the table column names, otherwise the
operator will fail.

Input Ports
input (inp) This input port expects an ExampleSet. It is output of the Retrieve operator in the

attached Example Process.

Output Ports
through (thr) The ExampleSet that was provided at the input port is delivered through this

output port without anymodifications. This is usually used to reuse the same ExampleSet
in further operators of the process.

Parameters
define connection (selection) This parameter indicates how thedatabase connection should

be specified. It gives you three options: predefined, url and jndi.

connection (string) This parameter is only available when the define connection parameter is
set to predefined. This parameter is used for connecting to the database using a predefined
connection. Youcanhavemanypredefinedconnections. Youcanchooseoneof themusing
the drop down box. You can add a new connection or modify previous connections using
the button next to the drop down box. Youmay also accomplish this by clicking onManage
Database Connections... from theToolsmenu in themainwindow. Anewwindowappears.
This window asks for several details e.g. Host, Port, Database system, schema, username
and password. The Test button in this new window will allow you to check whether the
connection can be made. Save the connection once the test is successful. After saving a
new connection, it can be chosen from the drop downbox of the connectionparameter. You
need to have basic understanding of databases for configuring a connection.
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database system (selection) This parameter is only available when the define connection pa-
rameter is set to url. This parameter is used for selecting the database system in use. It
can have one of the following values: MySQL, PostgreSQL, Sybase, HSQLDB, ODBCBridge
(e.g. Access), Microsoft SQL Server (JTDS), Ingres, Oracle.

database url (string) This parameter is only available when the define connection parameter
is set to url. This parameter is used for defining theURL connection string for the database,
e.g. ‘jdbc:mysql://foo.bar:portnr/database’.

username (string) This parameter is only available when the define connection parameter is
set to url. This parameter is used for specifying the username of the database.

password (string) This parameter is only available when the define connection parameter is
set to url. This parameter is used for specifying the password of the database.

jndi name (string) This parameter is only available when the define connection parameter is
set to jndi. This parameter is used for giving the JNDI a name for a data source.

table name This parameter is used for selecting the required table from the specifieddatabase.
Please note that you can also write a table name here, if the table does not exist it will be
created during writing.

attribute filter type (selection) This parameter allows you to select the ID attribute which
values ALL have to match in the example set and the database for the row to be updated.
It has the following options:

• all Does not make sense in this context so do not use, will break the process.
• single This option allows the selection of a single id attribute.
• subset This option allows the selection of multiple id attributes through a list. This
option will not work if the meta data is not known.

• regular_expression This option allows you to specify a regular expression for the
id attribute selection. When this option is selected some other parameters (regular
expression, use except expression) become visible in the Parameter panel.

• value_type This option allows selection of all the id attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. The user should have a basic understanding of type hi-
erarchy when selecting attributes through this option. When this option is selected
some other parameters (value type, use value type exception) become visible in the
Parameter panel.

• block_type This option is similar in working to the value_type option. This option
allows the selection of all the attributes of a particular block type. It should be noted
that block types may be hierarchical. For example value_series_start and value_series-
_end block types both belong to the value_series block type. When this option is se-
lected some other parameters (block type, use block type exception) become visible
in the Parameter panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric_value_filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameter panel. All numeric attributes whose exam-
ples all satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.
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Figure 1.21: Tutorial process ‘Updating an ExampleSet in a mySQL database’.

The ‘Iris’ data set is loaded using the Retrieve operator. The Update Database operator is used
to update an existing database table named “Test” in the “My connection” SQL database. Rows
in the example set and table whichmatch on their “ID” columnwill be updated. If nomatch can
be found, the row will be inserted instead.
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Write Database

Write  Database

inp th r This operator writes an ExampleSet to an SQL database.

Description
The Write Database operator is used for writing an ExampleSet to the specified SQL database.
You need to have at least basic understanding of databases and database connections in order
to use this operator properly. Go through the parameters and the attached Example Process to
understand the flow of this operator.
The user can specify the database connection and a table name. Please note that the table

will be created during writing if it does not exist. The most convenient way of defining the nec-
essary parameters is theManage Database Connectionswizard. The most important parameters
(database URL and user name) will be automatically determined by this wizard. At the end, you
only have to define the table name. This operator only supports the writing of the complete Ex-
ampleSet consisting of all regular and special attributes and all examples. If this is not desired,
performsomepreprocessingoperators like the SelectAttributes or Filter Examples operators be-
fore applying theWrite Database operator. Data from database tables can be read in RapidMiner
by using the Read Database operator.

Input Ports
input (inp) This input port expects an ExampleSet. It is output of the Retrieve operator in the

attached Example Process.

Output Ports
through (thr) The ExampleSet that was provided at the input port is delivered through this

output port without anymodifications. This is usually used to reuse the same ExampleSet
in further operators of the process.

Parameters
define connection (selection) This parameter indicates how thedatabase connection should

be specified. It gives you three options: predefined, url and jndi.

connection (string) This parameter is only available when the define connection parameter is
set to predefined. This parameter is used for connecting to the database using a predefined
connection. Youcanhavemanypredefinedconnections. Youcanchooseoneof themusing
the drop down box. You can add a new connection or modify previous connections using
the button next to the drop down box. Youmay also accomplish this by clicking onManage
Database Connections... from theToolsmenu in themainwindow. Anewwindowappears.
This window asks for several details e.g. Host, Port, Database system, schema, username
and password. The Test button in this new window will allow you to check whether the
connection can be made. Save the connection once the test is successful. After saving a
new connection, it can be chosen from the drop downbox of the connectionparameter. You
need to have basic understanding of databases for configuring a connection.
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database system (selection) This parameter is only available when the define connection pa-
rameter is set to url. This parameter is used for selecting the database system in use. It
can have one of the following values: MySQL, PostgreSQL, Sybase, HSQLDB, ODBCBridge
(e.g. Access), Microsoft SQL Server (JTDS), Ingres, Oracle.

database url (string) This parameter is only available when the define connection parameter
is set to url. This parameter is used for defining theURL connection string for the database,
e.g. ‘jdbc:mysql://foo.bar:portnr/database’.

username (string) This parameter is only available when the define connection parameter is
set to url. This parameter is used for specifying the username of the database.

password (string) This parameter is only available when the define connection parameter is
set to url. This parameter is used for specifying the password of the database.

jndi name (string) This parameter is only available when the define connection parameter is
set to jndi. This parameter is used for giving the JNDI a name for a data source.

table name This parameter is used for selecting the required table from the specifieddatabase.
Please note that you can also write a table name here, if the table does not exist it will be
created during writing.

overwrite mode (selection) This parameter indicates if an existing table should be overwrit-
ten or data should be appended to the existing data.

set default varchar length (boolean) This parameter allows you to set varchar columns to
default length.

default varchar length (integer) This parameter is only available when the set default var-
char length parameter is set to true. This parameter specifies the default length of varchar
columns.

add generated primary keys (boolean) This parameter indicates whether a new attribute
holding the auto generated primary keys should be added to the table in the database.

db key attribute name (string) This parameter is only available when the add generated pri-
mary keys parameter is set to true. This parameter specifies the name of the attribute for
the auto generated primary keys.

batch size (integer) This parameter specifies the number of examples which are written at
once with one single query to the database. Larger values can greatly improve the speed.
However, too largevalues candrasticallydecrease theperformance. Moreover, somedatabases
have restrictions on the maximum number of values written at once.

Tutorial Processes

Writing an ExampleSet to a mySQL database

The ‘Golf’ data set is loaded using the Retrieve operator. TheWrite Database operator is used for
writing this data set to amySQL database. The define connection parameter is set to predefined
and it is configured using the button next to the drop down box. The name of the connection
is set to ‘mySQLconn’. The following values are set in the connection parameter’s wizard: the
Database system is set to ‘mySQL’. The Host is set to ‘localhost’. The Port is set to ‘3306’. The
Database scheme is set to ‘golf’; this is the name of the database. The User is set to ‘root’. No
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Figure 1.22: Tutorial process ‘Writing an ExampleSet to a mySQL database’.

password is provided. You will need a password if your database is password protected. Set all
the values and test the connection. Make sure that the connection works.
The table name parameter is set to ‘golf_table’ which is the name of the required table in the

‘golf’ database. Run the process, you will see the entire ‘golf_table’ in the Results Workspace.
You can also check the ‘golf’ database in phpmyadmin to see the ‘golf_table’. You can read this
table from the database using the Read Database operator. Please study the Example Process of
the Read Database operator for more information.
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1.3 NoSQL
1.3.1 Cassandra
Delete Cassandra

Delete Cassandra

inp ou t

This operator deletes data from a Cassandra table. The input ex-
ample set is expected tohavean IDattributewhich is used todefine
the rows that will be deleted from Cassandra.

Description
The Delete Cassandra operator is used to delete data from a Cassandra table.
Thedata to be deleted is definedby the IDattribute of the provided example set. If the selected

table contains a compound primary key, additional attributes can be added to the key with the
parameter ‘additional_primary_keys’.

Input Ports
input (inp) Theexample set thatdefineswhichdata shouldbedeleted fromtheCassandradatabase.

Output Ports
output (out) The passed through example set.

Parameters
conncetion (configurable) The connection details for the Cassandra connection have to be

specified. If you have already configured a Cassandra connection, you can select it from
the drop-down list. If you have not configured a Cassandra connection yet, select the Cas-
sandra icon right to the drop-down list. Create a newCassandra connection in theManage
connections box. The contact points and keyspace name are mandatory.

consistency level (selection) The consistency level for theCassandra query. The consistency
level defines how many Cassandra nodes have to respond to the query in order to be suc-
cessful. Possible levels are: ONE, TWO, THREE, QUORUM, ALL, ANY

• ONE A write must be written at least to one node.

• TWO A write must be written at least to two nodes.

• THREE A write must be written at least to three nodes.

• QUORUM Awrite must be written at least on a quorum of nodes. A quorum is calcu-
lated as (rounded down to a whole number): (replication_factor / 2) + 1. For example,
with a replication factor of 3, a quorum is 2 (can tolerate 1 node down). With a repli-
cation factor of 6, a quorum is 4 (can tolerate 2 nodes down).

• ALL A write must be written on all nodes in the cluster for that row key.

• ANY A write must be written to at least one node

table name (string) Specify the table from which data should be deleted.
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batch size (integer) Define the maximum number of rows which should be deleted with one
request.

primary key attributes (enumeration) If the selected Cassandra table has a compound pri-
mary key this parameter allows you to add more attributes to the primary key.
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Execute CQL

Execute CQL

f i l

t h r

f i l

t h r

This operator is used to execute a CQL statement on a Cassandra
database.

Description
The Execute CQL operator is used to execute CQL statements on a Cassandra cluster. It cannot
return data though and therefore ‘SELECT’ will not yield any results.

Input Ports
file (fil) The CQL file which specifies the CQL statement to be executed. If the ‘define query’

parameter is set to the ‘query file’ option, the input port ‘file’ is used for the CQLfile. Note:
If the input port is connected to another operator with output port file and the input port
is connected to it, the ‘query file’ option of the ‘define query file’ parameter is ignored.

through (thr) An arbitrary Input/Output (IO) object that is passed through the operator.

Output Ports
file (fil) If the input port ‘file’ is connected, the unchanged CQL file is returned.

through (thr) An arbitrary Input/Output (IO) object that is passed through the operator.

Parameters
conncetion (configurable) The connection details for the Cassandra connection have to be

specified. If you have already configured a Cassandra connection, you can select it from
the drop-down list. If you have not configured a Cassandra connection yet, select the Cas-
sandra icon right to the drop-down list. Create a newCassandra connection in theManage
connections box. The contact points and keyspace name are mandatory.

consistency level (selection) The consistency level for theCassandra query. The consistency
level defines how many Cassandra nodes have to respond to the query in order to be suc-
cessful. Possible levels are: ONE, TWO, THREE, QUORUM, ALL, ANY

• ONE A write must be written at least to one node.

• TWO A write must be written at least to two nodes.

• THREE A write must be written at least to three nodes.

• QUORUM Awrite must be written at least on a quorum of nodes. A quorum is calcu-
lated as (rounded down to a whole number): (replication_factor / 2) + 1. For example,
with a replication factor of 3, a quorum is 2 (can tolerate 1 node down). With a repli-
cation factor of 6, a quorum is 4 (can tolerate 2 nodes down).

• ALL A write must be written on all nodes in the cluster for that row key.

• ANY A write must be written to at least one node
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define query (selection) This parameter allows to select the mode the data of a query should
be defined.

• query Define a CQL query via the ‘query’ parameter.

• query file Load CQL query from file. If ‘file’ input port is connected, the query is
loaded from the provided file object.

query (string) The CQL query that defines the data that should be queried can be specified
here. It is shown if ’define query’ is set to ‘query’. The operator cannot return data though
and therefore ‘SELECT’ will not yield any results.

query file (file) The CQL file which contains the CQL statement that defines the data that
should be queried can be specified here. It is shown if ‘define query’ is set to ‘query file’.
The operator cannot return data though and therefore ‘SELECT’ will not yield any results.

prepare statement (boolean) This parameter specifies whether the query will be a prepared
query or a normal query. If activated, the parameter ‘parameters’ is shown.

parameters (enumeration) If you have activated the ‘prepare statement’ checkbox, this pa-
rameter allows to specify prepared values for the query. Every ‘?’ from the specified CQL
query will be replaced by the prepared values in the order they are listed in the Edit pa-
rameter list: parameters. Note: If you select the wrong type for the parameter, an error
message informs you about.
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Read Cassandra

Read Cassandra

f i l ou t

f i l

This operator reads an example set from a Cassandra table.

Description
The example set to be read can be specified via a CQL statement, a CQL file or by specifying a
table name.

Input Ports
file (fil) The CQL file which specifies the CQL statement to be executed. If the ‘define query’

parameter is set to the ‘query file’ option, the input port ‘file’ is used for the CQLfile. Note:
If the input port is connected to another operator with output port file and the input port
is connected to it, the ‘query file’ option of the ‘define query file’ parameter is ignored.

Output Ports
output (out) The example set specified via either the CQL statement or the table.

file (fil) If the input port ‘file’ is connected, the unchanged CQL file is returned.

Parameters
conncetion (configurable) The connection details for the Cassandra connection have to be

specified. If you have already configured a Cassandra connection, you can select it from
the drop-down list. If you have not configured a Cassandra connection yet, select the Cas-
sandra icon right to the drop-down list. Create a newCassandra connection in theManage
connections box. The contact points and keyspace name are mandatory.

consistency level (selection) The consistency level for theCassandra query. The consistency
level defines how many Cassandra nodes have to respond to the query in order to be suc-
cessful. Possible levels are: ONE, TWO, THREE, QUORUM, ALL, ANY

• ONE A write must be written at least to one node.
• TWO A write must be written at least to two nodes.
• THREE A write must be written at least to three nodes.
• QUORUM Awrite must be written at least on a quorum of nodes. A quorum is calcu-
lated as (rounded down to a whole number): (replication_factor / 2) + 1. For example,
with a replication factor of 3, a quorum is 2 (can tolerate 1 node down). With a repli-
cation factor of 6, a quorum is 4 (can tolerate 2 nodes down).

• ALL A write must be written on all nodes in the cluster for that row key.
• ANY A write must be written to at least one node

define query (selection) This parameter allows to select themode the data of a query should
be defined.

65



1. Data Access

• query Define a CQL query via the ‘query’ parameter.

• query file Load CQL query from file. If ‘file’ input port is connected, the query is
loaded from the provided file object.

• query table Select a table to be loaded without defining a CQL query.

query (string) This parameter is only displayed when you have selected the ‘query’ parame-
ter. If you click in the ‘Edit text...’ field, the ‘Edit parameter: query’ editor opens and you
specify the CQL query. Only SELECT statements are allowed.

query file (file) This parameter is only displayed when you have selected the ‘query file’ pa-
rameter. Youcan select thefile that contains theCQLstatement that defines thedata. Only
SELECT statements are allowed. Note: If the Input port of the Read Cassandra operator is
connected to an Open file operator, this parameter is not displayed.

prepare statement (boolean) If you have either select ‘query’ or ‘query file’ for the ‘define
query’ operator, this parameter is displayed. It specifies whether the query will be a pre-
pared query or a normal query. If activated, the parameter ’parameters’ is shown.

parameters (enumeration) If you have activated the ’prepare statement’ checkbox, this pa-
rameter allows to specify prepared values for the query. Every ‘?’ from the specified CQL
query will be replaced by the prepared values in the order they are listed in the Edit pa-
rameter list: parameters. Note: If you select the wrong type for the parameter, an error
message informs you about.

table (string) If ‘define query’ is set to ’query table’, this parameter is displayed. It allows to
select the table that should be read.

datamanagement (selection) This parameter allows you to select the appropriate data type
for the internal data description.
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Write Cassandra

Write Cassandra

inp ou t This operator writes an example set to a Cassandra database.

Description
The ‘Write Cassandra’ operator writes an example set to a Cassandra database. The input exam-
ple set is expected to have an ID attributewhich is used as primary key for the selectedCassandra
table. If the table has a compound primary key use the parameter ‘primary key attributes’ to add
more attribute as key attributes.

Input Ports
input (inp) Requires an example set read by an appropriate operator. The example set must

contain an ID attribute. Therefore a Set rule operator must be added to the process in
order to specify the ID attribute.

Output Ports
output (out) The passed through example set that is written to the Cassandra database.

Parameters
conncetion (configurable) The connection details for the Cassandra connection have to be

specified. If you have already configured a Cassandra connection, you can select it from
the drop-down list. If you have not configured a Cassandra connection yet, select the Cas-
sandra icon right to the drop-down list. Create a newCassandra connection in theManage
connections box. The contact points and keyspace name are mandatory.

consistency level (selection) The consistency level for theCassandra query. The consistency
level defines how many Cassandra nodes have to respond to the query in order to be suc-
cessful. Possible levels are: ONE, TWO, THREE, QUORUM, ALL, ANY

• ONE A write must be written at least to one node.

• TWO A write must be written at least to two nodes.

• THREE A write must be written at least to three nodes.

• QUORUM Awrite must be written at least on a quorum of nodes. A quorum is calcu-
lated as (rounded down to a whole number): (replication_factor / 2) + 1. For example,
with a replication factor of 3, a quorum is 2 (can tolerate 1 node down). With a repli-
cation factor of 6, a quorum is 4 (can tolerate 2 nodes down).

• ALL A write must be written on all nodes in the cluster for that row key.

• ANY A write must be written to at least one node

table name (string) Name of the table to which the example set should be written. If a table
with the same name already exists, it is updated, presupposed the example set is compat-
ible, i.e., attribute names and types do match. In case the table does not exist yet, a new
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tablewith this name is created and the example set iswritten to this table. The ID attribute
of the example set is used as primary key. In case index columns should be defined for the
newly created table, use the parameter ‘index columns’.

batch size (integer) This parameter defines the maximum number of rows which should be
written with one request. Default value is 1000.

primary key attributes (enumeration) If the Cassandra table already exists and has a com-
pound primary key, you can addmore attributes to the primary key that is used to store the
example set. If the Cassandra table does not exist yet, you can add primary key attributes
in the Edit parameter list: primary key attributes to create a compound primary key. This
primary key consists on the ID attribute and the selected attributes.

index columns (enumeration) This option is only required in case the Cassandra table does
not exists yet. It allows you to define columns as index columns for the newly created table
in the Edit paramater list: index columns.

use ttl (boolean) If the checkbox is activated, an additional parameter ‘ttl’ (Time To Live) is
displayed. The parameter allows you to specify a time interval value in seconds for the
written data. If set, the inserted values are automatically removed from the database after
the specified time interval. Note: This remove action affects only the inserted values, not
the column themselves. This means that any subsequent update of the column will reset
the ‘ttl’ value. By default, values are never removed.

ttl (integer) If the ‘use_ttl’ checkbox is activated, you can specify a value in seconds. By default
this value is 120 seconds. You can enter any positive number >= 1.
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1.3.2 MongoDB
Delete MongoDB

Delete MongoDB

doc col Deletes a set of MongoDB documents.

Description
This operator can be used to delete documents from the specified MongoDB collection. The
default configuration of the operator assumes that documents are deleted via their ID, however,
more general deletion queries are supported as well.

Input Ports
documents (doc) The documents to be deleted form the specified MongoDB collection.

Output Ports
documents (doc) The documents that have been deleted from the collection. This collection

is a subset of the input collection: skipped documents are not included.

Parameters
mongodb instance (Configurable) The MongoDB instance to be used for storing the docu-

ments.

write concern (Selection) Thewrite concernwhichcontrols theacknowledgmentofwriteop-
erations by MongoDB. See the MongoDB documentation for details.

collection (String) The MongoDB collection in which the documents are stored.

require id (Boolean) If checked the operator requires documents to include a MongoDB ID,
i.e., to include the “_id” field. Documentsmissing an ID are considered invalid. Otherwise,
all documents are passed to the database.

skip invalid documents (Boolean) If checked, invalid documents (i.e., not in JSON format)
are skipped and a warning is logged. Otherwise, the process execution is stopped.
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Execute MongoDB Command

Execute MongoD.. .

com res Runs a user specified command on the MongoDB instance.

Description
This operator can be used to execute arbitrary MongoDB commands. Commands are specified
and results returned via JSON/BSON documents. For instance, the command {”create”: “my-
Collection”} creates a new collection of the name “myCollection”.

Input Ports
command (com) The database command to be executed (a JSON/BSON document). Alterna-

tively, you can specify this document via the command parameter. Note that this param-
eter is only visible if no document is connected to the input port.

Output Ports
result (res) The document containing the results of the MongoDB database command.

Parameters
mongodb instance (Configurable) The MongoDB instance to be used to run the command.

command (String) The database command to be executed (a JSON/BSON document). Alter-
natively, you can specify this document via the command input port.
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Read MongoDB

Read MongoDB

cri

pro

sor

col

Reads documents from a MongoDB collection.

Description

This operator retrieves a collection of documents from the specified MongoDB collection. The
query criteria, the query projection and sorting criteria can be specified via JSON/BSON docu-
ments.

Input Ports

criteria (cri) Thequerycriteriawhichcanbeused to selectonly specificdocuments (a JSON/BSON
document). Alternatively, you can specify this document via the criteria parameter. Note
that the parameter is only visible if no document is connected to this input port.

projection (pro) Thequeryprojectionwhich canbeused to include/exclude specificfields from
the results (a JSON/BSONdocument). Alternatively, you can specify this document via the
projection parameter. Note that the parameter is only visible if no document is connected
to this input port.

sorting criteria (sor) The sorting criteria which can be used to sort the returned documents in
a specific order (a JSON/BSON document). Alternatively, you can specify this document
via the sort document and sorting criteria parameters. Note that the parameter is only
visible if no document is connected to this input port.

Output Ports

collection (col) The documents retrieved from the MongoDB collection.

Parameters

mongodb instance (configurable) The MongoDB instance to be used for storing the docu-
ments.

collection (string) The MongoDB collection in which the documents are stored.

criteria (String) Thequerycriteriawhichcanbeused to selectonly specificdocuments (a JSON/BSON
document). Alternatively, you can specify this document via the criteria input port.

projection (String) The query projection which can be used to include/exclude specific fields
from the results (a JSON/BSON document). Alternatively, you can specify this document
via the projection input port.
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sort documents (boolean) If checked, a sorting criteria document can be specified to sort the
query results. Alternatively, you can enable this behavior by connection a sorting criteria
document to the sorting input port.

sorting criteria (String) The sorting criteria which can be used to sort the returned docu-
ments in a specific order (a JSON/BSON document). Alternatively, you can specify this
document via the sorting input port.

limit results (boolean) Whether the number of results should be limited.

limit (integer) The number of documents to be queried.

skip (integer) The number of documents to be skipped.
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Update MongoDB

Update MongoDB

cri

upd

cri

upd
Updates one or more documents in a MongoDB collection.

Description
This operator updates one or more documents in the specified MongoDB collection. An update
can thereby refer to the replacement of an document or to the modification of individual fields.
The update consists of two parts: the query criteria to identify the document(s) and an update
object that contains the new data.
The default update behavior of MongoDB is to replace entire documents. Special BSON oper-

ators are required to update individual fields. However, this operator tries to update individual
fields by default to prevent data loss.

Input Ports
criteria (cri) The JSON/BSON document to identify the document(s) to update.

update (upd) The JSON/BSONdocument containing the updated data. If using BSONoperator
such as “$set” ensure that the parameter “update individual fields” is disabled.

Output Ports
criteria (cri) Pass through of the input criteria document (if any).

update (upd) Pass through of the input update document.

Parameters
mongodb instance (configurable) The MongoDB instance to be used for storing the docu-

ments.

write concern (selection) Thewrite concernwhich controls the acknowledgmentofwrite op-
erations by MongoDB. See MongoDB documentation for details.

collection (string) The MongoDB collection in which the documents are stored.

update individual fields (boolean) If checked, theoperatoruses theMongoDBoperator “$set”
to update the fields of the provided update objectwithout replacing other data. Otherwise,
the operator simply replaces matching documents with the provided update document.

insert unmatched documents (upsert) (boolean) If checked, theoperator adds theupdate
document to the collection when no documentmatches the query criteria. Otherwise, the
collections remains unchanged.

update multiple documents (boolean) If checked, all documents that match the query cri-
teria are updated. Otherwise, only the first match is updated.
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Write MongoDB

Write MongoDB

doc col Writes documents to a MongoDB collection.

Description
This operator stores JSON/BSON documents in the specified MongoDB collection.

Input Ports
documents (doc) The example set(s) containing the entries which should be transformed to

JSON documents.

Output Ports
documents (doc) The documents that have been written to the collection. This collection is

a subset of the input collection: skipped documents are not included.

Parameters
mongodb instance (Configurable) The MongoDB instance to be used for storing the docu-

ments.

write concern (Selection) Thewrite concernwhichcontrols theacknowledgmentofwriteop-
erations by MongoDB. See the MongoDB documentation for details.

collection (String) The MongoDB collection in which the documents are stored.

skip invalid documents (Boolean) If checked, invalid documents (i.e., not in JSON format)
are skipped and a warning is logged. Otherwise, the process execution is stopped.
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1.3.3 Solr
Add to Solr (Data)

Add to Solr (Data)

inp th r This operator adds an example set to Solr.

Description
To connect to a Solr server, you have to specify a Solr connection. This comprises the URL of a
Solr server and an optional user/password combination for authentication. Typically, the Solr
server URL ends with the string ‘/solr’.
The next step is to select a collection on the server. A collection can be imagined as a table. It

is composed of several columns, which are called Solr fields. A Solr field has a type (e.g. number)
and a key (the name of the column). Each entry in Solr can be imagined as a row and contains
values for the respective fields.
A RapidMiner example set has a very similar structure. It also can be imagined as a table.

Therefore every row of RapidMiner is added as row in Solr. The RapidMiner attributes are used
as Solr collection fields.

Input Ports
input (inp) This port connects the example set, which has to be added.

Output Ports
through (thr) The added example set is provided at this port.

Parameters
connection (configurable) The connection details for the Solr connection have to be speci-

fied. If youhave already configured a Solr connection, you can select it from thedrop-down
list. If you have not configured a Solr connection yet, select the icon to the right of the
drop-down list. Create a new Solr connection in the Manage connections dialog. The Solr
server URL is required. Additionally, you can specify a username/password combination
for authentication.

collection (string) Provide thenameof the Solr collection, whichhas to beused to access data.

75



1. Data Access

Add to Solr (Documents)

Add to Solr (Doc...

doc doc This operator adds collections of documents to Solr.

Description
To connect to a Solr server, you have to specify a Solr connection. This comprises the URL of a
Solr server and an optional user/password combination for authentication. Typically, the Solr
server URL ends with the string ‘/solr’.
The next step is to select a collection on the server. A collection can be imagined as a table. It

is composed of several columns, which are called Solr fields. A Solr field has a type (e.g. number)
and a key (the name of the column). Each entry in Solr can be imagined as a row and contains
values for the respective fields.
A RapidMiner document has a set of metadata records, which consist of a key and a related

value. The metadata keys are mapped to the Solr attributes. RapidMiner documents have an
additional body. Therefore you can select a Solr field, inwhich the document bodywill be stored.

Input Ports
documents (doc) This port connects a collection of documents, which has to be added. This

port is extendable.

Output Ports
documents (doc) The added collection of documents are provided at this port. This port is

extendable.

Parameters
connection (configurable) The connection details for the Solr connection have to be speci-

fied. If youhave already configured a Solr connection, you can select it from thedrop-down
list. If you have not configured a Solr connection yet, select the icon to the right of the
drop-down list. Create a new Solr connection in the Manage connections dialog. The Solr
server URL is required. Additionally, you can specify a username/password combination
for authentication.

collection (string) Provide thenameof the Solr collection, whichhas to beused to access data.

document body field (string) TheSolrfield,which isused for theRapidMinerdocumentbody.
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Search Solr (Data)

Search Solr (Data)

out

fac

This operator searches for Solr entries and generates an example
set.

Description
To connect to a Solr server, you have to specify a Solr connection. This comprises the URL of a
Solr server and an optional user/password combination for authentication. Typically, the Solr
server URL ends with the string ‘/solr’.
The next step is to select a collection on the server. A collection can be imagined as a table. It

is composed of several columns, which are called Solr fields. A Solr field has a type (e.g. number)
and a key (the name of the column). Each entry in Solr can be imagined as a row and contains
values for the respective fields.
A RapidMiner example set has a very similar structure. It also can be imagined as a table.

Therefore every row of Solr is added as row in RapidMiner. The Solr collection fields are used as
RapidMiner attributes.
To search Solr, you have to specify a query string. You can add filters to refine your query.

E.g., if you want to receive no items with an attribute key “popularity” and the value “6”, use
”!popularity:6”. The range of the entries to receive can be set by the attributes offset and rows.
You can specify, which field is used to sort the received entries. It is also possible to enable
faceting. Faceted search breaks up search results into multiple categories. Use “facet fields”
and “date facets” to specify Solr fields for faceting.
If a Solr field supports multiple elements, the related values are provided as a JSON array.

Output Ports
output (out) This port provides the main search result. It consists of an example set.

facets (fac) Thisport isused toprovide results of the faceted search. Anexample set is provided
and contains the field name, the value which was found, and the number of occurrences.

Parameters
connection (configurable) The connection details for the Solr connection have to be speci-

fied. If youhave already configured a Solr connection, you can select it from thedrop-down
list. If you have not configured a Solr connection yet, select the icon to the right of the
drop-down list. Create a new Solr connection in the Manage connections dialog. The Solr
server URL is required. Additionally, you can specify a username/password combination
for authentication.

collection (string) Provide thenameof the Solr collection, whichhas to beused to access data.

query (string) The term to search for.

filter query (string) Afilter, which does not influence the relevancy score, which is the default
sort order. With this field, you can refine your query. E.g. if the field name has to contain
John, but must not contain Doe, you can use ‘name:John -name:Doe’.
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offset (integer) The first document index to fetch.

limit (integer) The maximum number of results.

sort (boolean) Specifies, if search results are sorted.

sort field (string) The Solr field which is used for sorting.

sort order (selection) The sorting order of results.

faceted search (boolean) Specifies, if faceted searching is used.

categorical facets (enumeration) The facets to use for faceted search.

date facets (enumeration) The date facets to use for faceted search. A single date facet con-
sists of the field name, a start date, an end date, and a gap.

include generated fields (boolean) Specifies, if automatically generated fields are included
into search results. These fields can consist of SolrCloud fields or can be based on dynamic
Solr fields.
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Search Solr (Documents)

Search Solr (Doc...

out

fac

This operator searches for Solr entries and generates a document
for each result.

Description
To connect to a Solr server, you have to specify a Solr connection. This comprises the URL of a
Solr server and an optional user/password combination for authentication. Typically, the Solr
server URL ends with the string ‘/solr’.
The next step is to select a collection on the server. A collection can be imagined as a table. It

is composed of several columns, which are called Solr fields. A Solr field has a type (e.g. number)
and a key (the name of the column). Each entry in Solr can be imagined as a row and contains
values for the respective fields.
A RapidMiner document has a set of metadata records, which consist of a key and a related

value. The metadata keys are mapped to the Solr attributes. RapidMiner documents have an
additional body. Therefore you can select a Solr field, whose contentswill bestored in the Rapid-
Miner document body.
To search Solr, you have to specify a query string. You can add filters to refine your query.

E.g., if you want to receive no items with an attribute key “popularity” and the value “6”, use
”!popularity:6”. The range of the entries to receive can be set by the attributes offset and rows.
You can specify, which field is used to sort the received entries. It is also possible to enable
faceting. Faceted search breaks up search results into multiple categories. Use “facet fields”
and “date facets” to specify Solr fields for faceting.
If a Solr field supports multiple elements, the related values are provided as a JSON array.

Output Ports
output (out) This port provides themain search result. It consists of a collectionof documents.

facets (fac) Thisport isused toprovide results of the faceted search. Anexample set is provided
and contains the field name, the value which was found, and the number of occurrences.

Parameters
connection (configurable) The connection details for the Solr connection have to be speci-

fied. If youhave already configured a Solr connection, you can select it from thedrop-down
list. If you have not configured a Solr connection yet, select the icon to the right of the
drop-down list. Create a new Solr connection in the Manage connections dialog. The Solr
server URL is required. Additionally, you can specify a username/password combination
for authentication.

collection (string) Provide thenameof the Solr collection, whichhas to beused to access data.

query (string) The term to search for.

document body field (string) TheSolrfield,which isusedas theRapidMinerdocumentbody.
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filter query (string) Afilter, which does not influence the relevancy score, which is the default
sort order. With this field, you can refine your query. E.g. if the field name has to contain
John, but must not contain Doe, you can use ‘name:John -name:Doe’.

offset (integer) The first document index to fetch.

limit (integer) The maximum number of results.

sort (boolean) Specifies, if search results are sorted.

sort field (string) The Solr field which is used for sorting.

sort order (selection) The sorting order of results.

faceted search (boolean) Specifies, if faceted searching is used.

categorical facets (enumeration) The facets to use for faceted search.

date facets (enumeration) The date facets to use for faceted search. A single date facet con-
sists of the field name, a start date, an end date, and a gap.

include generated fields (boolean) Specifies, if automatically generated fields are included
into search results. These fields can consist of SolrCloud fields or can be based on dynamic
Solr fields.
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1.4 Applications
Trigger Zapier

Trigger Zapier

exa exa This operator allows you to use the Zapier service connecting to a
huge collection of data sinks.

Description
Zapier works by defining triggers and actions and combining them into Zaps. The operator can
beused as such a trigger. Zapier can thenbeused to senddata to arbitrary actions. Each example
in your example set will trigger one action. Note: The Trigger Zapier operator therefore always
needs another operator that provides an example set.
To use this operator, perform the following steps.

• Create an account on www.zapier.com and create a new Zap. (You can quickly get there by
clicking the button next to the “zapier url” parameter of the “Trigger Zapier” operator.)

• Select “RapidMiner” as the trigger service and “Trigger Zapier” operator as the trigger.

• Select an action service from the list and an action.

• In step 2 of the Zap creation (”Select RapidMiner account”), a URL is provided that you
must first copy to the clipboard and then paste as the zapier url parameter of this operator

• In step 3 of the Zap creation (Select an action service account) log in the Action service
and grant access to the Zapier service.

• The fields you can select in Step 5 (”Match up”) correspond to the attributes of the example
set received by this operator. Note: When you use this operator for the first time, the list
may be empty. Therefore it is recommended to execute a dry run of your process in Rapid-
Miner studio to let Zapier know which attributes will be expected. To that end, check the
test hook parameter and run your process. It may be possible that you must refresh the
Zapier page afterwards. Then you should be able to pick appropriate attributes from the
attribute list.

• In step 7 save and activate your trigger on the Zapier web page. In a productive run make
sure that the test hook parameter is switched off.

If you run your process, you should see that one action in Zapier is triggered for each example
in your example set.

Input Ports
example set in (exa) This will trigger your Zap once for each example in the example set.

Output Ports
example set in (exa) The same example set as received as an input.
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Parameters
zapier url (HTTPS url) The URL to which your requests are sent. Zapier shows the URL in Step

2 (”Select a RapidMiner account”). Make sure to use HTTPS.

test hook (boolean) If checked, only test messages will be sent to Zapier. These will not trig-
ger your Zap. You can use test mode to populate the choices in Step 5 (”Match up”) of the
Zap editor.
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1.4.1 Salesforce
Delete Salesforce

Write Salesforce

inp th r This operator deletes records of a Salesforce object from the input
example set.

Description
This operator deletes entries of a Salesforce object from the input example set in the specified
Salesforce instance. Each example of the input data will delete one Salesforce object, identified
by the ID attribute.
If the skip invalid parameter is selected, each example for which the deletion in Salesforce

failed will be ignored.

Input Ports
input (inp) The example set containing the entries which should be deleted. The entries are

identified by a Salesforce ID.

Output Ports
through (thr) The unmodified input example set.

Parameters
connection (configurable) The connection details for the Salesforce connection have to be

specified. If you have already configured a Salesforce connection, you can select it from
the drop-down list. If you have not configured a Salesforce connection yet, select the icon
to the right of the drop-down list. Create a new Salesforce connection in the Manage con-
nections box. This includes username, password and the security token. The URL is pre-
defined but can be changed to work on a different API version.

skip invalid rows (boolean) If selected, skips and ignores failed deletions of a record. In such
cases, invalid deletion IDs will be skipped. If not selected, the process will fail if a record
cannot be deleted and revert all previous deletions.
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Read Salesforce

Read Salesforce

out
Thisoperator createsanexample set fromaSalesforceobject. Each
record is represented by an example containing an attribute for
each field.

Description
This operator reads an example set from a Salesforce object in the specified Salesforce instance.
Each record is represented by an example containing an attribute for each field.
You can either use the simplified user interface to create the query, or use the advanced SOQL

editor which allows you to directly enter SOQL queries.
Note thatdatetimefieldsarealways treatedasUTC,using thepattern“yyyy-MM-dd’T’HH:mm:ss.SSSX”.

Date fields use “yyyy-MM-dd” and time fields “HH:mm:ss.SSSX”.

Output Ports
output (out) The example set created from the result of the Salesforce query. Each queried

field corresponds to an attribute and each record is represented as an example.

Parameters
connection (configurable) The connection details for the Salesforce connection have to be

specified. If you have already configured a Salesforce connection, you can select it from
the drop-down list. If you have not configured a Salesforce connection yet, select the icon
to the right of the drop-down list. Create a new Salesforce connection in the Manage con-
nections box. This includes username, password and the security token. The URL is pre-
defined but can be changed to work on a different API version.

query (salesforce_query) The SOQL query which will be used to query Salesforce. You can
either select the Simple or the Advanced SOQLmode. The Simple mode supports you and
eases the query creation, while the Advanced SOQLmode allows you to use the full power
of SOQL.

guess value types (boolean) If selected, the operator tries to guess the value types for each
column. It does so by taking the first ten rows of the returned data and trying to parse it
as an integer, number, date_time, date, time (in this order). If this all fails, the attribute
is treated as nominal. If this option is not selected, the operator treats all attributes as
nominal. Other operators have to be applied afterwards to convert the attributes to the
desired value type.

batch size (integer) The batch size the query should use. If you query more records than the
batch size, they are retrieved in chunks of the specified size. This parameter is only for
performance optimization and does not affect the result.
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Update Salesforce

Update Salesforce

inp th r This operator updates records of a Salesforce object from the input
example set.

Description
This operator updates entries for a Salesforce object from the input example set in the speci-
fied Salesforce instance. Each example of the input data will update one record. The selected
attributes will be used as the respective field values. Each record is identified by its ID, which is
taken from the ID attribute.
To select the fields which should be updated, you can use the attribute selection parameters.

Attributes which are not selected are ignored.
Note: Datetime fields are always treated as UTC (Coordinated Universal Time), using the pat-

tern“yyyy-MM-dd’T’HH:mm:ss.SSSX”.Datefieldsuse“yyyy-MM-dd”and timefields “HH:mm:ss.SSSX”.

Input Ports
input (inp) The example set containing the entries which should be updated. Note: The ex-

ample set must have an ID column by which the records can be identified in the Salesforce
object.

Output Ports
through (thr) The unmodified input example set.

Parameters
connection (configurable) The connection details for the Salesforce connection have to be

specified. If you have already configured a Salesforce connection, you can select it from
the drop-down list. If you have not configured a Salesforce connection yet, select the icon
to the right of the drop-down list. Create a new Salesforce connection in the Manage con-
nections box. This includes username, password and the security token. The URL is pre-
defined but can be changed to work on a different API version.

object name (selection) Thenameof theSalesforceobject forwhichyouwant toupdate records.

skip invalid rows (boolean) If selected, skips and ignores failed creations of a record. In such
cases, the ID column value is set to missing. If not selected, the process will fail if a record
cannot be created and no records will be created in Salesforce at all.

attribute filter type (selection) You can specify which attributes should be updated. By de-
fault all attributes are updated. Possible values are: all, single, subset, regular_expression,
value_type, block_type, no_missing_values, numeric_value_filter.

invert selection (boolean) If the checkbox is activated, the attributes selection is toggled: all
attributes that are selected before, are excluded and all excluded attributes are included.
If the checkbox is deactivated (default) the attribute selection is applied.
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includes special attributes (boolean) If the checkbox is activated, the operator is also ap-
plied to special attributes. If thecheckbox isdeactivated, the special attributesare ignored.
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Write Salesforce

Write Salesforce

inp th r This operator creates records for a Salesforce object from the input
example set.

Description

This operator creates entries for a Salesforce object from the input example set in the speci-
fied Salesforce instance. Each example of the input data will create one Salesforce entry. The
selected attributes will be used as the respective field values.
To select the fields which should be created, you can use the attribute selection parameters.

Attributes which are not selected are ignored.
Note that datetime fields are always treated as UTC (Coordinated Universal Time), using the

pattern“yyyy-MM-dd’T’HH:mm:ss.SSSX”.Datefieldsuse“yyyy-MM-dd”and timefields “HH:mm:ss.SSSX”.
If the skip invalid parameter is selected, each row for which the creation in Salesforce failed

will return a missing value in the ID column.

Input Ports

input (inp) The example set containing the entries which should be created. Note: It is strictly
forbidden to have an ID column in the example set.

Output Ports

through (thr) The input example set including an ID column containing the IDs generated by
Salesforce for each entry or a missing value if the entry could not be created and the pa-
rameter ‘skip_invalid_rows’ is set to true.

Parameters

connection (configurable) The connection details for the Salesforce connection have to be
specified. If you have already configured a Salesforce connection, you can select it from
the drop-down list. If you have not configured a Salesforce connection yet, select the icon
to the right of the drop-down list. Create a new Salesforce connection in the Manage con-
nections box. This includes username, password and the security token. The URL is pre-
defined but can be changed to work on a different API version.

object name (selection) The name of the Salesforce object for which to create records.

salesforce id column (string) The name of the column which will contain the IDs for each
successfully created entry. The name must not be used for any existing column in the in-
coming example set.

skip invalid rows (boolean) If selected, skips and ignores failed creations of a record. In such
cases, the ID column value is set to missing. If not selected, the process will fail if a record
cannot be created and no records will be created in Salesforce at all.
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attribute filter type (selection) You can specify which attributes should be updated. By de-
fault all attributes are updated. Possible values are: all, single, subset, regular_expression,
value_type, block_type, no_missing_values, numeric_value_filter.

invert selection (boolean) If the checkbox is activated, the attributes selection is toggled: all
attributes that are selected before, are excluded and all excluded attributes are included.
If the checkbox is deactivated (default) the attribute selection is applied.

includes special attributes (boolean) If the checkbox is activated, the operator is also ap-
plied to special attributes. If thecheckbox isdeactivated, the special attributesare ignored.
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1.4.2 Mozenda
Read Mozenda

Read Mozenda

out This operator loads the specified view from the Mozenda cloud
storage and returns it’s data as an example set.

Description
After you have created aMozenda account, you can get aMozenda view as an example set, using
this operator.

Output Ports
output (out) The example set created from fetching the specified Mozenda view.

Parameters
connection (configurable) The connection details for the Mozenda connection have to be

specified. If you have already configured a Mozenda connection, you can select it from
the drop-down list. If you have not configured aMozenda connection yet, select the cloud
icon to the right of the drop-down list. Create a new Mozenda connection in the Manage
connections box. AnAPI key is required, which is available in yourMozendaweb interface.
Test the connection and click the Save all changes button.

collection (selection) Select the Mozenda collection from the drop-down list. All available
collections are displayed in thedrop-down list. Toupdate the list of collections youneed to
update the cache of the specifiedMozenda connection. Click on the cloud icon to the right
of your selected connection. Select your Mozenda connection in the Manage connections
box and click on the menu next to the Test button to update the cache.

view (selection) Select theMozenda view from the drop-down list. All available views associ-
ated with the selected Mozenda collection are displayed in the drop-down list. To update
the list of views you need to update the cache of the specified Mozenda connection. Click
on the cloud icon to the right of your selected connection. Select yourMozenda connection
in the Manage connections box and click on the menu next to the Test button to update
the cache.

page number (integer) This parameter defines the page number of the page that is returned
from the selected Mozenda view.

page item count (integer) This parameter defines the number of items that are requested to
be on one page of the Mozenda view.
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1.4.3 Qlik
Write QVX

Write  QVX

inp th r

f i l
This operator writes data in Qlik’s QVX data exchange format.

Description
This operator can write Example Sets in Qlik’s data exchange format QVX. The operator can
either send the file as specified by the “file” parameter or send it to the output port labeled “file”.
If that port is connected, the “file” parameter can no longer be used and a file object is sent to
the port. This file object can subsequently be used in two ways:

• It can be further processed, e.g. written to the repository by using one of the file operators
like Write File.

• It sent to the result port of the process, e.g. when using it as output of a RapidMiner Server
web service. This is an easy way to connect RapidMiner Server as a data source to Qlik.

Input Ports
input (inp) This input port expects an ExampleSet. It is the output of the Retrieve operator in

the attached Example Process.

Output Ports
through (thr) The ExampleSet that was provided at the input port is delivered through this

output port without anymodifications. This is usually used to reuse the same ExampleSet
in further operators of the process.

file (fil) This port buffers the file object for passing it to the reader operators

Parameters
file (filename) The file to which this operator will write the input example set. Only available

if the file port is not connected.

table name (string) The name by which this table will be known in Qlik.
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1.4.4 Twitter
Get Twitter Relations

Search Twitter

out This operator gets friends or followers of a specific user.

Description
With the Get Twitter Relations operator, you can specify a Twitter user and receive the users
friends or followers.
Select a Twitter connection to specify the Twitter account for the Twitter API access. Specify

the user nameor the user ID of interest. Finally, set if youwant to receive the followers or friends
of the specified user.
Note that the standard Twitter API has strict rate limits! Please consult the Twitter documen-

tation on how to avoid hitting these rate limits.

Output Ports
output (out) An example set consisting of data from the Twitter API. This consists of the IDs of

friends or the IDs of followers. Additionally it contains the name or ID, that was searched
for.

Parameters
connection (configurable) The connectiondetails for theTwitter connectionhave to be spec-

ified. If you have already configured a Twitter connection, you can select it from the drop-
down list. If you have not configured a Twitter connection yet, select the icon to the right
of the drop-down list. Create a new Twitter connection in the Manage Connections box.

query type (selection) Specifies whether a user should be searched by id or screen name.

id The id of the user.

name The screen name of the user.

relation (selection) Specifies whether friends or followers of that user should be retrieved.
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Get Twitter User Details

Get Twitter User . . .

out This operator shows properties of a specific user.

Description
With the Get Twitter User Details operator, you can specify a Twitter user and receive a list of
properties of the user.
Select a Twitter connection to specify the Twitter account for the Twitter API access. Specify

the user name or the user ID to get information about the user.
Note that the standard Twitter API has strict rate limits! Please consult the Twitter documen-

tation on how to avoid hitting these rate limits.

Output Ports
output (out) An example set consisting of data from the Twitter API. This comprises the users

ID, name, screen name, description, URL, creation date, verification and protection info,
thenumber of followers and friends, thenumber of tweets, the language, theprofile image,
and the time zone.

Parameters
connection (configurable) The connectiondetails for theTwitter connectionhave tobe spec-

ified. If you have already configured a Twitter connection, you can select it from the drop-
down list. If you have not configured a Twitter connection yet, select the icon to the right
of the drop-down list. Create a new Twitter connection in the Manage Connections box.

query type (selection) Specifies whether a user should be searched by id or screen name.

id (long) The id of the user.

user (string) The screen name of the user.
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Get Twitter User Statuses

Search Twitter

out This operator searches for Twitter statuses of a specific user.

Description
With the Get Twitter User Statuses operator, you can specify a Twitter user and receive a list of
statuses of the user. The list of statuses contains additional data with context of the statuses.
There are advanced parameters you can use to specify additional search restrictions.
Select a Twitter connection to specify the Twitter account for the Twitter API access. Specify

at least the user name or the user ID of interest. There are advanced parameters you can use to
specify additional search restrictions. For example, you can increase the number of pages. This
will increase the number of search results.
Note that the standard Twitter API has strict rate limits! Please consult the Twitter documen-

tation on how to avoid hitting these rate limits.

Output Ports
output (out) An example set consisting of data from the Twitter API. This comprises the tweet

text, the tweet ID, the number of retweets, the date of creation, the language, the geo-
location, the used source of the tweet, and user information.

Parameters
connection (configurable) The connectiondetails for theTwitter connectionhave to be spec-

ified. If you have already configured a Twitter connection, you can select it from the drop-
down list. If you have not configured a Twitter connection yet, select the icon to the right
of the drop-down list. Create a new Twitter connection in the Manage Connections box.

query type (selection) Specifies whether a user should be searched by id or screen name.

id (long) The id of the user.

user (string) The screen name of the user.

limit (integer) The limit on the number of tweets to return.

since id (long) Returns results with an ID greater than (that is, more recent than) the specified
ID.

max id (long) Returns results with an ID less than (that is, older than) or equal to the specified
ID.
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Search Twitter

Search Twitter

out This operator searches for Twitter statuses.

Description
With the Search Twitter operator, you can specify a query and get Twitter statuses containing
this query. The list of statuses containsadditional datawith contextof the statuses. In theexpert
mode, you can specify additional search restrictions.
Select a Twitter connection to specify the Twitter account for the Twitter API access. Specify

at least a query to search Twitter for it. There are advanced parameters you can use to specify
additional search restrictions. For example, you can limit the search results to a language.
Note that the standard Twitter API has strict rate limits! Please consult the Twitter documen-

tation on how to avoid hitting these rate limits.

Output Ports
output (out) An example set consisting of data from the Twitter API. This comprises the tweet

text, the tweet ID, the number of retweets, the date of creation, the language, the geo-
location, the used source of the tweet, and user information.

Parameters
connection (configurable) The connectiondetails for theTwitter connectionhave tobe spec-

ified. If you have already configured a Twitter connection, you can select it from the drop-
down list. If you have not configured a Twitter connection yet, select the icon to the right
of the drop-down list. Create a new Twitter connection in the Manage Connections box.

query (string) The term that should be searched.

result type (selection) Specifies the preferred search result type.

limit (integer) The limit on the number of tweets to return.

since id (long) Returns results with an ID greater than (that is, more recent than) the specified
ID.

max id (long) Returns results with an ID less than (that is, older than) or equal to the specified
ID.

language (string) Restricts tweets to the given language, specified by an ISO 639-1 code.

locale (string) Specifies the language of the query you are sending. (The official Twitter API
mentions, that only ’ja’ is currently effective.)

until (string) Returns tweets generated before the given date. The values year,month, and day
are used as search parameters.

filter by geo location (boolean) Indicates if the results should be filtered by a geo location.
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latitude (double) The latitude of the geo location.

longitude (double) The longitude of the geo location.

radius (double) The radius of the geo location.

radius unit (selection) The unit of the geo location radius.
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1.4.5 Splunk
Search Splunk

Search Splunk

out Reads search results from a Splunk® server.

Description
This operator canbeused toquery aSplunk®server basedonaquery termand returns the results
as an example set. Search results can be restricted by specifying a time frame.

Output Ports
result (res) The example set consisting of the search results.

Parameters
connection (Configurable) TheSplunk®connection touse. Select a connection fromthedrop-

down or click the button to create a new one.

query (String) The Splunk® query in Splunk Process Language (SPL).

pagination (Boolean) If set, only a limited number of results will be returned, starting from
a given offset.

offset (Integer) Offset from which the result set should start.

limit (Integer) Maximum number of results to return.

earliest time (Time) If this parameter is set, it specifies the earliest time in the time range to
search.

latest time (Time) If this parameter is set, it specifies the latest time in the time range to
search.
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1.5 Cloud Storage
1.5.1 Amazon S3
Loop Amazon S3

Read Amazon S3

f i l This operator loops over all files in the specifiedbucket/folder from
the Amazon S3 cloud storage.

Description
After you have configured your Amazon S3 account, you can process all Amazon S3 files within
the selected folder.
Be aware that the operator cannot read the file as example set. For this reason, you must

connect the file input in the inner process of this operator to another appropriate operator to
process the file. For example, if you want to load Excel files from your Amazon S3 folder, you
must connect the file input in the inner process with the Read Excel operator.

Input Ports
in (in ) Optional input data which is delivered to the inner process.

Output Ports
out (out) Output data of the inner process.

Parameters
connection (configurable) The connection details for the Amazon S3 connection have to be

specified. If you have already configured a Amazon S3 connection, you can select it from
the drop-down list. If you have not configured a Amazon S3 connection yet, select the
icon to the right of the drop-down list. Create a newAmazon S3 connection in theManage
connections box. The access key, secret key and the region are required. Note: It is very
important to select the correct region for your connection. Otherwise an error occurs.

folder (selection) Provide the name of the Amazon S3 ‘folder’ over which you want to loop.
Note that the concept of folders does not exist in Amazon S3, so the default delimiter (’/’)
is used to represent them. If your file was stored as ‘name1/name2/my_file.xls’ on Amazon
S3, the file ‘my_file.xls’ would be displayed as residing in the folder ‘name1/name2/’.

filter (string) Optionalfilter via a regular expressionwhich isused toexcludefiles from looping
over them, e.g. ‘a.*b’ for all files starting with ‘a’ and ending with ‘b’. Ignored if empty.

filtered string (selection) Indicates which part of the file name is matched against the filter
expression.

• file_name Filtered on the name, e.g. ‘myfolder/myfile.txt’

• full_path Filtered on the full path, e.g. ‘mybucket/myfolder/myfile.txt’
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• parent_path Filtered on the parent folder, e.g. ‘myfolder/’

file name macro (string) The name of the macro which will contain the name of the current
file for each file the loop iterates over, e.g. ‘myfolder/myfile.txt’

file path macro (string) Thenameof themacrowhichwill contain the full path of the current
file for each file the loop iterates over, e.g. e.g. ‘mybucket/myfolder/myfile.txt’

parent path macro (string) The name of the macro which will contain the parent folder of
the current file for each file the loop iterates over, e.g. e.g. ‘myfolder/’

recursive (boolean) If selected, the loop will also iterate over all files in all subfolders of the
selected folder. Otherwise, it will only iterate over the files in the selected folder.
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Read Amazon S3

Read Amazon S3

f i l This operator downloads the specified file from the Amazon S3
cloud storage.

Description
After you have configured your Amazon S3 account, you can load the Amazon S3 file with this
operator.
Be aware that the operator cannot read the file as example set. For this reason, youmust con-

nect the ReadAmazon S3 operator to another appropriate operator to read the file. For example,
if you want to load an Excel file from your Amazon S3, you must connect the Read Amazon S3
operator with the Read Excel operator to see the result.

Output Ports
file (fil) The downloaded file object is returned here. Must be connected to a appropriate Read

Operator, for example Read Excel or Read CSV.

Parameters
connection (configurable) The connection details for the Amazon S3 connection have to be

specified. If you have already configured a Amazon S3 connection, you can select it from
the drop-down list. If you have not configured a Amazon S3 connection yet, select the
icon to the right of the drop-down list. Create a newAmazon S3 connection in theManage
connections box. The access key, secret key and the region are required. Note: It is very
important to select the correct region for your connection. Otherwise an error occurs.

file (selection) Select the Amazon S3 file youwant to download. Note that the concept of fold-
ers does not exist in Amazon S3, so the default delimiter (’/’) is used to represent them.
If your file was stored as ‘name1/name2/my_file.xls’ on Amazon S3, the file ‘my_file.xls’
would be displayed as residing in the folder ‘name1/name2/’.
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Write Amazon S3

Write Amazon S3

f i l f i l This operator uploads the input file to the Amazon S3 cloud stor-
age.

Description
Before you can upload the input file to the selected Amazon S3 cloud storage, you must load it
with an Open file operator.
Ensure that the correct bucket is selected, otherwise an error occurs! Buckets are container

for the Amazon S3 objects. Each Bucket name is unique across all of Amazon S3.

Input Ports
file (fil) The file object which should be uploaded to Amazon S3 cloud storage. The file must be

provided by an Open file operator.

Output Ports
file (fil) The input file object is passed through and returned here.

Parameters
connection (configurable) The connection details for the Amazon S3 connection have to be

specified. If you have already configured a Amazon S3 connection, you can select it from
the drop-down list. If you have not configured a Amazon S3 connection yet, select the
icon to the right of the drop-down list. Create a newAmazon S3 connection in theManage
connections box. The access key, secret key and the region are required. Note: It is very
important to select the correct region for your connection. Otherwise an error occurs.

file (selection) Enter thenameof thefileas it shouldbe storedonAmazonS3, e.g., /mybucket/my-
_file.xls.

content type (string) This option is optional. Enter the MIME type of the upload file, e.g.,
text/xml.
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1.5.2 Azure Blob Storage
Loop Azure Blob Storage

Read Azure Blob .. .

f i l This operator loops over all files in the specified container/folder
from the Microsoft Azure Blob Storage.

Description
After you have configured your Azure Blob Storage account, you can process all Azure Blob Stor-
age files within the selected folder.
Be aware that the operator cannot read the file as example set. For this reason, you must

connect the file input in the inner process of this operator to another appropriate operator to
process the file. For example, if you want to load Excel files from your Azure Blob Storage folder,
you must connect the file input in the inner process with the Read Excel operator.

Input Ports
in (in ) Optional input data which is delivered to the inner process.

Output Ports
out (out) Output data of the inner process.

Parameters
connection (configurable) Theconnectiondetails for theAzureBlobStorageconnectionhave

to be specified. If you have already configured an Azure Blob Storage connection, you can
select it from the drop-down list. If you have not configured an Azure Blob Storage yet,
select the icon to the right of the drop-down list. Create a new Azure Blob Storage con-
nection in the Manage connections box. The account name and account key are required.

folder (selection) Provide the name of the Azure Blob Storage ‘folder’ over which you want
to loop. Note that the concept of folders does not exist in Azure Blob Storage, so the de-
fault delimiter (’/’) is used to represent them. If your file was stored as ‘name1/name2/my-
_file.xls’ on Azure Blob Storage, the file ‘my_file.xls’ would be displayed as residing in the
folder ‘name1/name2/’.

filter (string) Optionalfilter via a regular expressionwhich isused toexcludefiles from looping
over them, e.g. ‘a.*b’ for all files starting with ‘a’ and ending with ‘b’. Ignored if empty.

filtered string (selection) Indicates which part of the file name is matched against the filter
expression.

• file_name Filtered on the name, e.g. ‘myfolder/myfile.txt’

• full_path Filtered on the full path, e.g. ‘mycontainer/myfolder/myfile.txt’

• parent_path Filtered on the parent folder, e.g. ‘myfolder/’
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file name macro (string) The name of the macro which will contain the name of the current
file for each file the loop iterates over, e.g. ‘myfolder/myfile.txt’

file path macro (string) Thenameof themacrowhichwill contain the full path of the current
file for each file the loop iterates over, e.g. e.g. ‘mycontainer/myfolder/myfile.txt’

parent path macro (string) The name of the macro which will contain the parent folder of
the current file for each file the loop iterates over, e.g. e.g. ‘myfolder/’

recursive (boolean) If selected, the loop will also iterate over all files in all subfolders of the
selected folder. Otherwise, it will only iterate over the files in the selected folder.
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Read Azure Blob Storage

Read Azure Blob .. .

f i l This operator downloads the specified file from the Microsoft
Azure Blob Storage cloud storage.

Description
After you have configured your Azure Blob Storage account, you can load the Azure Blob Storage
file with this operator.
Be aware that the operator cannot read the file as example set. For this reason, you must

connect the Read Azure Blob Storage operator to another appropriate operator to read the file.
For example, if you want to load an Excel file from your Azure Blob Storage, you must connect
the Read Azure Blob Storage operator with the Read Excel operator to see the result.

Output Ports
file (fil) The downloaded file object is returned here. Must be connected to a appropriate Read

Operator, for example Read Excel or Read CSV.

Parameters
connection (configurable) Theconnectiondetails for theAzureBlobStorageconnectionhave

to be specified. If you have already configured an Azure Blob Storage connection, you can
select it from the drop-down list. If you have not configured an Azure Blob Storage yet,
select the icon to the right of the drop-down list. Create a new Azure Blob Storage con-
nection in the Manage connections box. The account name and account key are required.

file (selection) Select the Azure Blob Storage file youwant to download. Note that the concept
of folders does not exist in Azure Blob Storage, so the default delimiter (’/’) is used to rep-
resent them. If your file was stored as ‘name1/name2/my_file.xls’ on Azure Blob Storage,
the file ‘my_file.xls’ would be displayed as residing in the folder ‘name1/name2/’.
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Write Azure Blob Storage

Write Azure Blob.. .

f i l f i l This operator uploads the input file to the Azure Blob Storage
cloud storage.

Description
Before you can upload the input file to the selected Azure Blob Storage cloud storage, you must
load it with an Open file operator.
Ensure that the correct bucket is selected, otherwise an error occurs! Buckets are container

for the Azure Blob Storage objects. Each Bucket name is unique across all of Azure Blob Storage.

Input Ports
file (fil) The file object which should be uploaded to Azure Blob Storage cloud storage. The file

must be provided by an Open file operator.

Output Ports
file (fil) The input file object is passed through and returned here.

Parameters
connection (configurable) Theconnectiondetails for theAzureBlobStorageconnectionhave

to be specified. If you have already configured an Azure Blob Storage connection, you can
select it from the drop-down list. If you have not configured an Azure Blob Storage yet,
select the icon to the right of the drop-down list. Create a new Azure Blob Storage con-
nection in the Manage connections box. The account name and account key are required.

file (selection) Enter the name of the file as it should be stored on Azure Blob Storage, e.g.,
/mycontainer/my_file.xls.
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1.5.3 Dropbox
Read Dropbox

Read Dropbox

f i l This operator loads the specified file from the Dropbox cloud stor-
age.

Description
After you have created a Dropbox account, you can load the Dropbox file with this operator.
Be aware that the operator cannot read the file as example set. For this reason, youmust con-

nect the Read Dropbox operator to another appropriate operator to parse the file. For example,
if youwant to load anExcel file fromyourDropbox, youmust connect theReadDropboxoperator
with the Read Excel operator to see the result.

Output Ports
file (fil) The downloaded file object is returned here. Must be connected to a appropriate Read

Operator, for example Read Excel or Read CSV.

Parameters
connection (configurable) Theconnectiondetails for theDropboxconnectionhave tobe spec-

ified. If youhave already configured aDropbox connection, you can select it from the drop-
down list. If you have not configured a Dropbox connection yet, select the Dropbox icon
to the right of the drop-down list. Create a new Dropbox connection in the Manage con-
nections box. An access token is required. If you don’t have a valid access token, youmust
authenticate RapidMiner via OAuth and copy the generated token to the acess token field.
Test the connection and click the Save all changes button.

path (selection) Select the Dropbox folder from the drop-down list. All available folders are
displayed in the drop-down list.

file name (selection) Select the file you want to download. The available files are displayed
in the drop-down list.
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Write Dropbox

Write Dropbox

f i l f i l This operator uploads the input file to the Dropbox cloud storage.

Description
Before you can upload the input file to the selected Dropbox cloud storage, youmust load it with
an Open file operator.

Input Ports
file (fil) The file object that should be uploaded to Dropbox cloud storage. The file must be

provided by an Open file operator.

Output Ports
file (fil) The input file object is passed through and returned here.

Parameters
connection (configurable) Theconnectiondetails for theDropboxconnectionhave tobe spec-

ified. If youhave already configured aDropbox connection, you can select it from the drop-
down list. If you have not configured a Dropbox connection yet, select the Dropbox icon
to the right of the drop-down list. Create a new Dropbox connection in the Manage con-
nections box. An access token is required. If you don’t have a valid access token, youmust
authenticate RapidMiner via OAuth and copy the generated token to the acess token field.
Test the connection and click the Save all changes button.

path (selection) Select the Dropbox folder from the drop-down list. All available folders are
displayed in the drop-down list.

file name (string) Thefile nameof the file that iswritten toDropbox cloud storage. This entry
is optional. If you don’t enter a name, the original input file name is taken.

overwrite (boolean) If the checkbox is activated, the input file will overwrite existing files
with the same file name. If the checkbox is not activated, existing files with the same
name are not overwritten. The file name will be enhanced by a counter. By default the
option is deactivated. Note that uploading a file that has no changes in comparison to the
destination will neither update the time stamp nor create a new file with a counter.
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1.5.4 Google Storage
Loop Google Storage

Loop Google Stor...

in ou t This operator loops over all files in the specifiedbucket/folder from
the Google Cloud Storage.

Description
After you have configured your Google account, you can process all Google Storage files within
the selected folder.
Be aware that the operator cannot read the file as example set. For this reason, you must

connect the file input in the inner process of this operator to another appropriate operator to
process the file. For example, if you want to load Excel files from your Google Storage folder,
you must connect the file input in the inner process with the Read Excel operator.

Input Ports
in (in ) Optional input data which is delivered to the inner process.

Output Ports
out (out) Output data of the inner process.

Parameters
connection (configurable) The connection details for the Google Storage connection have to

be specified. If you have already configured a Google Storage connection, you can select
it from the drop-down list. If you have not configured a Google Storage connection yet,
select the icon to the right of the drop-down list. Create a new Google Storage connection
in theManage connections box. The access token / private key and project ID are required.

folder (selection) Provide the name of the Google Storage folder over which you want to loop.

filter (string) Optionalfilter via a regular expressionwhich isused toexcludefiles from looping
over them, e.g. ‘a.*b’ for all files starting with ‘a’ and ending with ‘b’. Ignored if empty.

filtered string (selection) Indicates which part of the file name is matched against the filter
expression.

• file_name Filtered on the name, e.g. ‘myfile.txt’

• full_path Filtered on the full path, e.g. ‘mybucket/myfolder/myfile.txt’

• parent_path Filtered on the parent folder, e.g. ‘myfolder/’

file name macro (string) The name of the macro which will contain the name of the current
file for each file the loop iterates over, e.g. ‘myfile.txt’

file path macro (string) Thenameof themacrowhichwill contain the full path of the current
file for each file the loop iterates over, e.g. ‘mybucket/myfolder/myfile.txt’
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parent path macro (string) The name of the macro which will contain the parent folder of
the current file for each file the loop iterates over, e.g. ‘myfolder/’

recursive (boolean) If selected, the loop will also iterate over all files in all subfolders of the
selected folder. Otherwise, it will only iterate over the files in the selected folder.
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Read Google Storage

Read Google Stor.. .

f i l This operator downloads the specified file from the Google Cloud
Storage.

Description
After you have configured your Google Storage account, you can load the Google Storage file
with this operator.
Be aware that the operator cannot read the file as example set. For this reason, you must

connect the Read Google Storage operator to another appropriate operator to read the file. For
example, if you want to load an Excel file from your Google Storage, you must connect the Read
Google Storage operator with the Read Excel operator to see the result.

Output Ports
file (fil) The downloaded file object is returned here. Must be connected to a appropriate Read

Operator, for example Read Excel or Read CSV.

Parameters
connection (configurable) The connection details for the Google Storage connection have to

be specified. If you have already configured a Google Storage connection, you can select
it from the drop-down list. If you have not configured a Google Storage connection yet,
select the icon to the right of the drop-down list. Create a new Google Storage connection
in theManage connections box. The access token / private key and project ID are required.

file (selection) Select the Google Storage file you want to download.
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Write Google Storage

Write Google Sto.. .

f i l f i l This operator uploads the input file to the Google Cloud Storage.

Description
Before you can upload the input file to the selected Google Storage account, you must load it
with an Open file operator.
Be aware that the operator cannot write the example set as file. For this reason, you must

connect before the Write Google Storage operator an appropriate operator to write the file. For
example, if you want to save an Excel file to your Google Storage, you must connect before the
Write Google Storage operator a Write Excel operator to see the result.

Input Ports
file (fil) The file object which should be uploaded to Google Storage. The file must be provided

by an Open file operator.

Output Ports
file (fil) The input file object is passed through and returned here.

Parameters
connection (configurable) The connection details for the Google Storage connection have to

be specified. If you have already configured a Google Storage connection, you can select
it from the drop-down list. If you have not configured a Google Storage connection yet,
select the icon to the right of the drop-down list. Create a new Google Storage connection
in theManage connections box. The access token / private key and project ID are required.

file (selection) Enter thenameof thefileas it shouldbe storedonGoogleStorage, e.g., “/mybucket/myfolder/my-
_file.xls”.

content type (string) This option is optional. Enter the MIME type of the upload file, e.g.,
“text/xml”.
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2.1 Attributes
Reorder Attributes

Reorder Attr ibutes

exa

ref

exa

ori

This operator allows to reorder regular Attributes of an Example-
Set. Reordering can be done alphabetically, by user specification
(including Regular Expressions) or with a reference ExampleSet.

Description

This operator allows to change the ordering of regular Attributes of an ExampleSet. Therefore,
two different order modes may be selected in the parameter sort_mode. If sort mode alphabet-
ically is chosen attributes are sorted alphabetically according to the selected sort_direction. If
sort mode user specified is chosen the user can specify rules that define how attributes should
be ordered. If sort mode reference data is chosen the input ExampleSet will be sorted according
to the order of reference ExampleSet.
Note that special attributes will not be considered by this operator. If they also should be re-

ordered set them to regular with Set Role operator before.

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator
in the attached Example Process. The output of other operators can also be used as input.
It is essential that meta data should be attached with the data for input because attributes
are specified in theirmeta data. TheRetrieve operator providesmeta data along-with data.

reference data (ref) This input port expects an ExampleSet. If sort mode is set to reference
data and this port is connected, the ExampleSet from first port sorted will be sorted ac-
cording to the order of attributes from this ExampleSet.

Output Ports

example set (exa) The ExampleSet with reordered attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

sort mode (selection) This parameter allows you to select the method you want to use for
reordering attributes. It has the following options:
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• user specifiedThisoptionallows to specify rules thatdefinehowtheattributes should
be reordered. When this option is selected another parameter (attribute ordering) be-
comes visible in the Parameters panel. This is the default option.

• alphabetically This option simply reorders all regular attributes alphabetically ac-
cording to the selected sort direction.

• reference data This option allows to reorder all regular attributes according to the
order of all regular attributes of the reference ExampleSet. If special attributes should
also be considered, set them to regular before using this operator.

sort direction (selection) Thedirectionofmatchedattributegroups tobesorted. If sortmode
is alphabetically all regular attributes are sorted according to this direction. If sort mode
is user specified, attributes that match a Regular Expression and all unmachted attributes
are sorted according to this parameter. Moreover if sort mode is set to reference data all
attributes that could not be found in the reference ExampleSet are sorted according to this
parameter.

• ascending Sort attribute names ascending. This is the default option.
• descending Sort attribute names descending.
• none Apply no sorting at all.

attribute ordering (string) This parameter allows the user to specify rules that define how
attributes should be ordered. If the parameter use regular expressions is checked all spec-
ified rules are treated as Regular Expressions.

handle unmachted (selection) Defines how unmachted attributes should be handled. Un-
machted attributes can occur if one or more Attribute do not match the rules that the user
did provide with the attribute ordering parameter or if one or more Attribute cannot be
found in the reference ExampleSet. If they are kept (prepend,append) they will be sorted
according to the selected sort direction.

• append Append all attributes that are not covered by the provided sorting rules.
• prepend Prepend all attributes that are not covered by the provided sorting rules.
• remove Remove all attributes that are not covered by the provided sorting rules.

use regular expressions (boolean) If this parameter is checked all rules created with the at-
tribute ordering parameter are treated as Regular Expressions.

Tutorial Processes

Selecting attributes by specifying regular expressions matching their names

In the given Example process the Labor-Negotiations ExampleSet is loaded using the Retrieve
operator. Then Reorder Attribute operator is applied on it. Have a look at the Parameters panel
of the Reorder Attributes operator. Here is a stepwise explanation of this process.
The sort mode parameter is set to ‘user specified’. This allows the user to specify exact rules

on how the attributes should be ordered.
The attribute ordering parameter has two rules set. First rule is ‘contrib-.*’ and second rule is

‘.*-.*’
The first rule ’contrib-.*’ that attributes starting with ‘contrib-’ should be ordered in front.
Since this expression matches two attributes both are sorted in descending order (see sort

direction). ’.*-.*’ means all attributes that have a ’-’ in their name without those that already
have been matched be the first rule.
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Figure 2.1: Tutorial process ‘Selecting attributes by specifying regular expressions matching
their names’.

Only duration, pension and vacation do not match these two rules.
They are also sorted according to the sort direction and appended like it is defined with the

handle unmachted parameter.
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2.1.1 Names and Roles
Exchange Roles

Exchange Roles

exa exa

ori
This operator exchanges the roles of two attributes.

Description
The Exchange Roles operator exchanges the roles of the two specified attributes i.e. it assigns
the role of the first attribute to the second attribute and vice versa. This can be useful, for ex-
ample, to exchange the roles of a label with a regular attribute (or vice versa), or a label with
a batch attribute, a label with a cluster etc. For more information about roles please study the
description of the Set Role operator.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports
example set output (exa) The roles of the specified attributes are exchanged and the resul-

tant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
first attribute (string) Thisparameter specifies thenameof thefirst attribute for theattribute

role exchange.

second attribute (string) This parameter specifies the name of the second attribute for the
attribute role exchange.

Tutorial Processes

Exchanging roles of attributes of the Golf data set

The ‘Golf’ data set is loadedusing theRetrieveoperator. Abreakpoint is insertedhere so that you
can have a look at the ExampleSet. You can see that the roles of the Play and Outlook attributes
are label and regular respectively. The Exchange Roles operator is applied on the ‘Golf’ data set
to exchange the roles of these attributes. the first attribute and second attribute parameters are
set to ‘Play’ and ‘Outlook’ respectively. The resultant ExampleSet can be seen in the Results
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Figure 2.2: Tutorial process ‘Exchanging roles of attributes of the Golf data set’.

Workspace. You can see that now the role of the Play attribute is regular and the role of the
Outlook attribute is label.
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Rename

Rename

exa exa

ori

This operator can be used to rename one or more attributes of an
ExampleSet.

Description
The Rename operator is used for renaming one or more attributes of the input ExampleSet.
Please keep in mind that attribute names must be unique. The Rename operator has no im-
pact on the type or role of an attribute. For example if you have an attribute named ‘alpha’ of
integer type and regular role. Renaming the attribute to ‘beta’ will just change its name. It will
retain its type integer and role regular. To change the role of an operator, use the Set Role opera-
tor. Many type conversion operators are available for changing the type of an attribute at ‘Data
Transformation/Type Conversion’.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with data for input because at-
tributes are specified in itsmetadata. TheRetrieveoperatorprovidesmetadataalong-with
data.

Output Ports
example set (exa) The ExampleSet with renamed attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
old name (string) This parameter is used to select the attribute whose name is to be changed.

new name (string) The new name of the attribute is specified through this parameter. Name
can also include special characters.

rename additional attributes (string) To renamemore than one attributes click on the Edit
List button. Here you can select attributes and assign new names to them.

Tutorial Processes

Renaming multiple attributes

The ‘Golf ‘ data set is used in this Example Process.The ‘Play’ attribute is renamed to ‘Game’ and
the ‘Wind’ attribute is renamed to ‘#*#’. The ‘Wind’ attribute is renamed to ‘#*#’, just to show
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Figure 2.3: Tutorial process ‘Renaming multiple attributes’.

that special characters can also be used to rename attributes. However, attribute names should
always be meaningful and should be relevant to the type of information stored in them.
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Rename by Constructions

Rename by Const. . .

exa exa

ori

This operator renames the regular attributes of an ExampleSet by
their construction descriptions if available.

Description
The Rename by Constructions operator replaces the names of regular attributes of the given
ExampleSet by their corresponding construction descriptions if the attribute was constructed
at all. Please study the attached Example Process for better understanding.
Please keep in mind that attribute names must be unique. The Rename by Constructions op-

erator has no impact on the type or role of an attribute. For example if you have an attribute
named ‘alpha’ of integer type and regular role. Renaming the attribute to ‘beta’ will just change
its name. It will retain its type integer and role regular. To change the role of an operator, use
the Set Role operator. Many type conversion operators are available for changing the type of an
attribute at ‘Data Transformation/Type Conversion’.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Write

Constructions operator in the attached Example Process. The output of other operators
can also be used as input. It is essential that meta data should be attached with the data
for the input because attributes are specified in their meta data.

Output Ports
example set output (exa) The ExampleSet with renamed attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Tutorial Processes

Renaming attributes by their construction descriptions

This Example Process shows how the Rename by Constructions operator can be used for renam-
ingattributes. The ‘Sonar’ data set is loadedusing theRetrieveoperator. TheRenamebyGeneric
names operator is applied on this ExampleSet to rename the attributes with the generic stem
‘att’. This ExampleSet is provided as input to the Write Constructions operator. The attribute
constructions file parameter is set to ‘D:\attributes’ thus a file named ‘attributes’ is created (if
it does not already exist) in the ‘D’ drive of your computer. You can open the written file and
make changes in it (if required). A breakpoint is inserted here so that you can have a look at the
constructions file. You can see that each line in the file holds the construction description of one
attribute. You can see that the attribute names are of the formatt1, att2 and so on. The attribute
constructions are of the form attribute_1, attribute_2 and so on. The Rename by Constructions
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Figure 2.4: Tutorial process ‘Renaming attributes by their construction descriptions’.

operator is applied on this ExampleSet. This operator will replace the attribute names by the
attribute constructions. Which means that the attributes that are currently named as att1, att2
etc will be renamed to attribute_1, attribute_2 etc. You can verify this by viewing the resultant
ExampleSet in the Results Workspace.
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Rename by Example Values

Rename by Exam.. .

exa exa

ori

This operator renames the attributes of an ExampleSet by assign-
ing the values of a specified example as attribute names and delet-
ing that example from the ExampleSet.

Description
The Rename by Example Values operator uses the values of the specified example of the Exam-
pleSet as new attribute names. The row number parameter specifies which row should be used as
attribute names. Please note that all regular and special attributes are renamed. Moreover, the
example is deleted from the ExampleSet. This operator can be useful in cases when an example
holds the names of the attributes.
Please keep in mind that attribute names must be unique. The Rename by Example Values

operator has no impact on the type or role of an attribute. For example if you have an attribute
named ‘alpha’ of integer type and regular role. Renaming the attribute to ‘beta’ will just change
its name. It will retain its type integer and role regular. To change the role of an operator, use
the Set Role operator. Many type conversion operators are available for changing the type of an
attribute at ‘Data Transformation/Type Conversion’.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-

process operator in the attached Example Process. The output of other operators can also
be used as input. It is essential that meta data should be attached with the data for the
input because attributes are specified in their meta data.

Output Ports
example set output (exa) The ExampleSet with renamed attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
row number (integer) This parameter specifies which row values should be used as attribute

names. Please note that counting starts with 1.

Tutorial Processes

Renaming all attributes by example values

This Example Process starts with the Subprocess operator. The Subprocess operator delivers an
ExampleSet. A breakpoint is inserted here so that you can have a look at the ExampleSet. You
can see that currently the attributes names are ‘label’, ‘att1’ and ‘att2’. The first example has the
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Figure 2.5: Tutorial process ‘Renaming all attributes by example values’.

values ‘new_label’, ‘new_name1’ and ‘new_name2’. The Rename by Example Values operator is
applied on this ExampleSet to set the values of the first example as attribute names. The row
number parameter is set to 1. After execution of the process youwill see that the attributes have
been renamed accordingly. Moreover the first example has been removed from the ExampleSet.
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Rename by Generic Names

Rename by Gene. . .

exa exa

ori

This operator renames the selected attributes of the given Exam-
pleSet to a set of generic names like att1, att2, att3 etc.

Description
TheRenamebyGenericNamesoperator renames the selectedattributesof thegivenExampleSet
to a set of generic names like att1, att2, att3 etc. The generic name stem parameter specifies the
name stem which should be used for building generic names. For example, using ‘att’ as stem
would lead to ‘att1’, ‘att2’, etc. as attribute names.
The Rename by Generic Names operator has no impact on the type or role of an attribute. For

example if you have an attribute named ‘alpha’ of integer type and regular role. Renaming the
attribute to ‘beta’ will just change its name. It will retain its type integer and role regular. To
change the role of an operator, use the Set Role operator. Many type conversion operators are
available for changing the type of an attribute at ‘Data Transformation/Type Conversion’.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input. It is essential that meta data should be attached with the data for the
input because attributes are specified in their meta data.

Output Ports
example set output (exa) The ExampleSet with renamed attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet.This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.
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• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list, which is the list of selected attributes.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.
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block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes are selected irrespective of the conditions in the Select Attribute operator.
If this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

generic name stem (string) This parameter specifies the name stem which should be used
for building generic names. For example, using ‘att’ as stem would lead to ‘att1’, ‘att2’,
etc. as attribute names.

Tutorial Processes

Renaming attributes of the Sonar data set

Process

Sonar

out

Rename by Gene. . .

exa exa

ori

inp res

res

Figure 2.6: Tutorial process ‘Renaming attributes of the Sonar data set’.
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2.1. Attributes

The ‘Sonar’ data set is loadedusing theRetrieve operator. A breakpoint is insertedhere so that
you can view the ExampleSet. You can see that the ExampleSet has 60 regular attributes with
names like attribute_1, atribute_2 etc. The Rename by Generic Names operator is applied on it.
The attribute filter type parameter is set to ‘all’ thus all attributes can be renamed by this opera-
tor. The generic name stem parameter is set to ‘att’. Thus the attributes are renamed to format
att1, att2 and so on. This can be verified by seeing the results in the Results Workspace. You
can see that the label attribute is not renamed. This is so because the include special attributes
parameter was not set to true.
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Rename by Replacing

Rename by Repla. . .

exa exa

ori

This operator can be used to renamea set of attributes by replacing
parts of the attribute names by a specified replacement.

Description
The Rename by Replacing operator replaces parts of the attribute names by the specified re-
placement. This operator is used mostly for removing unwanted parts of attribute names like
whitespaces, parentheses, or other unwanted characters. The replace what parameter defines
that part of the attribute name that should be replaced. It can be defined as a regular expression
which is a very powerful tool but needs a detailed explanation to beginners. It is always good to
specify the regular expression through the edit and preview regular expressionmenu. The replace
by parameter can be defined as an arbitrary string. Empty strings are also allowed. Capturing
groups of the regular expression of the replace what parameter can be accessed with $1, $2, $3
etc. Please study the attached Example Process for more understanding.
Please keep inmind that attribute namesmust be unique. The Rename by Replacing operator

has no impact on the type or role of an attribute. For example if you have an attribute named
‘alpha’ of integer type and regular role. Renaming the attribute to ‘beta’will just change its name.
It will retain its type integer and role regular. To change the role of an operator, use the Set Role
operator. Many type conversion operators are available for changing the type of an attribute at
‘Data Transformation/Type Conversion’.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input. It is essential that meta data should be attached with the data for the
input because attributes are specified in their meta data.

Output Ports
example set output (exa) The ExampleSet with renamed attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet.This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.
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• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list, which is the list of selected attributes.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.
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use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes are selected irrespective of the conditions in the Select Attribute operator.
If this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

replace what (string) The replace what parameter defines that part of the attribute name that
should be replaced. It can be defined as a regular expression. Capturing groups of the reg-
ular expression of the replace what parameter can be accessed in the replace by parameter
with $1, $2, $3 etc.

replace by (string) The replacebyparameter canbedefinedasanarbitrary string. Empty strings
are also allowed. Capturing groups of the regular expression of the replace what parameter
can be accessed with $1, $2, $3 etc.

Tutorial Processes

Renaming attributes of the Sonar data set

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can view the ExampleSet. You can see that the ExampleSet has 60 regular attributes with
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Process

Sonar

out

Rename by Repl. . .

exa exa

ori

inp

res

res

Figure 2.7: Tutorial process ‘Renaming attributes of the Sonar data set’.

names like attribute_1, atribute_2 etc. The Rename by Replacing operator is applied on it. The
attribute filter type parameter is set to ‘all’ thus all attributes can be renamed by this operator.
The replacewhat parameter is set to the regular expression: ‘(att)ribute_’. The brackets are used
for specifying the capturing group which can be accessed in the replace by parameter with $1.
The replace by parameter is set to ‘$1-’. Wherever ‘attribute_’ is found in names of the ‘Sonar’
attributes, it is replaced by the first capturing group and a dash i.e. ‘att-’. Thus attributes are
renamed to format att-1, att-2 and so on. This can be verified by seeing the results in the Results
Workspace.
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Set Role

Set Role

exa exa

ori

This Operator is used to change the role of one ormore Attributes.

Description
The role of an Attribute describes how other Operators handle this Attribute. The default role is
regular, other roles are classified as special. An ExampleSet can have many special Attributes,
but each special role can only appear once. If a special role is assigned to more than one At-
tribute, all roles will be changed to regular except for the last Attribute. The different types of
roles are explained below in the parameter section.

Differentiation
Renaming Operators
There are several Operator for renaming Attributes (e.g., Rename , Rename by Replacing, ...).

Those only change the name of the Attribute and not its role.

• Generate ID
This Operator creates a new Attribute with the special role id. In contrast to Set Role this
Operator will overwrite an existing Attribute with the id role. Applying Set Role to change
the role to regular will keep the original Attribute.

See page 232 for details.

Input Ports
example set (exa) This input port expects an ExampleSet.

Output Ports
example set (exa) The ExampleSet with modified role(s) is output of this port

original (ori) The ExampleSet, that was given as input is passed through without changes.

Parameters
attribute name The name of the Attribute which role should be changed. The name can be

selected from the dropdown menu or manual typed.

target role The target role of the selected Attribute is the new role assigned to it. Following
target roles are possible:

• regular Attributes without a special role. Regular Attributes are used as input vari-
ables for learning tasks.
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• id This is a special role. An Attribute with the id role acts as an identifier for the
Examples. It should be unique for all Examples. Different Blending Operators (Join,
Union, Transpose, Pivot, ...) uses the id Attribute to perform their tasks.

• label This is a special role. An Attribute with the label role acts as a target Attribute
for learning Operators. The label is also often called ‘target variable’ or ‘class’.

• prediction This is a special role. An Attribute with the prediction role is the result
of an application of a learning model. The Apply Model Operator adds for example
a prediction Attribute to the ExampleSet. To evaluate the performance of a model, a
label and a prediction Attribute is necessary.

• cluster This is a special role. An Attribute with the cluster role indicates the mem-
bership of an ExampleSet to a particular cluster. For example the k-Means Operator
adds an Attribute with the cluster role.

• weight This is a special role. An Attribute with the weight role indicates the weight
of the Exampleswith regard to the label. Weights are used in learning processes to set
the importance of Examples. Weights can also be used to evaluate the performance
of models; there they assign a severness for misclassification of single Examples.

• batch This is a special role. An Attribute with the batch role indicates thememeber-
ship to a specific batch.

• user defined Any role can be assigned to an Attribute by typing in the textbox. User
defined roles are special roles, so one specific role cannot be assigned to more than
one Attribute. Attributes with user defined roles are ignored in learning processes.
So an Attribute with a user defined role is ignored in a learning processes but remains
in the ExampleSet.

set additional roles This parameter is used to set the role of more than one Attribute at once.
A click on Edit List opens a menu with Attribute name and target role pairs. They can be
used in the same way as the above described parameters.

Tutorial Processes

Set Role on Titanic Data Set

This tutorial Process shows the basic usage of the Set Role Operator. First the Titanic data set
is retrieved from the Samples folder. Then the role of several Attributes are set. An explanation
is given of which Attribute is set to which role and the reason for that is given in the comments.
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Root

The Set Role Operator sets roles for some Attributes in the Titanic set: 
 

Name -> id role: 
The Name is an identifier Attribute for the Examples. 

 
Survived -> label role: 

We want to train a model to predict the Survived Attribute, so it is set to the label role. 
 

Passenger Class -> batch role: 
The Passenger Class can be seen as a batch Attribute. So there are three (first class, 

second class, third class) batches in the ExampleSet. 
 

Age -> weight role: 
In this tutorial process we set Age to weight, so that Passengers with a greater Age are 

weighted higher in a learning process. 
 

No of Siblings or Spouses on Board -> cluster role: 
No of Siblings or Spouses on Board is set to cluster, as an Example what a cluster 
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Figure 2.8: Tutorial process ‘Set Role on Titanic Data Set’.

2.1.2 Types
Date to Nominal

Date to Nominal

exa exa

ori

This operator parses the date values of the specified date attribute
with respect to thegivendate format string and transforms the val-
ues into nominal values.

Description

The Date to Nominal operator transforms the specified date attribute and writes a new nominal
attribute in a user specified format. This conversion is done with respect to the specified date
format string that is specified by the date format parameter. This operator might be useful for
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time base OLAP to change the granularity of the time stamps from day to week or month. The
date attribute is selected by the attribute name parameter. The old date attributewill be removed
and replaced by a new nominal attribute if the keep old attribute parameter is not set to true. The
understanding of Date and Time patterns is very important for using this operator properly.

Date and Time Patterns

This section explains the date and time patterns. Understanding of date and time patterns is
necessary especially for specifying the date format string in the date format parameter. Within
date and time pattern strings, unquoted letters from ‘A’ to ‘Z’ and from ‘a’ to ‘z’ are interpreted
as pattern letters that represent the components of a date or time. Text can be quoted using
single quotes (’) to avoid interpretation as date or time components. All other characters are
not interpreted as date or time components; they are simply matched against the input string
during parsing.
Here is a brief description of the defined pattern letters. The format types like ‘Text’, ‘Number’,

‘Year’, ‘Month’ etc are described in detail after this section.

• G: This pattern letter is the era designator. For example: AD, BC etc. It follows the rules
of ‘Text’ format type.

• y: This pattern letter represents year. yy represents year in two digits e.g. 96 and yyyy
represents year in four digits e.g. 1996. This pattern letter follows the rules of the ‘Year’
format type.

• M: This pattern letter represents the month of the year. It follows the rules of the ‘Month’
format type. Month can be represented as; for example; March, Mar or 03 etc.

• w: This pattern letter represents the week number of the year. It follows the rules of the
‘Number’ format type. For example, the first week of January can be represented as 01 and
the last week of December can be represented as 52.

• W: This pattern letter represents the week number of the month. It follows the rules of
the ‘Number’ format type. For example, the first week of January can be represented as 01
and the forth week of December can be represented as 04.

• D: This pattern letter represents the day number of the year. It follows the rules of the
‘Number’ format type. For example, the first day of January can be represented as 01 and
last day of December can be represented as 365 (or 366 in case of a leap year).

• d: This pattern letter represents the day number of the month. It follows the rules of the
‘Number’ format type. For example, the first day of January can be represented as 01 and
the last day of December can be represented as 31.

• F: This pattern letter represents the day number of the week. It follows the rules of the
‘Number’ format type.

• E: This pattern letter represents the name of the day of the week. It follows the rules of
the ‘Text’ format type. For example, Tuesday or Tue etc.

• a: This pattern letter represents the AM/PM portion of the 12-hour clock. It follows the
rules of the ‘Text’ format type.

• H: This pattern letter represents the hour of the day (from 0 to 23). It follows the rules of
the ‘Number’ format type.
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• k: This pattern letter represents the hour of the day (from 1 to 24). It follows the rules of
the ‘Number’ format type.

• K: This pattern letter represents the hour of the day for 12-hour clock (from 0 to 11). It
follows the rules of the ‘Number’ format type.

• h: This pattern letter represents the hour of the day for 12-hour clock (from 1 to 12). It
follows the rules of the ‘Number’ format type.

• m: This pattern letter represents the minutes of the hour (from 0 to 59). It follows the
rules of the ‘Number’ format type.

• s: This pattern letter represents the seconds of the minute (from 0 to 59). It follows the
rules of the ‘Number’ format type.

• S: This pattern letter represents the milliseconds of the second (from 0 to 999). It follows
the rules of the ‘Number’ format type.

• z: This pattern letter represents the time zone. It follows the rules of the ‘General Time
Zone’ format type. Examples include Pacific Standard Time, PST, GMT-08:00 etc.

• Z: This pattern letter represents the time zone. It follows the rules of the ‘RFC 822 Time
Zone’ format type. Examples include -08:00 etc.

Please note that all other characters from ‘A’ to ‘Z’ and from ‘a’ to ‘z’ are reserved. Pattern
letters are usually repeated, as their number determines the exact presentation. Here is the
explanation of various format types:

• Text: For formatting, if the number of pattern letters is 4 or more, the full form is used;
otherwise a short or abbreviated form is used (if available). For parsing, both forms are
acceptable independent of the number of pattern letters.

• Number: For formatting, the number of pattern letters is the minimum number of digits.
The numbers that are shorter than this minimumnumber of digits are zero-padded to this
amount. For example if the minimum number of digits is 3 then the number 5 will be
changed to 005. For parsing, the number of pattern letters is ignored unless it is needed
to separate two adjacent fields.

• Year: If the underlying calendar is the Gregorian calendar, the following rules are applied:
– For formatting, if the number of pattern letters is 2, the year is truncated to 2 digits;

otherwise it is interpreted as a ‘Number’ format type.
– For parsing, if the number of pattern letters is more than 2, the year is interpreted

literally, regardless of the number of digits. So using the pattern ‘MM/dd/yyyy’, the
string ‘01/11/12’ parses to ‘Jan 11, 12 A.D’.

– For parsing with the abbreviated year pattern (’y’ or ‘yy’), this operator must inter-
pret the abbreviated year relative to somecentury. It does this by adjustingdates to be
within 80 years before and 20 years after the time the operator is created. For exam-
ple, using a pattern of ‘MM/dd/yy’ and the operator created on Jan 1, 1997, the string
‘01/11/12’ would be interpreted as Jan 11, 2012 while the string ‘05/04/64’ would be
interpreted asMay 4, 1964. During parsing, only strings consisting of exactly twodig-
its will be parsed into the default century. Any other numeric string, such as a one
digit string, a three or more digit string, or a two digit string that is not all digits (for
example, ‘-1’), is interpreted literally. So ‘01/02/3’ or ‘01/02/003’ are parsed, using
the same pattern, as ‘Jan 2, 3 AD’. Likewise, ‘01/02/-3’ is parsed as ‘Jan 2, 4 BC’.
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Otherwise, if the underlying calendar is not the Gregorian calendar, calendar system spe-
cific forms are applied. If the number of pattern letters is 4 or more, a calendar specific
long form is used. Otherwise, a calendar short or abbreviated form is used.

• Month: If the number of pattern letters is 3 or more, the month is interpreted as ‘Text’
format type otherwise, it is interpreted as a ‘Number’ format type.

• General time zone: Time zones are interpreted as ‘Text’ format type if they have names.
It is possible to define time zones by representing a GMT offset value. RFC 822 time zones
are also acceptable.

• RFC 822 time zone: For formatting, the RFC 822 4-digit time zone format is used. General
time zones are also acceptable.

This operator also supports localized date and time pattern strings by defining the locale pa-
rameter. In these strings, the pattern letters described abovemay be replacedwith other, locale-
dependent pattern letters.
The following examples show how date and time patterns are interpreted in the U.S. locale.

The given date and time are 2001-07-04 12:08:56 local time in the U.S. Pacific Time time zone.

• ’yyyy.MM.dd G ‘at’ HH:mm:ss z’: 2001.07.04 AD at 12:08:56 PDT

• ’EEE, MMM d, yy’: Wed, Jul 4, ‘01

• ’h:mm a’: 12:08 PM

• ’hh ‘oclock’ a, zzzz’: 12 oclock PM, Pacific Daylight Time

• ’K:mm a, z’: 0:08 PM, PDT

• ’yyyy.MMMMM.dd GGG hh:mm aaa’: 2001.July.04 AD 12:08 PM

• ’EEE, d MMM yyyy HH:mm:ss Z’: Wed, 4 Jul 2001 12:08:56 -0700

• ’yyMMddHHmmssZ’: 010704120856-0700

• ’yyyy-MM-dd’T’HH:mm:ss.SSSZ’: 2001-07-04T12:08:56.235-0700

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-

process operator in the attached Example Process. The output of other operators can also
be used as input. The ExampleSet should have at least one date attribute because if there
is no such attribute, the use of this operator does not make sense.

Output Ports
example set output (exa) The selected date attribute is converted to a nominal attribute ac-

cording to the specifieddate format stringand the resultantExampleSet isdelivered through
this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

135



2. Blending

Parameters
attribute name (string) The name of the date attribute is specified here. The attribute name

can be selected from the drop down box of the attribute name parameter if the meta data
is known.

date format This is the most important parameter of this operator. It specifies the date time
format of the desired nominal attribute. This date format string specifies what portion
of the date attribute should be stored in the nominal attribute. Date format strings are
discussed in detail in the description of this operator.

locale (selection) This is an expert parameter. A long list of locales is provided; users can
select any of them.

keep old attribute (boolean) This parameter indicates if the original date attribute should
be kept or it should be discarded.

Tutorial Processes

Introduction to the Date to Nominal operator

Process

Subprocess

in ou t

ou t

Date to Nominal

exa exa

ori

inp

res

res

Figure 2.9: Tutorial process ‘Introduction to the Date to Nominal operator’.

This Example Process starts with a Subprocess operator. The subprocess delivers an Exam-
pleSet with just a single attribute. The name of the attribute is ‘deadline_date’. The type of the
attribute is date. A breakpoint is inserted here so that you can view the ExampleSet. As you can
see, all the examples of this attribute have both date and time information. The Date to Nom-
inal operator is applied on this ExampleSet to change the type of the ‘deadline_date’ attribute
from date to nominal type. Have a look at the parameters of the Date to Nominal operator. The
attribute name parameter is set to ‘deadline_date’. The date format parameter is set to ‘EEEE’,
here is an explanation of this date format string:
’E’ is the pattern letter used for the representation of the name of the day of the week. As

explained in the description, if the number of pattern letters is 4 or more, the full form is used.
Thus ‘EEEE’ is used for representing the day of the week in full form e.g. Monday, Tuesday etc.
Thus thedate attribute is changed to anominal attributewhichhas onlynameof days as possible
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values. Please note that this date format string is used for specifying the format of the nominal
values of the new nominal attribute of the input ExampleSet.
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Date to Numerical

Date to Numerical

exa exa

ori

This operator changes the type of the selected date attribute to a
numeric type. It also maps all values of this attribute to numeric
values. You can specify exactly which component of date or time
should be extracted. You can also specify relative to which date or
time component information should be extracted.

Description
The Date to Numerical operator provides a lot of flexibility when it comes to selecting a compo-
nent of date or time. The following components can be selected: millisecond, second, minute,
hour, day, week, month, quarter, half year, and year. The most important thing is that these
components can be selected relative to other components. For example it is possible to extract
the day relative to the week, relative to the month or relative to the year. Suppose the date is
15/Feb/2012. Then the day relative to the month would be 15 because it is the 15th day of the
month. And the day relative to the year would be 46 because this is the 46th day of the year. All
date and time components can be extracted relative to the most common parent components
e.g. month can be calculated relative to the quarter or the year. Similarly second can be calcu-
lated relative to theminute, the hour or the day. All date and time components can be extracted
relative to the Epoch where Epoch is defined as the date: ‘01-01-1970 00:00’. If the date at-
tribute has no time information then all calculations on time components will result to 0. All
these things can be understood easily by studying the attached Example Process.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Generate

Data operator in the attached Example Process. The output of other operators can also be
used as input. It is essential that meta data should be attached with the data for the input
because attributes are specified in the meta data. The Generate Data operator provides
meta data along-with the data. The ExampleSet should have at least one date attribute
because if there is no such attribute, the use of this operator does not make sense.

Output Ports
example set (exa) The ExampleSet with selected date attribute converted to numeric type is

output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute name (string) This parameter specifies the attribute of the input ExampleSet that

should be converted from date to numerical form.

time unit (selection) Thisparameter specifies theunit inwhich the time ismeasured. Inother
words, this parameter specifies the component of the date that should be extracted. The
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following components can be extracted: millisecond, second, minute, hour, day, week,
month, quarter, half year, and year.

millisecond relative to (selection) This parameter is only available when the time unit pa-
rameter is set to ‘millisecond’. This parameter specifies the component relative to which
the milliseconds should be extracted. The following options are available: second, epoch.

second relative to (selection) This parameter is only available when the time unit parameter
is set to ‘second’. This parameter specifies the component relative to which the seconds
should be extracted. The following options are available: minute, hour, day, epoch.

minute relative to (selection) This parameter is only available when the time unit parameter
is set to ‘minute’. This parameter specifies the component relative to which the minutes
should be extracted. The following options are available: hour, day, epoch.

hour relative to (selection) This parameter is only available when the time unit parameter is
set to ‘hour’. This parameter specifies the component relative to which the hours should
be extracted. The following options are available: day, epoch.

day relative to (selection) This parameter is only available when the time unit parameter is
set to ‘day’. This parameter specifies the component relative to which the days should be
extracted. The following options are available: week, month, year, epoch.

week relative to (selection) This parameter is only available when the time unit parameter is
set to ‘week’. This parameter specifies the component relative to which the weeks should
be extracted. The following options are available: month, year, epoch.

month relative to (selection) This parameter is only available when the time unit parameter
is set to ‘month’. This parameter specifies the component relative to which the months
should be extracted. The following options are available: quarter, year, epoch.

quarter relative to (selection) This parameter is only availablewhen the timeunitparameter
is set to ‘quarter’. This parameter specifies the component relative to which the quarters
should be extracted. The following options are available: year, epoch.

half year relative to (selection) This parameter is only available when the time unit param-
eter is set to ‘half year’. This parameter specifies the component relative to which the half
years should be extracted. The following options are available: year, epoch.

year relative to (selection) This parameter is only available when the time unit parameter is
set to ‘year’. This parameter specifies the component relative to which the years should
be extracted. The following options are available: epoch, era.

keep old attribute (selection) This is an expert parameter. This parameter indicates if the
original date attribute of the input ExampleSet should be kept. This parameter is set to
false by default thus the original date attribute is removed from the input ExampleSet.

Tutorial Processes

Introduction to the Date to Numerical operator

The Generate Data by User Specification operator is used in this Example Process to create a
date type attribute. The attribute is named ‘Date’ and it is defined by the expression ‘date-
_parse(”04/21/2012”)’. Thus an attribute named ‘Date’ is created with just a single example.
The value of the date is 21/April/2012. Please note that no information about time is given. The
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Figure 2.10: Tutorial process ‘Introduction to the Date to Numerical operator’.

Date to Numerical operator is applied on this ExampleSet. The ‘Date’ attribute is selected in the
attribute name parameter.
If the time unit parameter is set to ‘year’ and the year relative to parameter is set to ‘era’ then

the result is 2012. This is so because this is the 2012th year relative to the era.If the time unit
parameter is set to ‘year’ and the year relative to parameter is set to ‘epoch’ then the result is
42. This is so because the year of epoch date is 1970 and difference between 2012 and 1970 is
42.If the time unit parameter is set to ‘half year’ and the half year relative to parameter is set to
‘year’ then the result is 1. This is so because April is in the first half of the year.If the time unit
parameter is set to ‘quarter’ and the quarter relative to parameter is set to ‘year’ then the result
is 2. This is so because April is the 4th month of the year and it comes in the second quarter of
the year.If the time unit parameter is set to ‘month’ and the month relative to parameter is set
to ‘year’ then the result is 4. This is so because April is the fourth month of the year.If the time
unit parameter is set to ‘month’ and the month relative to parameter is set to ‘quarter’ then the
result is 1. This is so because April is the first month of the second quarter of the year.If the time
unit parameter is set to ‘week’ and the week relative to parameter is set to ‘year’ then the result
is 16. This is so because 21st April comes in the 16th week of the year.If the time unit parameter
is set to ‘week’ and the week relative to parameter is set to ‘month’ then the result is 3. This is so
because 21st day of month comes in the 3rd week of the month.If the time unit parameter is set
to ‘day’ and the day relative to parameter is set to ‘year’ then the result is 112. This is so because
21stApril is the 112thdayof the year.If the timeunit parameter is set to ‘day’ and theday relative
to parameter is set to ‘month’ then the result is 21. This is so because 21st April is the 21st day
of the month.If the time unit parameter is set to ‘day’ and the day relative to parameter is set
to ‘week’ then the result is 7. This is so because 21st April 2012 is on Saturday. Saturday is the
seventh day of the week. Sunday is the first day of the week.If the time unit parameter is set to
‘hour’ and the hour relative to parameter is set to ‘day’ then the result is 0. This is so because
no time information was provided for this date attribute and all time information was assumed
to be 00 by default.
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Format Numbers

Format  Numbers

exa exa

ori

This operator reformats the selected numerical attributes accord-
ing to the specified format and changes the attributes to nominal.

Description
This operator parses numerical values and formats them into the specified format. The format is
specified by the format type parameter. It supports different kinds of number formats including
integers (e.g. 123), fixed-point numbers (e.g. 123.4), scientific notation (e.g. 1.23E4), percent-
ages (e.g. 12%), and currency amounts (e.g. $123). Please note that this operator only works on
numerical attributes and the result will be in any case a nominal attribute even if the resulting
format is a number which can be parsed again.
If the format type parameter is set to ‘pattern’, the pattern parameter is used for defining the

format. If two different formats for positive andnegative numbers should be used, those formats
can be defined by separating them by a semi-colon ‘;’. The pattern parameter provides a lot of
flexibility for defining the pattern. Important structures that can be used for defining a pattern
are listed below. The structures in brackets are optional.

• pattern := subpattern{;subpattern}

• subpattern := {prefix}integer{.fraction}{suffix}

• prefix := any character combination including whitespace

• suffix := any character combination including whitespace

• integer := #* 0* 0

• fraction := 0* #*

0* and#* stand formultiple 0 or # respectively. 0 and #performsimilar functions but 0 ensures
that length of all numbers is same i.e. if a digit is missing it is replaced by 0. For example 54 will
be formatted to 0054 with pattern ‘0000’ and it will be formatted to 54 with pattern ‘####’.
The following placeholders can be used within the pattern parameter:

• . placeholder for decimal separator.

• , placeholder for grouping separator.

• E separates mantissa and exponent for exponential formats.

• - default negative prefix.

• % multiply by 100 and show as percentage.

• ’ used to quote special characters in a prefix or suffix.

The locale parameter is ignored when the format type parameter is set to ‘pattern’. In other
cases it plays its role e.g. if the format typeparameter is set to ‘currency’ then the localeparameter
specifies the notation for that currency (i.e. dollar, euro etc).
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Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of theGener-
ate Data operator in the attached Example Process. The output of other operators can also
be used as input. The ExampleSet should have at least one numerical attribute because if
there is no such attribute, the use of this operator does not make sense.

Output Ports

example set output (exa) The selected numerical attributes are reformatted and converted
to nominal and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have a basic understanding of type hierar-
chy when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.
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• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
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together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

format type (selection) This parameter specifies the type of formatting to perform on the se-
lected numerical attributes.

pattern (string) This parameter is only availablewhen the format type parameter is set to ‘pat-
tern’. This parameter specifies the pattern for formatting the numbers. Various structures
and replacement patterns for this parameter have been discussed in the description of this
operator.

locale (selection) This is an expert parameter. A long list of locales is provided; users can
select any of them.

use grouping (boolean) This parameter indicates if a grouping character should be used for
larger numbers.

Tutorial Processes

Changing numeric values to currency format

Process

Generate  Data

out

Format  Numbers

exa exa

ori

inp res

res

Figure 2.11: Tutorial process ‘Changing numeric values to currency format’.

This process starts with the Generate Data operator which generates a random ExampleSet
with a numeric attribute named ‘att1’. A breakpoint is inserted here so that you can have a look
at the ExampleSet. The Format Numbers operator is applied on it to change the format of this
attribute to a currency format. The attribute filter type parameter is set to ‘single’ and the at-
tribute parameter is set to ‘att1’ to select the required attribute. The format typeparameter is set
to ‘currency’. Run the process and switch to the Results Workspace. You can see that the ‘att1’
attribute has been changed fromnumeric to nominal type and its values have a ‘$’ sign in the be-
ginning because they have been converted to a currency format. The locale parameter specifies
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the required currency. In this process the locale parameter was set to ‘English (United States)’
therefore the numeric values were converted to the currency of United States (i.e. dollar).
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Guess Types

Guess Types

exa exa

ori

This operator (re-)guesses the value types of all attributes of the
input ExampleSet and changes them accordingly.

Description
The Guess Types operator can be used to (re-)guess the value types of the attributes of the input
ExampleSet. This might be useful after some preprocessing transformations and purification
of some of the attributes. This operator can be useful especially if nominal attributes can be
handled as numerical attributes after some preprocessing. It is not necessary to (re-)guess the
type of all the attributes with this operator. You can select the attributes whose type is to be (re-
)guessed. Please study the attached Example Process for more information. Please note that
this operator has no impact on the values of the ExampleSet.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports
example set output (exa) The type of the selected attributes of the input ExampleSet is (re-

)guessed and the resultant ExampleSet is delivered through this output port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.
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• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
can be selected from the drop down box of parameter attribute if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list. Attributes can be shifted
to the right list, which is the list of selected attributes.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.
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use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes are selected irrespective of the conditions in the Select Attribute operator.
If this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

first character index (integer) This parameter specifies the index of thefirst character of the
substring which should be kept. Please note that the counting starts with 1.

last character index (integer) This parameter specifies the index of the last character of the
substring which should be kept. Please note that the counting starts with 1.

decimal point character (char) The character specified by this parameter is used as the dec-
imal character.

number grouping character (char) The character specified by this parameter is used as the
grouping character. This character is used for grouping the numbers. If this character
is found between numbers, the numbers are combined and this character is ignored. For
example if “22-14” is present in the ExampleSet and “-” is set as the number grouping char-
acter, then the number will be considered to be “2214”.

Tutorial Processes

Guessing the type of an attribute after preprocessing

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that you
can have a look at the ExampleSet. Please note the ‘id’ attribute. The ‘id’ attribute is of nominal
type and it has the values of the format ‘id_1’, ‘id_2’ and so on. TheCut operator is applied on the
ExampleSet to remove the substring ‘id_’ from the start of the ‘id’ attribute values. A breakpoint
is inserted after the Cut operator. You can see that now the values in the ‘id’ attribute are of the
form ‘1’, ‘2’, ‘3’ and so on but the type of this attribute is still nominal. TheGuess Types operator
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Figure 2.12: Tutorial process ‘Guessing the type of an attribute after preprocessing’.

is applied on this ExampleSet. The attribute filter type parameter is set to ‘single’, the attribute
parameter is set to ‘id’ and the include special attributes parameter is also set to ‘true’. Thus the
Guess Types operator will re-guess the type of the ‘id’ attribute. A breakpoint is inserted after
the Guess Type operator. You can see that the type of the ‘id’ attribute has now been changed
to integer.
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Nominal to Binominal

Nominal to Bino.. .

exa exa

ori

pre

This operator changes the type of selected nominal attributes to
a binominal type. It also maps all values of these attributes to bi-
nominal values.

Description
The Nominal to Binominal operator is used for changing the type of nominal attributes to a bi-
nominal type. This operator not only changes the type of selected attributes but it also maps
all values of these attributes to binominal values i.e. true and false. For example, if a nominal
attribute with name ‘costs’ and possible nominal values ‘low’, ‘moderate’, and ‘high’ is trans-
formed, the result is a set of three binominal attributes ‘costs = low’, ‘costs = moderate’, and
‘costs = high’. Only the value of one of these attributes is true for a specific example, the value
of the other attributes is false. Examples of the original ExampleSet where the ‘costs’ attribute
had value ‘low’, in the new ExampleSet these examples will have attribute ‘costs=low’ value set
to ‘true’, value of ‘cost=moderate’ and ‘ cost=high’ attributes will be ‘false’. Numeric attributes
of the input ExampleSet remain unchanged.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input. It is essential that meta data should be attached with the data for the input because
attributes are specified in its meta data. The Retrieve operator provides meta data along-
with data. The ExampleSet should have at least one nominal attribute because if there is
no such attribute, use of this operator does not make sense.

Output Ports
example set (exa) The ExampleSet with selected nominal attributes converted to binominal

type is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters
create view (boolean) It is possible to create a View instead of changing the underlying data.

Simply select this parameter to enable this option. The transformation that would be nor-
mally performed directly on the datawill then be computed every time a value is requested
and the result is returned without changing the data.
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attribute filter type (selection) This parameter allows you to select the attribute selection
filter; the method you want to use for selecting attributes that you want to convert to bi-
nominal form. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are not selected.

• numeric_value_filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose exam-
ples all satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
can be selected from the drop down box of parameter attribute if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
windowwith two lists. All attributes are present in the left list. Attributes can be shifted to
the right list which is the list of selected attributes on which the conversion from nominal
to binominal will take place; all other attributes will remain unchanged.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is very powerful tool but needs a detailed explanation to beginners. It
is always good to specify the regular expression through the edit and preview regular expres-
sion menu. This menu gives a good idea of regular expressions and it also allows you to
try different expressions and preview the results simultaneously. This will enhance your
concept of regular expressions.
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use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all special
attributes are selected irrespective of the conditions in the Nominal to Binominal opera-
tor. If this parameter is set to true, Special attributes are also tested against conditions
specified in the Nominal to Binominal operator and only those attributes are selected that
satisfy the conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
removed prior to selection of this parameter. After selection of this parameter ‘att1’ will
be removed and ‘att2’ will be selected.

transform binominal (boolean) This parameter indicates if attributes which are already bi-
nominal should be dichotomized i.e. they should be split in two columns with values true
and false.
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use underscore in name (boolean) This parameter indicates if underscores should be used
in the new attribute names instead of empty spaces and ‘=’. Although the resulting names
are harder to read for humans it might be more appropriate to use these if the data should
be written into a database system.

Tutorial Processes

Nominal to Binominal conversion of attributes of Golf data set

Process

Retr ieve

out

Nominal to Bino.. .

exa exa

ori

pre

inp res

res

Figure 2.13: Tutorial process ‘Nominal to Binominal conversion of attributes of Golf data set’.

This Example Process mostly focuses on the transform binominal parameter. All remaining
parameters aremostly for selecting the attributes. The Select Attributes operator also hasmany
similar parameters for selection of attributes. You can study the Example Process of the Select
Attributes operator if you want an understanding of these parameters.
The Retrieve operator is used to load the Golf data set. A breakpoint is inserted at this point

so that you can have look at the data set before application of the Nominal to Binominal oper-
ator. You can see that the ‘Outlook’ attribute has three possible values i.e. ‘sunny’, ‘rain’ and
‘overcast’. The ‘Wind’ attribute has two possible values i.e. ‘true’ and ‘false’. All parameters
of the Nominal to Binominal operator are used with default values. Run the process. First you
will see the Golf data set. Press the run button again and you will see the final results. You can
see that the ‘Outlook’ attribute is replaced by three binominal attributes, one for each possible
value of the original ‘Outlook’ attribute. These attributes are ‘ Outlook = sunny’, ‘ Outlook =
rain’, and ‘ Outlook = overcast’. Only the value of one of these attributes is true for a specific
example, the value of the other attributes is false. Examples whose ‘Outlook ‘ attribute had the
value ‘sunny’ in the original ExampleSet, will have the attribute ‘ Outlook =sunny’ value set to
‘true’in the new ExampleSet, the value of the ‘Outlook =overcast’ and ‘Outlook =rain’ attributes
will be ‘false’. The numeric attributes of the input ExampleSet remain unchanged.
The ‘Wind’ attributewas not replaced by two binominal attributes, one for each possible value

of the ‘Wind’ attribute because this attribute is already binominal. Still if you want to break it
into two separate binominal attributes, this can be done by setting the transform binominal
parameter to true.
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Nominal to Date

Nominal  to Date

exa exa

ori

This operator converts the selected nominal attribute into the se-
lected date time type. The nominal values are transformed into
date and/or time values. This conversion is done with respect to
the specified date format string.

Description
The Nominal to Date operator converts the selected nominal attribute of the input ExampleSet
into the selected date and/or time type. The attribute is selected by the attribute name parame-
ter. The type of the resultant date and/or time attribute is specified by the date type parameter.
The nominal values are transformed into date and/or time values. This conversion is done with
respect to the specified date format string that is specified by the date format parameter. The
old nominal attribute will be removed and replaced by a new date and/or time attribute if the
keep old attribute parameter is not set to true.

Date and Time Patterns

This section explains the date and time patterns. Understanding of date and time patterns is
necessary specially for specifying the date format string in the date format parameter. Within
date and time pattern strings, unquoted letters from ‘A’ to ‘Z’ and from ‘a’ to ‘z’ are interpreted
as pattern letters that represent the components of a date or time. Text can be quoted using
single quotes (’) to avoid interpretation as date or time components. All other characters are
not interpreted as date or time components; they are simply matched against the input string
during parsing.
Here is a brief description of the defined pattern letters. The format types like ‘Text’, ‘Number’,

‘Year’, ‘Month’ etc are described in detail after this section.

• G: This pattern letter is the era designator. For example: AD, BC etc. This pattern letter
follows the rules of ‘Text’ format type.

• y: This pattern letter represents year. yy represents year in two digits e.g. 96 and yyyy
represents year in four digits e.g. 1996. This pattern letter follows the rules of the ‘Year’
format type.

• M: This pattern letter represents the month of the year. This pattern letter follows the
rules of the ‘Month’ format type. Month can be represented as; for example; March, Mar
or 03 etc.

• w: This pattern letter represents the week number of the year. This pattern letter follows
the rules of the ‘Number’ format type. For example, the first week of January can be rep-
resented as 01 and the last week of December can be represented as 52.

• W: This pattern letter represents the week number of the month. This pattern letter fol-
lows the rules of the ‘Number’ format type. For example, the first week of January can be
represented as 01 and the forth week of December can be represented as 04.

• D: This pattern letter represents the day number of the year. This pattern letter follows the
rules of the ‘Number’ format type. For example, the first day of January can be represented
as 01 and last day of December can be represented as 365 (or 366 in case of a leap year).
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• d: This pattern letter represents the day number of the month. This pattern letter fol-
lows the rules of the ‘Number’ format type. For example, the first day of January can be
represented as 01 and the last day of December can be represented as 31.

• F: This pattern letter represents the day number of the week. This pattern letter follows
the rules of the ‘Number’ format type.

• E:Thispattern letter represents thenameof thedayof theweek. Thispattern letter follows
the rules of the ‘Text’ format type. For example, Tuesday or Tue etc.

• a: This pattern letter represents the AM/PM portion of the 12-hour clock. This pattern
letter follows the rules of the ‘Text’ format type.

• H: This pattern letter represents the hour of the day (from 0 to 23). This pattern letter
follows the rules of the ‘Number’ format type.

• k: This pattern letter represents the hour of the day (from 1 to 24). This pattern letter
follows the rules of the ‘Number’ format type.

• K: This pattern letter represents the hour of the day for 12-hour clock (from 0 to 11). This
pattern letter follows the rules of the ‘Number’ format type.

• h: This pattern letter represents the hour of the day for 12-hour clock (from 1 to 12). This
pattern letter follows the rules of the ‘Number’ format type.

• m: This pattern letter represents theminutes of the hour (from0 to 59). This pattern letter
follows the rules of the ‘Number’ format type.

• s: This pattern letter represents the seconds of the minute (from 0 to 59). This pattern
letter follows the rules of the ‘Number’ format type.

• S: This pattern letter represents the milliseconds of the second (from 0 to 999). This pat-
tern letter follows the rules of the ‘Number’ format type.

• z: This pattern letter represents the time zone. This pattern letter follows the rules of
the ‘General Time Zone’ format type. Examples include Pacific Standard Time, PST, GMT-
08:00 etc.

• Z: This pattern letter represents the time zone. This pattern letter follows the rules of the
‘RFC 822 Time Zone’ format type. Examples include -08:00 etc.

Please note that all other characters from ‘A’ to ‘Z’ and from ‘a’ to ‘z’ are reserved. Pattern
letters are usually repeated, as their number determines the exact presentation. Here is the
explanation of various format types:

• Text: For formatting, if the number of pattern letters is 4 or more, the full form is used;
otherwise a short or abbreviated form is used (if available). For parsing, both forms are
acceptable independent of the number of pattern letters.

• Number: For formatting, the number of pattern letters is the minimum number of digits.
The numbers that are shorter than this minimumnumber of digits are zero-padded to this
amount. For example if the minimum number of digits is 3 then the number 5 will be
changed to 005. For parsing, the number of pattern letters is ignored unless it is needed
to separate two adjacent fields.

• Year: If the underlying calendar is the Gregorian calendar, the following rules are applied:

155



2. Blending

– For formatting, if the number of pattern letters is 2, the year is truncated to 2 digits;
otherwise it is interpreted as a ‘Number’ format type.

– For parsing, if the number of pattern letters is more than 2, the year is interpreted
literally, regardless of the number of digits. So using the pattern ‘MM/dd/yyyy’, the
string ‘01/11/12’ parses to ‘Jan 11, 12 A.D’.

– For parsing with the abbreviated year pattern (’y’ or ‘yy’), this operator must inter-
pret the abbreviated year relative to somecentury. It does this by adjustingdates to be
within 80 years before and 20 years after the time the operator is created. For exam-
ple, using a pattern of ‘MM/dd/yy’ and the operator created on Jan 1, 1997, the string
‘01/11/12’ would be interpreted as Jan 11, 2012 while the string ‘05/04/64’ would be
interpreted asMay 4, 1964. During parsing, only strings consisting of exactly twodig-
its will be parsed into the default century. Any other numeric string, such as a one
digit string, a three or more digit string, or a two digit string that is not all digits (for
example, ‘-1’), is interpreted literally. So ‘01/02/3’ or ‘01/02/003’ are parsed, using
the same pattern, as ‘Jan 2, 3 AD’. Likewise, ‘01/02/-3’ is parsed as ‘Jan 2, 4 BC’.

Otherwise, if the underlying calendar is not the Gregorian calendar, calendar system spe-
cific forms are applied. If the number of pattern letters is 4 or more, a calendar specific
long form is used. Otherwise, a calendar short or abbreviated form is used.

• Month: If the number of pattern letters is 3 or more, the month is interpreted as ‘Text’
format type otherwise, it is interpreted as a ‘Number’ format type.

• General time zone: Time zones are interpreted as ‘Text’ format type if they have names.
It is possible to define time zones by representing a GMT offset value. RFC 822 time zones
are also acceptable.

• RFC 822 time zone: For formatting, the RFC 822 4-digit time zone format is used. General
time zones are also acceptable.

This operator also supports localized date and time pattern strings by defining the locale pa-
rameter. In these strings, the pattern letters described abovemay be replacedwith other, locale-
dependent pattern letters.
The following examples show how date and time patterns are interpreted in the U.S. locale.

The given date and time are 2001-07-04 12:08:56 local time in the U.S. Pacific Time time zone.

• ’yyyy.MM.dd G ‘at’ HH:mm:ss z’: 2001.07.04 AD at 12:08:56 PDT

• ’EEE, MMM d, yy’: Wed, Jul 4, ‘01

• ’h:mm a’: 12:08 PM

• ’hh ‘oclock’ a, zzzz’: 12 oclock PM, Pacific Daylight Time

• ’K:mm a, z’: 0:08 PM, PDT

• ’yyyy.MMMMM.dd GGG hh:mm aaa’: 2001.July.04 AD 12:08 PM

• ’EEE, d MMM yyyy HH:mm:ss Z’: Wed, 4 Jul 2001 12:08:56 -0700

• ’yyMMddHHmmssZ’: 010704120856-0700

• ’yyyy-MM-dd’T’HH:mm:ss.SSSZ’: 2001-07-04T12:08:56.235-0700
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Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input. It is essential that meta data should be attached with the data for the input because
attributes are specified in their meta data. The ExampleSet should have at least one nom-
inal attribute because if there is no such attribute, the use of this operator does not make
sense.

Output Ports
example set (exa) The selected nominal attribute is converted to date type and the resultant

ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute name (string) The name of the nominal attribute that is to be converted to date

type is specified here.

date type (selection) This parameter specifies the type of the resultant attribute.

• date If the date type parameter is set to ‘date’, the resultant attribute will be of date
type. The time portion (if any) of the nominal attribute will be ignored.

• time If the date type parameter is set to ‘time’, the resultant attribute will be of time
type. The date portion (if any) of the nominal attribute will be ignored.

• date_time If the date type parameter is set to ‘date_time’, the resultant attribute will
be of date_time type.

date format This is the most important parameter of this operator. It specifies the date time
format of the selected nominal attribute. Date format strings are discussed in detail in the
description of this operator.

time zone (selection) This is an expert parameter. A long list of time zones is provided; users
can select any of them.

locale (selection) This is an expert parameter. A long list of locales is provided; users can
select any of them.

keep old attribute (boolean) Thisparameter indicates if theoriginalnominal attribute should
be kept or if it should be discarded.

Tutorial Processes

Introduction to the Nominal to Date operator

This Example Process starts with a subprocess. The subprocess delivers an ExampleSet with just
a single attribute. The name of the attribute is ‘deadline_date’. The type of the attribute is nom-
inal. A breakpoint is inserted here so that you can view the ExampleSet. As you can see, all the
examples of this attribute have both date and time information. The Nominal to Date operator

157



2. Blending

Process

Subprocess

in ou t

ou t

Nominal  to Date

exa exa

ori

inp

res

res

Figure 2.14: Tutorial process ‘Introduction to the Nominal to Date operator’.

is applied on this ExampleSet to change the type of the ‘deadline_date’ attribute from nominal
to date type. Have a look at the parameters of theNominal to Date operator. The attribute name
parameter is set to ‘deadline_date’. The date type parameter is set to ‘date’. Thus the ‘deadline-
_date’ attribute will be converted from nominal to date type (not date_time) therefore the time
portion of the value will not be available in the resultant attribute. The date format parameter
is set to ‘EEEE, MMMMd, yyyy h:m:s a z’, here is an explanation of this date format string: ’E’ is
the pattern letter used for the representation of the name of the day of theweek. As explained in
the description, if the number of pattern letters is 4 or more, the full form is used. Thus ‘EEEE’
is used for representing the day of the week in full form e.g. Monday, Tuesday etc.’M’ is the pat-
tern letter used for the representation of the name of themonth of the year. As explained in the
description, if the number of pattern letters is 4 or more, the full form is used. Thus ‘MMMM’
is used for representing the month of the year in full form e.g. January, February etc.’y’ is the
pattern letter used for the representation of the year portion of the date. ‘yyyy’ represents year
of date in four digits like 2011, 2012 etc.’h’ is the pattern letter used for the representation of
the hour portion of the time. ‘h’ can represent multiple digit hours as well e.g. 10, 11 etc. The
difference between ‘hh’ and ‘h’ is that ‘hh’ represents single digit hours by appending a 0 in start
e.g. 01, 02 and so on. But ‘h’ represents single digits without any modifications e.g. 1, 2 and so
on.’m’ is the pattern letter used for the representation of the minute portion of the time. ‘m’
can represent multiple digit minutes as well e.g. 51, 52 etc. The difference between ‘mm’ and
‘m’ is that ‘mm’ represents single digit minutes by appending a 0 in start e.g. 01, 02 and so on.
But ‘m’ represents single digits without any modifications e.g. 1, 2 and so on.’s’ is the pattern
letter used for the representation of the second portion of the time. ‘s’ can represent multiple
digit seconds as well e.g. 40, 41 etc. The difference between ‘ss’ and ‘s’ is that ‘ss’ represents
single digit seconds by appending a 0 in start e.g. 01, 02 and so on. But ‘s’ represents single
digits without any modifications e.g. 1, 2 and so on.’a’ is the pattern letter used for the repre-
sentation of the ‘AM/PM’ portion of the 12-hour date and time.’z’ is the pattern letter used for
the representation of the time zone.
Please note that this date format string represents the date format of thenominal values of the

selected nominal attribute of the input ExampleSet. The date format string helps RapidMiner
to understand which portions of the nominal value represent which component of the date or
time e.g. year, month etc.
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Nominal to Numerical

Nominal  to Nume.. .

exa exa

ori

pre

This operator changes the type of selected non-numeric attributes
to a numeric type. It also maps all values of these attributes to
numeric values.

Description
The Nominal to Numerical operator is used for changing the type of non-numeric attributes to
a numeric type. This operator not only changes the type of selected attributes but it also maps
all values of these attributes to numeric values. Binary attribute values are mapped to 0 and
1. Numeric attributes of input the ExampleSet remain unchanged. This operator provides three
modes for conversion from nominal to numeric. Thismode is selected by the coding type param-
eter. Explanation of these coding types is given in the parameters and they are also explained
in the example process.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with data for input because at-
tributes are specified in itsmetadata. TheRetrieveoperatorprovidesmetadataalong-with
data. The ExampleSet should have at least one non-numeric attribute because if there is
no such attribute, the use of this operator does not make sense.

Output Ports
example set (exa) TheExampleSetwith selectednon-numeric attributes converted tonumeric

types is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters
create view (boolean) It is possible to create a View instead of changing the underlying data.

Simply select this parameter to enable this option. The transformation that would be nor-
mally performed directly on the datawill then be computed every time a value is requested
and the result is returned without changing the data.

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting attributes onwhich youwant to apply nom-
inal to numeric conversion. It has the following options:
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• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose all ex-
amples satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).
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value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributeswith special roles.
The special attributes are those attributes which identify the examples. In contrast reg-
ular attributes simply describe the examples. Special attributes are: id, label, prediction,
cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

coding type (selection) This parameter indicates the codingwhichwill be used for transform-
ingnominal attributes tonumerical attributes. Thereare threeavailableoptions i.e. unique
integers, dummy coding, effect coding. You can easily understand these options by study-
ing the attached Example Process.

• unique_integers If this option is selected, the values of nominal attributes can be
seen as equally ranked, therefore the nominal attribute will simply be turned into a
real valued attribute, the old values result in equidistant real values.

• dummy_coding If this option is selected, for all values of the nominal attribute, ex-
cluding the comparison group, a new attribute is created. The comparison group can be
defined using the comparison groups parameter. In every example, the new attribute
which corresponds to the actual nominal value of that example gets value 1 and all
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other new attributes get value 0. If the value of the nominal attribute of this example
corresponds to the comparison group, all new attributes are set to 0. Note that the
comparison group is an optional parameter with ‘dummy coding’. If no comparison
group is defined, in every example the new attribute which corresponds to the actual
nominal value of that example gets value 1 and all other new attributes get value 0.
In this case, there will be no example where all new attributes get value 0.This can be
easily understood by studying the attached example process.

• effect_coding If this option is selected; for all values of the nominal attribute, ex-
cluding the comparison group, a new attribute is created. The comparison group can
be defined using the comparison groups parameter. In every example, the new at-
tribute which corresponds to the actual nominal value of that example gets value 1
and all other new attributes get value 0. If the value of the nominal attribute of this
example corresponds to the comparison group, all new attributes are set to -1. Note
that the comparison group is a mandatory parameter with ‘effect coding’. This can be
easily understood by studying the attached example process.

use comparison groups (boolean) This parameter is available onlywhen the coding type pa-
rameter is set to dummy coding. If checked, for each selected attribute in the ExampleSet
a value has to be specified in the comparison group parameter. A separate new column for
this value will not appear in the final result set. If not checked, all values of the selected
attributes will result in an indicator attribute in the resultant ExampleSet.

comparison groups Thisparameterdefines the comparisongroup for eachselectednon-numeric
attribute. Only one comparison group can be specified for one attribute. When the coding
type parameter is set to ‘effect coding’, it is compulsory to define a comparison group for
all selected attributes.

use underscore in name (boolean) This parameter indicates if underscores should be used
in the names of new attributes instead of empty spaces and ‘=’. Although the resulting
names are harder to read for humans but it might be more appropriate to use these if the
data is to be written into a database system.

Tutorial Processes

Nominal to Numeric conversion through different coding types

This Example Processmostly focuses on the coding type and comparison groups parameters. All
remainingparameters aremostly for selecting the attributes. TheSelectAttributes operator also
has many similar parameters for the selection of attributes. You can study its Example Process
if you want an understanding of these parameters.
The Retrieve operator is used to load the ‘Golf ‘data set. The Nominal to Numerical operator

is applied on it. The ‘Outlook’ and ‘Wind’ attributes are selected for this operator for changing
them tonumeric attributes. Initially, the coding type parameter is set to ‘unique integers’. Thus,
the nominal attributeswill simply be turned into real valued attributes; the old valueswill result
in equidistant real values. As you can see in the Results Workspace, all occurrences of value
‘sunny’ for the ‘Outlook’ attribute are replaced by 2. Similarly, ‘overcast’ and ‘rain’ are replaced
by 1 and 0 respectively. In the same way, all occurrences of ‘false’ value in the ‘Wind’ attribute
are replaced by 1 and occurrences of ‘true’ are replaced by 0.
Now, change the coding type parameter to ‘dummy coding’ and run the process again. As

dummy coding is selected, for all values of the nominal attribute a new attribute is created. In
every example, the new attributewhich corresponds to the actual nominal value of that example
gets value 1 and all other new attributes get value 0. As you can see in the Results Workspace,
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Figure 2.15: Tutorial process ‘Nominal to Numeric conversion through different coding types’.

‘Wind=true’ and ‘Wind=false’ attributes are created in place of the ‘Wind’ attribute. In all exam-
pleswhere the ‘Wind’ attributehadvalue ‘true’, the ‘Wind=true’ attributesgets1and ‘Wind=false’
attributegets0. Similarly, all exampleswhere the ‘Wind’ attributehadvalue ‘false’, the ‘Wind=true’
attribute gets value 0 and ‘Wind= false’ attribute gets value 1. The same principle applies to the
‘Outlook’ attribute.
Now, keep the coding type parameter as ‘dummy coding’ and also set the use comparison

groups parameter to true. Run the process again. You can see in the comparison groups pa-
rameter that ‘sunny’ and ‘true’ are defined as comparison groups for the ‘Outlook’ and ‘Wind’
attributes respectively. As dummy coding is used and the comparison groups are also used thus
for all values of the nominal attribute, excluding the comparison group, a new attribute is cre-
ated. In every example, the new attribute which corresponds to the actual nominal value of
that example gets value 1 and all other new attributes get value 0. If the value of the nominal
attribute of this example corresponds to the comparison group, all new attributes are set to 0.
This is why ‘Outlook=rain’ and ‘Outlook=overcast’ attributes are created but ‘Outlook=sunny’
attribute is not created this time. In examples where the ‘Outlook’ attribute had value ‘sunny’,
all newOutlook attributes get value 0. You can see this in the ResultsWorkspace. The same rule
is applied on the ‘Wind’ attribute.
Now, change the coding type parameter to ‘effect coding’ and run the process again. You can

see in the comparisongroupsparameter that ‘sunny’ and ‘true’ are defined as comparisongroups
for the ‘Outlook’ and ‘Wind’ attributes respectively. As effect coding is selected thus for all val-
ues of the nominal attribute, excluding the comparison group, a new attribute is created. In
every example, the new attribute which corresponds to the actual nominal value of that exam-
ple gets value 1 and all other new attributes get value 0. If the value of the nominal attribute of
this example corresponds to the comparison group, all new attributes are set to -1. This is why
‘Outlook=rain’ and ‘Outlook = overcast’ attributes are created but an ‘Outlook=sunny’ attribute
is not created this time. In examples where the ‘Outlook’ attribute had value ‘sunny’, all new
Outlook attributes get value -1. You can see this in the Results Workspace. The same rule is
applied on the ‘Wind’ attribute.
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Nominal to Text

Nominal  to Text

exa exa

ori

This operator changes the type of selected nominal attributes to
text. It also maps all values of these attributes to corresponding
string values.

Description

The Nominal to Text operator converts all nominal attributes to string attributes. Each nominal
value is simply used as a string value of the new attribute. If the value is missing in the nominal
attribute, the new value will also be missing.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input. It is essential that meta data should be attached with the data for the input because
attributes are specified in their meta data. The ExampleSet should have at least one nom-
inal attribute because if there is no such attribute, the use of this operator does not make
sense.

Output Ports

example set (exa) The ExampleSet with selected nominal attributes converted to text is out-
put of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting attributes onwhich youwant to apply nom-
inal to text conversion. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)
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• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.
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except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value. One of the
following types can be selected here: nominal, text, binominal, polynominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes selected irrespective of the conditions in the Select Attribute operator. If
this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

Tutorial Processes

Applying the Nominal to Text operator on the Golf data set

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted after the Re-
trieve operator so that you can have a look at the ‘Golf’ data set before application of the Nomi-
nal to Text operator. You can see that the ‘Golf’ data set has three nominal attributes i.e. ‘Play’,
‘Outlook’ and ‘Wind’. The Nominal to Text operator is applied on this data set. The attribute
filter type parameter is set to ‘single’ and the attribute parameter is set to ‘Outlook’. Thus this
operator converts the type of the ‘Outlook’ attribute to text. You can verify this by seeing the
results in the Meta Data View in the Results Workspace.
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Figure 2.16: Tutorial process ‘Applying the Nominal to Text operator on the Golf data set’.

Numerical to Binominal

Numerical to Bin.. .

exa exa

ori

This operator changes the type of the selected numeric attributes
to a binominal type. It also maps all values of these attributes to
corresponding binominal values.

Description
The Numerical to Binominal operator changes the type of numeric attributes to a binominal
type (also called binary). This operator not only changes the type of selected attributes but it
alsomaps all values of these attributes to corresponding binominal values. Binominal attributes
can have only two possible values i.e. ‘true’ or ‘false’. If the value of an attribute is between the
specifiedminimal andmaximal value, it becomes ‘false’, otherwise ‘true’. Minimal andmaximal
values can be specified by themin andmax parameters respectively. If the value is missing, the
new value will be missing. The default boundaries are both set to 0.0, thus only 0.0 is mapped
to ‘false’ and all other values are mapped to ‘true’ by default.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input. It is essential that meta data should be attached with the data for the input because
attributes are specified in theirmetadata. TheRetrieveoperatorprovidesmetadata along-
with data. The ExampleSet should have at least one numeric attribute because if there is
no such attribute, use of this operator does not make sense.

Output Ports
example set (exa) The ExampleSet with selected numeric attributes converted to binominal

type is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
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or to view the ExampleSet in the Results Workspace.

Parameters

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; the method you want to use for selecting attributes that you want to convert to bi-
nominal form. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are not selected.

• numeric_value_filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose exam-
ples all satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
can be selected from the drop down box of parameter attribute if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
windowwith two lists. All attributes are present in the left list. Attributes can be shifted to
the right list which is the list of selected attributes on which the conversion from nominal
to binominal will take place; all other attributes will remain unchanged.
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regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is very powerful tool but needs a detailed explanation to beginners. It
is always good to specify the regular expression through the edit and preview regular expres-
sion menu. This menu gives a good idea of regular expressions and it also allows you to
try different expressions and preview the results simultaneously. This will enhance your
concept of regular expressions.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all special
attributes are selected irrespective of the conditions in the Nominal to Binominal opera-
tor. If this parameter is set to true, Special attributes are also tested against conditions
specified in the Nominal to Binominal operator and only those attributes are selected that
satisfy the conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
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removed prior to selection of this parameter. After selection of this parameter ‘att1’ will
be removed and ‘att2’ will be selected.

min (real) This parameter is used to set the lower bound of the range. The max parameter is
used to set the upper bound of the range. The attribute values that fell in this range are
mapped to ‘false’. The attribute values that do not fell in this range are mapped to ‘true’.

max (real) This parameter is used to set the upper bound of the range. The min parameter is
used to set the lower bound of the range. The attribute values that fell in this range are
mapped to ‘false’. The attribute values that do not fell in this range are mapped to ‘true’.

Tutorial Processes

Converting numeric attributes of the Sonar data set to binominal attributes

Process

Retr ieve

out

Numerical to Bin.. .

exa exa

ori

inp res

res

res

Figure 2.17: Tutorial process ‘Converting numeric attributes of the Sonar data set to binominal
attributes’.

This Example Processmostly focuses on themin andmax parameters. All remaining parame-
ters aremostly for selecting the attributes. The Select Attributes operator also hasmany similar
parameters for selectionof attributes. Youcanstudy theExampleProcessof theSelectAttributes
operator if you want an understanding of these parameters.
The ‘Sonar’ data set is loaded using the Retrieve operator. The Numerical to Binominal oper-

ator is applied on it. The min parameter is set to 0.0 and the max parameter is set to 0.01. All
other parameters are used with default values. The attribute filter type parameter is set to ‘all’,
thus all numeric attributes of the ‘Sonar’ data set will be converted to binominal type. As you
can see in the Results Workspace, before application of the Numerical to Binominal operator,
all attributes were of real type. After application of this operator they are now all changed to
binominal type. All attribute values that fell in the range from 0.0 to 0.01 are mapped to ‘false’,
all the other values are mapped to ‘true’.
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Numerical to Polynominal

Numerical to Pol. . .

exa exa

ori

This operator changes the type of selected numeric attributes to
a polynominal type. It also maps all values of these attributes to
corresponding polynominal values. This operator simply changes
the type of selected attributes; if you need a more sophisticated
normalization method please use the discretization operators.

Description

The Numerical to Polynominal operator is used for changing the type of numeric attributes to a
polynominal type. This operator not only changes the typeof selected attributes but it alsomaps
all values of these attributes to corresponding polynominal values. It simply changes the type
of selected attributes i.e. every new numerical value is considered to be another possible value
for the polynominal attribute. In other words, each numerical value is simply used as nominal
value of the new attribute. As numerical attributes can have a huge number of different values
even in a small range, converting such a numerical attribute to polynominal formwill generate a
huge number of possible values for the new attribute. Such a polynominal attributemay not be a
veryuseful one and itmay increasememoryusage significantly. If youneedamore sophisticated
normalizationmethod please use the discretization operators. The Discretization operators are
at: “Data Transformation/ Type Conversion/ Discretization”.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input. It is essential that meta data should be attached with the data for the input because
attributes are specified in theirmetadata. TheRetrieveoperatorprovidesmetadata along-
with data. The ExampleSet should have at least one numeric attribute because if there is
no such attribute, use of this operator does not make sense.

Output Ports

example set (exa) TheExampleSetwith selectednumeric attributes converted tonominal type
is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting attributes that youwant to convert to poly-
nominal form. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.
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• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are not selected.

• numeric_value_filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose exam-
ples all satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
can be selected from the drop down box of parameter attribute if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
windowwith two lists. All attributes are present in the left list. Attributes can be shifted to
the right list which is the list of selected attributes on which the conversion from nominal
to polynominal will take place; all other attributes will remain unchanged.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is very powerful tool but needs a detailed explanation to beginners. It
is always good to specify the regular expression through the edit and preview regular expres-
sion menu. This menu gives a good idea of regular expressions and it also allows you to
try different expressions and preview the results simultaneously. This will enhance your
concept of regular expressions.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.
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except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all special
attributes are selected irrespective of the conditions in the Nominal to Polynominal oper-
ator. If this parameter is set to true, Special attributes are also tested against conditions
specified in the Nominal to Polynominal operator and only those attributes are selected
that satisfy the conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
removed prior to selection of this parameter. After selection of this parameter ‘att1’ will
be removed and ‘att2’ will be selected.

Tutorial Processes

Converting numeric attributes of the Sonar data set to polynominal attributes

This Example Process mostly focuses on the working of this operator. All parameters of this
operator are mostly for selecting the attributes. The Select Attributes operator also has many
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Figure 2.18: Tutorial process ‘Converting numeric attributes of the Sonar data set to polynom-
inal attributes’.

similar parameters for selection of attributes. You can study the Example Process of the Select
Attributes operator if you want an understanding of these parameters.
The ‘Sonar’ data set is loaded using the Retrieve operator. The Numerical to Polynominal

operator is applied on it. All parameters are used with default values. The attribute filter type
parameter is set to ‘all’, thus all numeric attributes of the ‘Sonar’ data set will be converted to
nominal type. As you can see in the Results Workspace, before application of the Numerical to
Polynominal operator, all attributes were of real type. After application of this operator they
are now all changed to nominal type. But if you have a look at the examples, they are exactly
the same i.e. just the type of the values has been changed not the actual values. Every new nu-
merical value is considered to be another possible value for the polynominal attribute. In other
words, each numerical value is simply used as nominal value of the new attribute. As there is a
very large number of different values for almost all attributes in the ‘Sonar’ data set, converting
these attributes to polynominal form generates a huge number of possible values for the new
attributes. These new polynominal attributes may not be very useful and they may increase
memory usage significantly. In such a scenario it is always better to use a more sophisticated
normalization method i.e. the discretization operators.
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Numerical to Real

Numerical to Real

exa exa

ori

Thisoperator changes the typeof the selectednumerical attributes
to real type. It also maps all values of these attributes to real val-
ues.

Description
The Numerical to Real operator converts selected numerical attributes (especially the integer
attributes) to real valued attributes. Each integer value is simply used as a real value of the new
attribute. If the value is missing, the new value will be missing.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input. The ExampleSet should have at least one non-real numerical attribute
because if there is no such attribute, the use of this operator does not make sense.

Output Ports
example set output (exa) The ExampleSet with selected numerical attributes converted to

real type is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; the method you want to use for selecting attributes on which you want to apply nu-
merical to real conversion. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.
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• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. Users should have a basic understanding of type hierarchy
when selecting attributes through this option. When it is selected some other param-
eters (value type, use value type exception) become visible in the Parameters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.
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block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

Tutorial Processes

Integer to real conversion of attributes of the Golf data set

Process

Golf

out

Numerical to Real

exa exa

ori

inp res

res

Figure 2.19: Tutorial process ‘Integer to real conversion of attributes of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the type of the Humidity and Temper-
ature attributes is integer. The Numerical to Real operator is applied on the ‘Golf’ data set to
convert the type of these integer attributes to real. All parameters are used with default values.
The resultant ExampleSet can be seen in the Results Workspace. You can see that now the type
of these attributes is real.
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Parse Numbers

Parse Numbers

exa exa

ori

This operator changes the type of selected nominal attributes to a
numeric type. It alsomaps all values of these attributes to numeric
values by parsing the numbers if possible.

Description
The Parse Numbers operator is used for changing the type of nominal attributes to a numeric
type. This operator not only changes the type of selected attributes but it alsomaps all values of
these attributes tonumeric values byparsing thenumbers if possible. In contrast to theNominal
to Numerical operator, this operator directly parses numbers from the afore wrongly encoded
as nominal values. The Nominal to Numeric operator is used when the values are actually nom-
inal but you want to change them to numerical values. On the other hand the Parse Numbers
operator is used when the values should actually be numerical but they are wrongly stored as
nominal values. Please note that this operator will first check the stored nominal mappings for
all attributes. If (old) mappings are still stored which actually are nominal (without the corre-
sponding data being part of the ExampleSet), the attribute will not be converted. Please use the
Guess Types operator in these cases.

Differentiation
• Nominal toNumericalTheNominal toNumerical operatorprovidesvarious coding types
to convert nominal attributes to numerical attributes. On the other hand the Parse Num-
bers operator is used when the values should actually be numerical but they are wrongly
stored as nominal values. See page 159 for details.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-

process operator in the attached Example Process. The output of other operators can also
be used as input. The ExampleSet should have at least one nominal attribute because if
there is no such attribute, the use of this operator does not make sense.

Output Ports
example set output (exa) The ExampleSetwith selected nominal attributes converted to nu-

meric types is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; themethod youwant to use for selecting the required attributes. It has the following
options:
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• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. Users should have a basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.
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except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

decimal character (char) This character is used as the decimal character.

grouped digits (boolean) Thisoptiondecideswhethergroupeddigits shouldbeparsedornot.
If this option is set to true, grouping character parameter should be specified.

grouping character (char) This character is used as the grouping character. If this character
is found between numbers, the numbers are combined and this character is ignored. For
example if “22-14” is present in the nominal attribute and “-” is set as grouping character,
then “2214” will be stored in the corresponding numerical attribute.
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infinity string (string) This parameter can be set to parse a specific infinity representation
(e.g. “Infinity”). If it is not set, the local specific infinity representation will be used.

unparsable value handling (selection) This selects themethod for handling occurrences of
values which are not parsable to numbers. The unparsable value can either be skipped,
treated as an error or replaced with a missing value.

Related Documents
• Nominal to Numerical (page 159)

Tutorial Processes

Nominal to Numeric conversion by the Parse Numbers operator

Process

Subprocess

in ou t

ou t

Parse Numbers

exa exa

ori

inp res

res

Figure 2.20: Tutorial process ‘Nominal to Numeric conversion by the Parse Numbers operator’.

This Example Process starts with a Subprocess operator. The Subprocess operator provides
an ExampleSet as its output. The ExampleSet has some nominal attributes. But these nominal
attributes actually wrongly store numerical values as nominal values. A breakpoint is inserted
here so that you can have a look at the ExampleSet. The type of these attributes should be nu-
merical. To convert these nominal attributes to numerical attributes the Parse Numbers oper-
ator is applied. All parameters are used with default values. The resultant ExampleSet can be
seen in the ResultsWorkspace. You can see that the type of all attributes has been changed from
nominal to numerical type.
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Real to Integer

Real  to Integer

exa exa

ori

This operator changes the type of the selected real attributes to
integer type. It also maps all values of these attributes to integer
values.

Description
The Real to Integer operator converts selected real attributes to integer valued attributes. Each
real value is either cut or rounded off and then used as an integer value of the new attribute.
This option is controlled by the round values parameter. If it is set to false, the decimal portion
of the real value is simply truncated otherwise it is rounded off. If the real value is missing, the
new integer value will be missing.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input. The ExampleSet should have at least one real attribute because if there
is no such attribute, the use of this operator does not make sense.

Output Ports
example set output (exa) The ExampleSet with selected real attributes converted to integer

type is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)
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• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to thenumeric type. Users should have a basic understanding of typehierarchy
when selecting attributes through this option. When it is selected some other param-
eters (value type, use value type exception) become visible in the Parameters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.
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except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

round values (boolean) This parameter indicates if the values should be rounded off for con-
version from real to integer. If not set to true, then the decimal portion of real values is
simply truncated to convert the real values to integer values.

Tutorial Processes

Real to integer conversion of attributes of the Iris data set
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Figure 2.21: Tutorial process ‘Real to integer conversion of attributes of the Iris data set’.
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The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the ExampleSet has four real attributes
i.e. a1, a2, a3 and a4. The Real to Integer operator is applied on the ‘Iris’ data set to convert
the type of these real attributes to integer. All parameters are used with default values. The
resultant ExampleSet can be seen in the Results Workspace. You can see that now the type of
these attributes is integer.
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Text to Nominal

Text to Nominal

exa exa

ori

This operator changes the type of selected text attributes to nom-
inal. It also maps all values of these attributes to corresponding
nominal values.

Description

The Text to Nominal operator converts all text attributes to nominal attributes. Each text value
is simplyused as anominal valueof thenewattribute. If the value ismissing in the text attribute,
the new value will also be missing.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-
process operator in the attached Example Process. The output of other operators can also
be used as input. It is essential that meta data should be attached with the data for the
input because attributes are specified in their meta data. The ExampleSet should have at
least one text attribute because if there is no such attribute, the use of this operator does
not make sense.

Output Ports

example set output (exa) The selected text attributes are converted to nominal and the re-
sultant ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; the method you want to use for selecting attributes on which you want to apply text
to nominal conversion. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)
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• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.
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except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value. One of the
following types can be selected here: nominal, text, binominal, polynominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes selected irrespective of the conditions in the Select Attribute operator. If
this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

Tutorial Processes

Introduction to the Text to Nominal operator

Process

Subprocess

in ou t

ou t

Text to Nominal

exa exa

ori

inp res

res

Figure 2.22: Tutorial process ‘Introduction to the Text to Nominal operator’.
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This Example Process starts with the Subprocess operator which provides an ExampleSet. A
breakpoint is inserted here so that you can have a look at the ExampleSet. You can see that
the ExampleSet has three text attributes i.e. ‘att1’, ‘att2’ and ‘att3’. The Text to Nominal op-
erator is applied on this data set. The attribute filter type parameter is set to ‘single’ and the
attribute parameter is set to ‘att1’. Thus this operator converts the type of the ‘att1’ attribute
from text to nominal. You can verify this by seeing the results in the Meta Data View in the
Results Workspace.
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2.1.3 Selection
Remove Attribute Range

Remove Attr ibut . . .

exa exa

ori

This operator removes a range of attributes from the given Exam-
pleSet.

Description

The Remove Attribute Range operator removes the attributes within the specified range. The
first and last attribute of the range are specified by the first attribute and last attribute param-
eters. All attributes in this range (including first and last attribute) will be removed from the
ExampleSet. It is important to note that the attribute range starts from 1. This is a little dif-
ferent from the way attributes are counted in the Table Index where counting starts from 0. So,
first and last attributes should be specified carefully.

Differentiation

• Select Attributes Provides a lot of options for selecting desired attributes e.g. on the
basis of type, block, numerical value even regular expressions. See page 199 for details.

• Remove Correlated Attributes Selects attributes on the basis of correlations of the at-
tributes. See page 192 for details.

• Remove Useless Attributes Selects attributes on the basis of usefulness. Different use-
fulnessmeasures are available e.g. numerical attributes withminimumdeviation etc. See
page 195 for details.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Re-
trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports

example set output (exa) The ExampleSet with selected attributes removed from the origi-
nal ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.
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Parameters
first attribute (integer) The first attribute of the attribute range which should be removed is

specified through this parameter. The counting of attributes starts from 1.

last attribute (integer) The last attribute of the attribute range which should be removed is
specified through this parameter. The counting of attributes starts from 1.

Related Documents
• Select Attributes (page 199)

• Remove Correlated Attributes (page 192)

• Remove Useless Attributes (page 195)

Tutorial Processes

Removing the first two attributes of the Golf data set

Process

Golf

out

Remove Attr ibut . . .

exa exa

ori

inp res

res

Figure 2.23: Tutorial process ‘Removing the first two attributes of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the Table Index of theOutlook attribute
is 0. The Table Index column can be seen if the Show column ‘Table Index’ option is selected
in the Meta Data View tab. The Table Index of the Temperature attribute is 1. The Remove At-
tribute Range operator is applied on the ‘Golf’ data set to remove the first two attributes. The
first attribute and second attribute parameters are set to 1 and 2 respectively to remove the first
two attributes. The first attribute and second attribute parameters were not set to 0 and 1 re-
spectively becausehere attribute counting starts from1 (insteadof 0). The resultant ExampleSet
can be seen in the Results Workspace. You can see that the Outlook and Temperature attributes
have been removed from the ExampleSet.
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Remove Correlated Attributes

Remove Correlat . . .

exa exa

ori

This operator removes correlated attributes from an ExampleSet.
The correlation threshold is specified by the user. Correlation is a
statistical technique that can showwhether andhowstrongly pairs
of attributes are related.

Description
Acorrelation is anumberbetween-1and+1 thatmeasures thedegreeof associationbetween two
attributes (call themX and Y). A positive value for the correlation implies a positive association.
In this case largevaluesofX tend tobeassociatedwith largevaluesofYandsmall valuesofX tend
to be associated with small values of Y. A negative value for the correlation implies a negative
or inverse association. In this case large values of X tend to be associated with small values of
Y and vice versa.
Suppose we have two attributes X and Y, with means X’ and Y’ respectively and standard de-

viations S(X) and S(Y) respectively. The correlation is computed as summation from 1 to n of
the product (X(i)-X’).(Y(i)-Y’) and then dividing this summation by the product (n-1).S(X).S(Y)
where n is the total number of examples and i is the increment variable of summation. There
can be other formulas and definitions but let us stick to this one for simplicity.
As discussed earlier a positive value for the correlation implies a positive association. Suppose

that an X valuewas above average, and that the associated Y valuewas also above average. Then
the product (X(i)-X’).(Y(i)-Y’) would be the product of two positive numbers which would be
positive. If the X value and the Y value were both below average, then the product above would
be of two negative numbers, which would also be positive. Therefore, a positive correlation is
evidence of a general tendency that large values of X are associated with large values of Y and
small values of X are associated with small values of Y.
As discussed earlier a negative value for the correlation implies a negative or inverse associ-

ation. Suppose that an X value was above average, and that the associated Y value was instead
below average. Then the product (X(i)-X’).(Y(i)-Y’)would be the product of a positive and a neg-
ative number which would make the product negative. If the X value was below average and the
Y value was above average, then the product above would also be negative. Therefore, a nega-
tive correlation is evidence of a general tendency that large values of X are associated with small
values of Y and small values of X are associated with large values of Y.
This operator can be used for removing correlated or uncorrelated attributes depending on

the setting of parameters specially the filter relation parameter. The procedure is quadratic in
number of attributes i.e. for m attributes an m x m matrix of correlations is calculated. Please
note that this operator might fail in some cases when the attributes should be filtered out. For
example, itmightnot be able to remove for example all negative correlated attributes because for
the completemxm -matrix of correlation the correlationswill not be recalculated andhencenot
checked if one of the attributes of the current pair was already marked for removal. This means
that for three attributes X, Y, and Z that it might be that Y was already ruled out by the negative
correlation with X and is now not able to rule out Z any longer. The used correlation function in
this operator is the Pearson correlation. In order to getmore stable results the original, random,
and reverse order of attributes is available.
Correlated attributes are usually removed because they are similar in behavior and will have

similar impact in prediction calculations, so keeping attributes with similar impacts is redun-
dant. Removing correlated attributes saves space and timeof calculation of complex algorithms.
Moreover, it also makes processes easier to design, analyze, understand and comprehend.
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Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Filter

Examples operator in the attached Example Process. The output of other operators can
also be used as input.

Output Ports
example set output (exa) The (un-)correlated attributes are removed from the ExampleSet

and this ExampleSet is delivered through this output port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
correlation (real) This parameter specifies the correlation for filtering attributes. A correla-

tion is a number between -1 and +1 that measures the degree of association between two
attributes (call them X and Y). A positive value for the correlation implies a positive as-
sociation. In this case large values of X tend to be associated with large values of Y and
small values of X tend to be associated with small values of Y. A negative value for the
correlation implies a negative or inverse association. In this case large values of X tend to
be associated with small values of Y and vice versa.

filter relation (selection) Correlations of two attributes are compared at a time. One of the
two attributes is removed if their correlation fulfills the relation specified by this param-
eter.

attribute order (selection) The algorithm takes this attribute order to calculate correlations
and for filtering the attributes.

use absolute correlation (boolean) Thisparameter indicates if theabsolutevalueof thecor-
relations should be used for comparison.

Tutorial Processes

Removing correlated attributes from the Sonar data set

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can view the ExampleSet before further operators are applied on it. You can see that the
‘Sonar’ data set has 60 numerical attributes. The Correlation Matrix operator is applied on it.
This operator is applied so that you can view the correlationmatrix of the ‘Sonar’ data set other-
wise this operator was not required here. The Remove Correlated Attributes operator is applied
on the ‘Sonar’ data set. The correlation parameter is set to 0.8. The filter relation parameter is
set to ‘greater’ and the attribute order parameter is set to ‘original’. Run the process and youwill
see in the Results Workspace that 19 out of 60 numerical attributes of the ‘Sonar’ data set have
been removed. Now have a look at the correlation matrix generated by the Correlation Matrix
operator. You can see thatmost of the attributes with correlations above 0.8 have been removed
from thedata set. Some such attributes are not removedbecause this operatormight fail in some
cases when the attributes should be filtered out. It might not be able to remove all correlated
attributes because for the complete m x m matrix of correlation the correlations will not be re-
calculated and hence not checked if one of the attributes of the current pair was alreadymarked
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Root

Sonar
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Correlat ion Matrix

exa exa

m a t

wei

RemoveCorrelat . . .

exa exa

ori
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res

res

Figure 2.24: Tutorial process ‘Removing correlated attributes from the Sonar data set’.

for removal. Change the value of the attribute order parameter to ‘random’ and run the process
again. Compare these results with the previous ones. This time a different set of attributes is
removed from the data set. So, the order in which correlation operator is applied may change
the output.
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Remove Useless Attributes

Remove Useless .. .

exa exa

ori

This operator removes useless attributes fromanExampleSet. The
thresholds for useless attributes are specified by the user.

Description
The Remove Useless Attributes operator removes four kinds of useless attributes:

1. Suchnominal attributeswhere themost frequent value is contained inmore than the spec-
ified ratio of all examples. The ratio is specified by the nominal useless above parameter.
This ratio is defined as the number of examples withmost frequent attribute value divided
by the total number of examples. This property can be used for removing such nominal at-
tributes where one value dominates all other values.

2. Such nominal attributes where the most frequent value is contained in less than the spec-
ified ratio of all examples. The ratio is specified by the nominal useless below parameter.
This ratio is defined as the number of examples with most frequent attribute value di-
vided by the total number of examples. This property can be used for removing nominal
attributes with too many possible values.

3. Such numerical attributeswhere the StandardDeviation is less than or equal to a given de-
viation threshold. The numerical min deviation parameter specifies the deviation thresh-
old. The StandardDeviation is ameasure of how spread out values are. StandardDeviation
is the square root of the Variancewhich is defined as the average of the squared differences
from the Mean.

4. Such nominal attributes where the value of all examples is unique. This property can be
used to remove id-like attributes.

Please note that this is not an intelligent operator i.e. it cannot figure out at its own whether
an attribute is useless or not. It simply removes those attributes that satisfy the criteria for use-
lessness defined by the user.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Filter

Examples operator in the attached Example Process. The output of other operators can
also be used as input.

Output Ports
example set output (exa) The attributes that satisfy the user-defined criteria for useless at-

tributes are removed from the ExampleSet and this ExampleSet is delivered through this
output port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.
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Parameters
numerical min deviation (real) The numerical min deviation parameter specifies the devia-

tion threshold. Such numerical attributes where Standard Deviation is less than or equal
to this deviation threshold are removed from the input ExampleSet. The Standard Devi-
ation is a measure of how spread out values are. Standard Deviation is the square root of
the Variance which is defined as the average of the squared differences from the Mean.

nominal useless above (real) The nominal useless above parameter specifies the ratio of the
number of exampleswithmost frequent value to the total number of examples. Suchnom-
inal attributes where the ratio of the number of examples with most frequent value to the
total number of examples is more than this ratio are removed from the input ExampleSet.
This property can be used to remove such nominal attributes where one value dominates
all other values.

nominal remove id like (boolean) If this parameter is set to true, all suchnominal attributes
where the value of all examples is unique are removed from the input ExampleSet. This
property can be used to remove id-like attributes.

nominal useless below (real) Thenominal useless belowparameter specifies the ratio of the
number of exampleswithmost frequent value to the total number of examples. Suchnom-
inal attributes where the ratio of the number of examples with most frequent value to the
total number of examples is less than this ratio are removed from the input ExampleSet.
This property can be used to remove nominal attributes with too many possible values.

Tutorial Processes

Removing useless nominal attributes from an ExampleSet

Process

Golf

out

f i rst  10 examples

exa exa

ori

Remove Useless .. .

exa exa

ori

inp

res

res

Figure 2.25: Tutorial process ‘Removing useless nominal attributes from an ExampleSet’.

This Example Process explains how the nominal useless above and nominal useless below pa-
rameters can be used to remove useless nominal attributes. Please keep in mind that the Re-
move Useless Attributes operator removes those attributes that satisfy the user-defined criteria
for useless attributes.
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The ‘Golf’ data set is loaded using the Retrieve operator. The Filter Examples operator is ap-
plied on it to filter the first 10 examples. This is done to just simplify the calculations for un-
derstanding this process. A breakpoint is inserted after the Filter Examples operator so that you
can see the ExampleSet before application of the Remove Useless Attributes operator. You can
see that the ExampleSet has 10 examples. There are 2 regular nominal attributes: ‘Outlook’ and
‘Wind’. The most frequent values in the ‘Outlook’ attribute are ‘rain’ and ‘sunny’, they occur in
4 out of 10 examples. Thus their ratio is 0.4. The most frequent value in the ‘Wind’ attribute is
‘false’, it occurs in 7 out of 10 examples. Thus its ratio is 0.7.
The Remove Useless Attributes operator is applied on the ExampleSet. The nominal useless

above parameter is set to 0.6. Thus attributes where the ratio of most frequent value to total
number of examples is above 0.6 are removed from theExampleSet. As the ratio ofmost frequent
value in the Wind attribute is greater than 0.6, it is removed from the ExampleSet.
The nominal useless below parameter is set to 0.5. Thus attributes where the ratio of most

frequent value to total number of examples is below 0.5 are removed from the ExampleSet. As
the ratio of most frequent value in the Outlook attribute is below 0.5, it is removed from the
ExampleSet.
This can be verified by seeing the results in the Results Workspace.

Removing useless numerical attributes from an ExampleSet

Process

Golf

out

f i rst  10 examples

exa exa

ori

Aggregate

exa exa

ori

Remove Useless .. .

exa exa

ori

inp res

res

res

Figure 2.26: Tutorial process ‘Removing useless numerical attributes from an ExampleSet’.

This Example Process explains how the numerical min deviation parameter can be used to
remove useless numerical attributes. The numerical min deviation parameter specifies the de-
viation threshold. Such numerical attributes where the Standard Deviation is less than or equal
to this deviation threshold are removed from the input ExampleSet. The Standard Deviation
is a measure of how spread out values are. Standard Deviation is the square root of the Vari-
ance which is defined as the average of the squared differences from the Mean. Please keep
in mind that the Remove Useless Attributes operator removes those attributes that satisfy the
user-defined criteria for useless attributes.
The ‘Golf’ data set is loaded using the Retrieve operator. The Filter Examples operator is ap-

plied on it to filter the first 10 examples. This is done to just simplify the calculations for un-
derstanding this process. A breakpoint is inserted after the Filter Examples operator so that you
see the ExampleSet before application of the Remove Useless Attributes operator. You can see
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that it has 10 examples. There are 2 regular numerical attributes: ‘Temperature’ and ‘Humid-
ity’. The Aggregate operator is applied on the ExampleSet to calculate and display the Standard
Deviations of both numerical attributes. This operator is inserted here so that you can see that
Standard Deviations without actually calculating them, otherwise this operator is not required
here. You can see that the Standard Deviation of the ‘Temperature’ and ‘Humidity’ attributes is
7.400 and 10.682 respectively.
The Remove Useless Attributes operator is applied on the original ExampleSet (the Example-

Set with the first 10 examples of the ‘Golf’ data set). The numerical min deviation parameter
is set to 9.0. Thus the numerical attributes where the Standard Deviation is less than 9.0 are
removed from the ExampleSet. As the Standard Deviation of the Temperature attribute is less
than 9.0, it is removed from the ExampleSet.
This can be verified by seeing the results in the Results Workspace.
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Select Attributes

Select Attr ibutes

exa exa

ori

This Operator selects a subset of Attributes of an ExampleSet and
removes the other Attributes.

Description
The Operator provides different filter types to make Attribute selection easy. Possibilities are
for example: Direct selection of Attributes. Selection by a regular expression or selecting only
Attributes without missing values. See parameter attribute filter type for a detailed description
of the different filter types.
The invert selectionparameter reverses the selection. SpecialAttributes (AttributeswithRoles,

like id, label, weight) are by default ignored in the selection. They will always remain in the
resulting output ExampleSet. The parameter include special attributes changes this.
Only the selected Attributes are delivered to the output port. The rest is removed from the

ExampleSet.

Differentiation
Select by <...> Operators
There are severalOperatorswhich selectsAttributes according to different input. For example

the Select byWeights selects Attributeswhoseweightsmatch a specified criterion. The Select by
Random Operator selects a random subset of Attributes. The Remove Attribute Range removes
a range of Attributes according to the index of the Attributes. The Remove Useless Attributes
Operator removes Attributes which can be considered to be useless according to some specified
criteria. The Remove Correlated Attributes Operator removes Attributes which are correlated to
each other.

• Work on Subset
This Operator is a combination of the Select AttributesOperator and the SubprocessOper-
ator. It applies theOperators in its inner process to anExampleSetwith only theAttributes
which are selected by the attribute filter type. The inner result ismerged back to thewhole
input ExampleSet.
See page 210 for details.

• Forward Selection
This is an implementation of the forward selection feature selectionmethod. It selects the
most relevant Attributes according to an model which is trained inside the Operator. For
details see the documentation of the Forward Selection Operator.
See page 685 for details.

• Backward Elimination
This is an implementationof thebackwardelimination feature selectionmethod. It selects
the most relevant Attributes according to an model which is trained inside the Operator.
For details see the documentation of the Forward Selection Operator.
See page 682 for details.
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• Filter Examples
This Operator does not select Attributes, but filters (or select) Examples. Thus it is the
similar operation as the Select Attributes but applied on Examples instead of Attributes.
See page 241 for details.

Input Ports
example set (exa) This input port expects an ExampleSet for which you want to select At-

tributes from.

Output Ports
example set (exa) TheExampleSetwithonly the selectedAttributes is delivered to this output

port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port.

Parameters
attribute filter type This parameter allows you to select the Attribute selection filter; the

method you want to use for selecting Attributes. It has the following options:

• all This option selects all the Attributes of the ExampleSet, no Attributes are re-
moved. This is the default option.

• single This option allows the selection of a single Attribute. The required Attribute
is selected by the attribute parameter.

• subset This option allows the selection of multiple Attributes through a list (see pa-
rameter attributes). If the meta data of the ExampleSet is known all Attributes are
present in the list and the required ones can easily be selected.

• regular_expression This option allows you to specify a regular expression for theAt-
tribute selection. The regular expressionfilter is configured by theparameters regular
expression, use except expression and except expression.

• value_type This option allows selection of all the Attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to thenumeric type. The value typefilter is configured by theparameters value
type, use value type exception, except value type.

• block_type This option allows the selection of all the Attributes of a particular block
type. It should be noted that block types may be hierarchical. For example value-
_series_start and value_series_end block types both belong to the value_series block
type. The block type filter is configured by the parameters block type, use block type
exception, except block type.

• no_missing_values This option selects all Attributes of the ExampleSetwhich donot
contain a missing value in any Example. Attributes that have even a single missing
value are removed.

• numeric_value_filter All numeric Attributes whose Examples all match a given nu-
meric condition are selected. The condition is specified by the numeric condition pa-
rameter. Please note that all nominal Attributes are also selected irrespective of the
given numerical condition.
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attribute The required Attribute can be selected from this option. The Attribute name can be
selected from the drop down box of the parameter if the meta data is known.

attributes The required Attributes can be selected from this option. This opens a newwindow
with two lists. All Attributes are present in the left list. They can be shifted to the right
list, which is the list of selected Attributes that will make it to the output port.

regular expression Attributes whose names match this expression will be selected. The ex-
pression can be specified through the edit and preview regular expressionmenu. This menu
gives a good idea of regular expressions and it also allows you to try different expressions
and preview the results simultaneously.

use except expression If enabled, an exception to the first regular expression can be speci-
fied. This exception is specified by the except regular expression parameter.

except regular expression This option allows you to specify a regular expression. Attributes
matching this expression will be filtered out even if they match the first expression (ex-
pression that was specified in regular expression parameter).

value type This option allows to select a type of Attribute. One of the following types can be
chosen: nominal, numeric, integer, real, text, binominal, polynominal, file_path, date-
_time, date, time.

use value type exception If enabled, an exception to the selected type can be specified. This
exception is specified by the except value type parameter.

except value type The Attributes matching this type will be removed from the final output
even if theymatched the before selected type, specified by the value typeparameter. One of
the following types can be selected here: nominal, numeric, integer, real, text, binominal,
polynominal, file_path, date_time, date, time.

block type This option allows to select a block type ofAttribute. One of the following types can
be chosen: single_value, value_series, value_series_start, value_series_end, value_matrix,
value_matrix_start, value_matrix_end, value_matrix_row_start.

use block type exception If enabled, an exception to the selected block type can be specified.
This exception is specified by the except block type parameter.

except block type TheAttributesmatching this block typewill be removed from the final out-
put even if they matched the before selected type by the block type parameter. One of the
following block types can be selected here: single_value, value_series, value_series_start,
value_series_end, value_matrix, value_matrix_start, value_matrix_end, value_matrix_row-
_start.

numeric condition The numeric condition used by the numeric condition filter type. A nu-
meric Attribute is kept if all Examplesmatch the specified condition for this Attribute. For
example the numeric condition ‘> 6’ will keep all numeric Attributes having a value of
greater than 6 in every Example. A combination of conditions is possible: ‘> 6 && < 11’
or ‘<= 5 || < 0’. But && and || cannot be used together in one numeric condition. Condi-
tions like ‘(> 0 &&< 2) || (>10 &&< 12)’ are not allowed because they use both && and
||. Nominal Attributes are always kept, regardless of the specified numeric condition.

include special attributes Special Attributes are Attributes with special roles. These are: id,
label, prediction, cluster,weightandbatch. Alsocustomroles canbeassigned toAttributes.

201



2. Blending

By default all special Attributes are delivered to the output port irrespective of the condi-
tions in the Select Attribute Operator. If this parameter is set to true, special Attributes
are also tested against conditions specified in the Select Attribute Operator and only those
Attributes are selected that match the conditions.

invert selection If this parameter is set to true the selection is reversed. In that case all At-
tributes matching the specified condition are removed and the other Attributes remain
in the output ExampleSet. Special Attributes are kept independent of the invert selection
parameter as along as the include special attributes parameter is not set to true. If so the
condition is also applied to the special Attributes and the selection is reversed if this pa-
rameter is checked.

Tutorial Processes

Selecting Attributes from the Titanic Data Sample
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Figure 2.27: Tutorial process ‘Selecting Attributes from the Titanic Data Sample’.

This tutorial Process show the basic usage of the Select Attributes Operator. First the ‘Titanic’
data is retrieved from the Samples folder. The first Select Attributes Operator selects a subset
of the Attributes. The subset is specified by the attributes parameter.
The original output port is connected to the input port of the second Select Attributes Oper-

ator. There only nominal Attributes are selected.

Different usages of the Select Attributes Operator

This tutorial Process demonstrates different usages of the Select Attributes Operator. A demo
ExampleSet is created inside a SubprocessOeprator. It has 3 special Attributes (id, label, weight)
and 5 regular Attributes (att1, att2, att3, att4, att5). Also different attribute types are used (nu-
meric: id; binominal: label; numeric: weight; real: att1, att2, att4, att5; nominal: att3). After
the Subprocess Operator a Breakpoint is inserted, to investigate the demo ExampleSet.
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2.1. Attributes

Process

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
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Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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Selected Attributes: id, label, weight
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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Selected Attributes: id, label, weight
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Selected Attributes: id, label, weight
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Selected Attributes: id, label, weight, att3, att4, att5
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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the resulting ExampleSet is empty. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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the resulting ExampleSet is empty. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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Selected Attributes: id, weight, att1, att2, att4, att5
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they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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Selected Attributes: id, weight, att1, att2, att4, att5
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
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they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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Selected Attributes: id, label, weight, att3, att4, att5
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}
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they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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the resulting ExampleSet is empty. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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the resulting ExampleSet is empty. 
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addition nominal Attributes are also kept. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}
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addition nominal Attributes are also kept. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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addition nominal Attributes are also kept. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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addition nominal Attributes are also kept. 
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they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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addition nominal Attributes are also kept. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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Selected Attributes: id, label, weight
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the resulting ExampleSet is empty. 
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addition nominal Attributes are also kept. 
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Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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Only numerical Attributes are selected. Special Attributes are included in the Selection: 
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A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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Only numerical Attributes are selected. Special Attributes are included in the Selection: 
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A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight
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addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)
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A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
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A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
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A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
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addition nominal Attributes are also kept. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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addition nominal Attributes are also kept. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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addition nominal Attributes are also kept. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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addition nominal Attributes are also kept. 
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the resulting ExampleSet is empty. 
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All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
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the resulting ExampleSet is empty. 
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they are the only Attributes which remain. 
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Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
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addition nominal Attributes are also kept. 
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All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 
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Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
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All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}

Only numerical Attributes are selected. Special Attributes are included in the Selection: 
 
 

Selected Attributes: id, weight, att1, att2, att4, att5

A subset (att1, att2) is selected. The selection is inverted. Special Attributes are not included. 
 
 

Selected Attributes: id, label, weight, att3, att4, att5

All numeric Attributes with only values >0 are selected. Special Attributes are included. In 
addition nominal Attributes are also kept. 

 
 

Selected Attributes: id (>0), label (nominal), weight (>0), att3 (nominal)

All Attributes are selected but the filter is inverted. Special Attributes are not included, so 
they are the only Attributes which remain. 

 
 

Selected Attributes: id, label, weight

All Attributes are selected, but the filter is inverted. Also Special Attributes are included, so 
the resulting ExampleSet is empty. 

 
 

Selected Attributes: {None}
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Figure 2.28: Tutorial process ‘Different usages of the Select Attributes Operator’.

Next several Select Attributes Operators are used to show the different attribute filter types
and the combinations with the parameters invert selection and include special attributes.
See the comments in the process for more details.

Selecting Attributes by using a regular expression

This tutorial Process illustrates the usage of a regular expression to select Attributes from the
Labor-Negotiations data sample. The regular expression specified is: w.*| .*y.*
Thismeans all Attributes startingwith a ‘w’ (w.*) or (| ) all Attributeswhosename contains a ‘y’

in their name (.*y.*)matches the expression. The followingAttributes of the Labor-Negotiations
data set match this expression:
wage-inc-1st, wage-inc-2nd, wage-inc-3rd, working-hours, standby-pay, statutory-holidays,

longterm-disability-assistance.
The use except expression parameter is also set to true. Thus Attributes that match the con-

dition in the except regular expression parameter will be removed. The specified except regular
expression is: .*\[0-9\].*. This means all Attributes whose name contains a digit are removed.
Finally the following four Attributes are selected: working-hours, standby-pay, statutory-

holidays, longterm-disability-assistance. Besides the special Attribute class is also kept.
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Process
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res

Figure 2.29: Tutorial process ‘Selecting Attributes by using a regular expression’.

For more details about regular expression see the configuration of the regular expression pa-
rameter.
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Select by Random

Select by Random

exa exa

ori

This operator selects a random subset of attributes of the given
ExampleSet.

Description
The Select by Random operator selects attributes randomly from the input ExampleSet. If the
use fixed number of attributes parameter is set to true, then the required number of attributes is
specified through the number of attributes parameter. Otherwise, a randomnumber of attributes
is selected. The randomization can be changed by changing the seed value in the corresponding
parameters. This operator can be useful in combination with the Loop Parameters operator or
can be used as a baseline for significance test comparisons for feature selection techniques.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with the data for the input be-
cause attributes are specified in theirmeta data. The Retrieve operator providesmeta data
along-with the data.

Output Ports
example set (exa) The ExampleSet with selected attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
use fixed number of attributes (boolean) This parameter specifies if a fixed number of at-

tributes should be selected.

number of attributes (integer) This parameter is only available when the use fixed number
of attributes parameter is set to true. This parameter specifies the number of attributes
which should be randomly selected.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
ExampleSet. Changing the value of the local seed changes the randomization, thus the
ExampleSet will have a different set of attributes.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

205



2. Blending

Tutorial Processes

Selecting random attributes from Sonar data set

Process

Sonar

out

Select by Random

exa exa

ori

inp res

res

Figure 2.30: Tutorial process ‘Selecting random attributes from Sonar data set’.

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so
that you can have a look at the ExampleSet. You can see the ExampleSet has 60 attributes. The
Select by Random operator is applied on this ExampleSet. The use fixed number of attributes
parameter is set to true and the number of attributes parameter is set to 10. Thus 10 attributes
will be selected randomly from the ‘Sonar’ data set. The resultant ExampleSet can be seen in
the Results Workspace.
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Select by Weights

Select by Weights

exa

wei

exa

ori

wei

This operator selects only those attributes of an input ExampleSet
whose weights satisfy the specified criterion with respect to the
input weights.

Description
This operator selects only those attributes of an input ExampleSet whose weights satisfy the
specified criterion with respect to the input weights. Input weights are provided through the
weights input port. The criterion for attribute selection by weights is specified by the weight
relation parameter.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with the data for the input be-
cause attributes are specified in theirmeta data. The Retrieve operator providesmeta data
along-with data

weights (wei) This port expects the attributeweights. There are numerous operators that pro-
vide the attributeweights. TheWeight by Correlation operator is used in the Example Pro-
cess.

Output Ports
example set (exa) The ExampleSet with selected attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

weights (wei) TheAttributesweights thatwere provided at theweights input port are delivered
through this output port.

Parameters
weight relation Only those attributes are selected whose weights satisfy this relation.

• greaterAttributes whose weights are greater than theweight parameter are selected.

• greater_equalsAttributeswhoseweights are equal or greater than theweight param-
eter are selected.

• equals Attributes whose weights are equal to the weight parameter are selected.

• less_equalsAttributes whose weights are equal or less than theweight parameter are
selected.
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• less Attributes whose weights are less than the weight parameter are selected.
• top_k The k attributes with highest weights are selected. k is specified by the k pa-
rameter.

• bottom_k The k attributes with lowest weights are selected. k is specified by the k
parameter.

• all_but_top_k All attributes other than the k attributes with highest weights are se-
lected. k is specified by the k parameter.

• all_but_bottom_k All attributes other than k attributes with lowest weights are se-
lected. k is specified by the k parameter.

• top_p% The top p percent attributes with highest weights are selected. p is specified
by the p parameter.

• bottom_p% The bottom p percent attributes with lowest weights are selected. p is
specified by the p parameter.

weight This parameter is available only when the weight relation parameter is set to ‘greater’,
‘greater equals’, ‘equals’, ‘less equals’ or ‘less’. This parameter is used to compare weights.

k This parameter is available only when the weight relation parameter is set to ‘top k’, ‘bottom
k’, ‘all but top k’ or ‘all but bottom k’. It is used to count the number of attributes to select.

p This parameter is available only when the weight relation parameter is set to ‘top p%’ or ‘bot-
tom p%’. It is used to specify the percentage of attributes to select.

deselect unknown This is an expert parameter. This parameter indicates if attributes whose
weight is unknown should be removed from the ExampleSet.

use absolute weights This is an expert parameter. This parameter indicates if the absolute
values of the weights should be used for comparison.

Tutorial Processes

Selecting attributes from Sonar data set

Process

Sonar

out

Weight by Correl . . .

exa wei

exa

Select by Weights

exa

wei

exa

ori

wei

inp res

res

res

Figure 2.31: Tutorial process ‘Selecting attributes from Sonar data set’.

The ‘Sonar’ data set is loaded using the Retrieve operator. TheWeight by Correlation operator
is applied on it to generate attribute weights. A breakpoint is inserted here. You can see the
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attributes with their weights here. The Select by Weights operator is applied next. The ‘Sonar’
data set is provided at the exampleset port and weights calculated by the Weight by Correlation
operator are provided at the weights input port. The weight relation parameter is set to ‘bottom
k’ and the k parameter is set to 4. Thus 4 attributes with minimumweights are selected. As you
can see the ‘attribute_57’, ‘attribute_17’, ‘attribute_30’ and ‘attribute_16’ have lowest weights,
thus these four attributes are selected. Also note that the label attribute ‘class’ is also selected.
This is because the attributes with special roles are selected irrespective of weights condition.
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Work on Subset

Work on Subset

exa exa

th r

This operator selects a subset (one or more attributes) of the in-
put ExampleSet and applies the operators in its subprocess on the
selected subset.

Description

The Work on the Subset operator can be considered as the blend of the Select Attributes and
Subprocess operator to some extent. The attributes are selected in the same way as selected by
the Select Attributes operator and the subprocess of this operator works in the same way as the
Subprocess operator works. A subprocess can be considered as small unit of a process where all
operators and a combination of operators can be applied in a subprocess. That is why a subpro-
cess can also be defined as a chain of operators that is subsequently applied. For more infor-
mation about subprocess please study the Subprocess operator. Although the Work on Subset
operator has similarities with the Select Attributes and Subprocess operators however, this op-
erator provides some functionality that cannot be performed by the combination of the Select
Attributes and Subprocess operator. Most importantly, this operator canmerge the results of its
subprocess with the input ExampleSet such that the original subset is overwritten by the subset
received after processing of the subset in the subprocess. This merging can be controlled by the
keep subset only parameter. This parameter is set to false by default. Thus merging is done by
default. If this parameter is set to true, then only the result of the subprocess is returned by
this operator and no merging is done. In such a case this operator behaves very similar to the
combination of the Select Attributes and Subprocess operator. This can be understood easily by
studying the attached Example Process.
This operator can also deliver the additional results of the subprocess if desired. This can be

controlled by the deliver inner resultsparameter. Please note that this is a very powerful operator.
It can be used to create new preprocessing schemes by combining it with other preprocessing
operators. However, there are two major restrictions:

• Since the result of the subprocess will be combined with the rest of the input ExampleSet,
the number of examples is not allowed to be changed inside the subprocess.

• The changes in the role of an attribute will not be delivered outside the subprocess.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports

example set (exa) The result of the subprocess will be combined with the rest of the input
ExampleSet and delivered through this port. However if the keep subset only parameter is
set to true then only the result of the subprocess will be delivered.
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through (thr) This operator can also deliver the additional results of the subprocess if desired.
This can be controlled by the deliver inner results parameter. This port is used for deliver-
ing the additional results of the subprocess.The Work on Subset operator can have mul-
tiple through ports. When one through port is connected, another through port becomes
available which is ready to deliver another output (if any). The order of outputs remains
the same. The object passed at the first through port inside the subprocess of the Work on
Subset operator is delivered at the first through port of the operator.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose all ex-
amples satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list, which is the list of selected attributes.
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regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributeswith special roles.
Special attributes are those attributes which identify the examples. In contrast regular at-
tributes simply describe the examples. Special attributes are: id, label, prediction, clus-
ter, weight and batch. By default all special attributes selected irrespective of the condi-
tions in the Select Attribute operator. If this parameter is set to true, Special attributes
are also tested against conditions specified in the Select Attribute operator and only those
attributes are selected that satisfy the conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.
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name conflict handling (selection) Thisparameterdecideshowtohandleaconflictwithnames
when the Operator merges the Subset back to the ExampleSet. There are three possible
behaviors:

• error The Operator will show an Error if there is any conflict.

• keep new If there is an conflict, the Operator will keep the one from the Subset.The
other one will be deleted.

• keep original If there is an conflict, the Operator will keep the one which is not in
the Subset. The other one will be deleted.

role conflict handling (selection) This parameter decides how to handle a conflict with roles
when the Operator merges the Subset back to the ExampleSet. There are three possible
behaviors:

• error The Operator will show an Error if there is any conflict.

• keep new If there is an conflict, the Operator will keep the one from the Subset.The
other one will be deleted.

• keep original If there is an conflict, the Operator will keep the one which is not in
the Subset. The other one will be deleted.

keep subset only (boolean) TheWorkonSubset operator canmerge the results of its subpro-
cess with the input ExampleSet such that the original subset is overwritten by the subset
received after processing of the subset in the subprocess. This merging can be controlled
by the keep subset only parameter. This parameter is set to false by default. Thus merging
is done by default. If this parameter is set to true, then only the result of the subprocess
is returned by this operator and no merging is done.

deliver inner results (boolean) This parameter indicates if the additional results (other than
the input ExampleSet) of the subprocess should also be returned. If this parameter is set
to true then the additional results are delivered through the through ports.

remove roles (boolean) This parameter decides if the role of the Special Attributes in the
Subset will be removed by entering the Subset or not.

Tutorial Processes

Working on a subset of Golf data set

The ‘Golf’ data set is loadedusing theRetrieve operator. Then theWorkonSubset operator is ap-
plied on it. The attribute filter type parameter is set to subset. The attributes parameter is used
for selecting the ‘Temperature’ and ‘Humidity’ attributes. Double-click on the Work on Subset
operator to see its subprocess. All the operations in the subprocess will be performed only on
the selected attributes i.e. the ‘Temperature’ and ‘Humidity’ attributes. The Normalize opera-
tor is applied in the subprocess. The attribute filter type parameter of the Normalize operator
is set to ‘all’. Please note that the Normalize operator will not be applied on ‘all’ the attributes
of the input ExampleSet rather it would be applied on ‘all’ selected attributes of the input Ex-
ampleSet i.e. the ‘Temperature’ and ‘Humidity’ attributes. Run the process. You will see that
the normalized ‘Humidity’ and ‘Temperature’ attribute are combined with the rest of the input
ExampleSet. Now set the keep subset only parameter to true and run the process again. Now
youwill see that only the results of the subprocess are delivered by theWork on Subset operator.
This Example Process just explains the basic usage of this operator. This operator can be used
for creating new preprocessing schemes by combining it with other preprocessing operators.
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Figure 2.32: Tutorial process ‘Working on a subset of Golf data set’.

2.1.4 Generation
Generate Absolutes

Generate Absolu.. .

exa exa

ori

This operator replaces all values of the selected numerical at-
tributes by their corresponding absolute values.

Description

TheGenerate Absolutes operator replaces all values of the selected numerical attributes by their
absolute values. The absolute value of a real number is the numerical value of that number
without regard to its sign. For example, the absolute value of 7 is 7, and the absolute value of
–7 is also 7. The absolute value of a number may be thought of as its distance from zero.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve
operator in the attached Example Process.

Output Ports

example set output (exa) Thevaluesof the selectednumerical attributesare replacedby their
corresponding absolute values and the resultant ExampleSet is returned through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.
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Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to thenumeric type. Users should have a basic understanding of typehierarchy
when selecting attributes through this option. When it is selected some other param-
eters (value type, use value type exception) become visible in the Parameters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.
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use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

Tutorial Processes

Absolute values of the Ripley-Set data set

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has two real
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Figure 2.33: Tutorial process ‘Absolute values of the Ripley-Set data set’.

attributes i.e. att1 and att2. Note that both these attributes have both positive and negative
values. The Generate Absolutes operator is applied on this ExampleSet to replace these values
by their corresponding absolute values. The resultant ExampleSet can be seen in the Results
Workspace.
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Generate Aggregation

Generate Aggreg. . .

exa exa

ori

This operator generates a new attribute by performing the spec-
ified aggregation function on every example of the selected at-
tributes.

Description
This operator can be considered to be a blend of theGenerate Attributes operator and theAggre-
gate operator. This operator generates a new attribute which consists of a function of several
other attributes. These ‘other’ attributes can be selected by the attribute filter type parameter
and other associated parameters. The aggregation function is selected through the aggregation
function parameter. Several aggregation functions are available e.g. count, minimum, maxi-
mum, average, mode etc. The attribute name parameter specifies the name of the new attribute.
If you think this operator is close to your requirement but not exactly what you need, have a look
at the Aggregate and the Generate Attributes operators because they perform similar tasks.

Differentiation
• AggregateThis operator performs the aggregation functions known fromSQL. It provides
a lot of functionalities in the same format as provided by the SQL aggregation functions.
SQL aggregation functions and GROUP BY and HAVING clauses can be imitated using this
operator. See page 260 for details.

• Generate Attributes It is a very powerful operator for generating new attributes from
existing attributes. It even supports regular expressions and conditional statements for
specifying the new attributes See page 222 for details.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports
example set output (exa) The ExampleSet with the additional attribute generated after ap-

plying the specified aggregation function is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute name (string) The name of the resulting attribute is specified through this param-

eter.
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attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have a basic understanding of type hierar-
chy when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.
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except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

aggregation function (selection) This parameter specifies the function for aggregating the
values of the selected attribute. Numerous options are available e.g. average, variance,
standard deviation, count, minimum, maximum, sum, mode, median, product and con-
catenation.

concatenation separator (string) This parameter specifies the separator between the con-
catenated values. Only visible if the “concatenation” aggregation function is selected.

keep all (boolean) This parameter indicates if all old attributes should be kept. If this param-
eter is set to false then all the selected attributes (i.e. attributes that are used for aggre-
gation) are removed.
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ignore missings (boolean) This parameter indicates if missing values should be ignored and
if the aggregation function should be only applied on existing values. If this parameter
is not set to true the aggregated value will be a missing value in the presence of missing
values in the selected attribute.

ignore missing attributes (boolean) Normally an error is shown when the attribute filter
doesn’t match any attributes of the ExampleSet. If this parameter is set to true, that sit-
uation will be ignored.

Related Documents
• Aggregate (page 260)

• Generate Attributes (page 222)

Tutorial Processes

Generating an attribute having average of real attributes of Sonar data set

Process

Retrieve Sonar

out

Generate Aggreg. . .

exa exa

ori

inp res

res

Figure 2.34: Tutorial process ‘Generating an attribute having average of real attributes of Sonar
data set’.

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so
that you can have a look at the ExampleSet. You can see that the ExampleSet has one nominal
and sixty real attributes. The Generate Aggregation operator is applied on this ExampleSet to
generate a new attribute from the real attributes of the ExampleSet.
The attribute name parameter is set to ‘Average’ thus the new attribute will be named ‘Av-

erage’. The attribute filter type parameter is set to ‘value type’ and the value type parameter is
set to ‘real’, thus the new attribute will be created from real attributes of the ExampleSet. The
aggregation function parameter is set to ‘average’, thus the new attribute will be average of the
selected attributes.
The resultant ExampleSet can be seen in the Results Workspace. You can see that there is a

new attribute named ‘Average’ in the ExampleSet that has the average value of the attribute_1,
attribute_2, ..., attribute_60 attributes.
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Generate Attributes

Generate Attr ibu. . .

exa exa

ori

This operator constructs new user defined attributes using math-
ematical expressions.

Description

The Generate Attributes operator constructs new attributes from the attributes of the input Ex-
ampleSet and arbitrary constants using mathematical expressions. The attribute names of the
input ExampleSetmight beused as variables in themathematical expressions for newattributes.
During the application of this operator these expressions are evaluated on each example, these
variables are then filled with the example’s attribute values. Thus this operator not only creates
new columns for new attributes, but also fills those columns with corresponding values of those
attributes. If a variable is undefined in an expression, the entire expression becomes undefined
and ‘?’ is stored at its location.
Pleasenote that there are some restrictions for the attributenames inorder to let this operator

work properly:

• Attribute names containing dashes ‘-’ or other special characters, or having the samename
as a constant (e.g. ‘e’ or ‘pi’) must be placed in square brackets e.g. ‘[weird-name]’ or ‘[pi]’.

• Attribute names containing square brackets or backslashesmust be placed in square brack-
ets and thesquarebrackets andbackslashes inside thenamemustbeescaped, e.g. ‘[a\\tt\[1\]]’
for an attribute ‘a\tt[1]’.

If you want to apply this operator but the attributes of your ExampleSet do not fulfill above
mentionedconditions youcan renameattributeswith theRenameoperator before applicationof
the Generate Attributes operator. When replacing several attributes following a certain schema,
the Rename by Replacing operator might prove useful.
A large number of operations and functions is supported, which allows you to write rich ex-

pressions. For a list of operations and functions and their descriptions open the Edit Expression
dialog. Complicated expressions can be created by using multiple operations and functions.
Parenthesis can be used to nest operations.
This operator also supports various constants (for example ‘INFINITY’, ‘PI’ and ‘e’). Again you

can find a complete list in the Edit Expression dialog. You can also use strings in operations but
the string values should be enclosed in double quotes (”).

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Rename op-
erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports

example set (exa) The ExampleSet with new attributes is output of this port.
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original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the results workspace.

Parameters
function descriptions The list of functions for generating new attributes is provided here.

keep all (boolean) If set to true, all the original attributes are kept, otherwise they are re-
moved from the output ExampleSet.

Tutorial Processes

Generating attributes through different function descriptions

Process

Labor-Negotiations

out

Set Macros

t h r

t h r

t h r

t h r

Generate Attr ibu. . .

exa exa

ori

inp res

res

Figure 2.35: Tutorial process ‘Generating attributes through different function descriptions’.

The ‘Labor-Negotiations’ data set is loaded using the Retrieve operator.
Now have a look at the Generate Attributes operator’s parameters. The keep all parameter

is checked, thus all attributes of the ‘Labor-Negotiations’ data set are also kept along with at-
tributes generated by the Generate Attributes operator.
Click on the Edit List button of the function descriptions parameter to have a look at descrip-

tions of functions defined for generating new attributes. 18 new attributes are generated, there
might be betterways of generating these attributes but here they arewritten to explain theusage
of the different type of functions available in the Generate Attributes operator. Please read the
function description of each attribute and then see the values of the corresponding attribute in
the Results Workspace to understand it completely. Here is a description of attributes created
by this operator:
The ‘average wage-inc’ attribute takes sum of the wage-inc-1st, wage-inc-2nd and wage-inc-

3rd attribute values and divides the sum by 3. This gives an average of wage-increments. There
are better ways of doing this, but this example was just shown to clarify the use of some basic
functions. The ‘neglected worker bool’ attribute is a boolean attribute i.e. it has only two pos-
sible values ‘0’ and ‘1’. This attribute was created here to show usage of logical operations like
‘AND’ and ‘OR’ in the Generate Attributes operator. This attribute assumes value ‘1’ if three
conditions are satisfied. First, the working-hours attribute has value 35 or more. Second, the
education-allowance attribute is not equal to ‘yes’. Third, the vacation attribute has value ‘av-
erage’ OR ‘below-average’. If any of these conditions is not satisfied, the new attribute gets
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value ‘0’. The ‘logarithmic attribute’ attribute shows the usage of logarithm base 10 and natural
logarithm functions. The ‘trigno attribute’ attribute shows the usage of various trigonometric
functions like sine and cosine. The ‘rounded averagewage-inc’ attribute uses the avg function to
take averageofwage-increments and thenuses the round function to round the resultant values.
The ‘vacations’ attribute uses the replaceAll function to replace all occurrences of value ‘gen-
erous’ with ‘above-average’ in the ‘vacation’ attribute. The ‘deadline’ attribute shows usage of
the If-then-Else and Date functions. This attribute assumes value of current date plus 25 days if
class attribute has value ‘good’. Otherwise it stores the date of the current date plus 10 days. The
‘shift complete’ attribute shows the usage of the If-then-Else, random, floor and missing func-
tions. This attribute has values of the shift-differential attribute but it does not have missing
values. Missing values are replaced with a random number between 0 and 25. The ‘remaining-
_holidays’ attribute stores the difference of the statutory-holidays attribute value from 15. The
‘remaining_holidays_percentage’ attribute uses the ‘remaining_holidays’ attribute to find the
percentage of remaining holidays. This attribute was created to show that attributes created in
this Generate Attribute operator can be used to generate new attributes in the same Generate
Attributes operator. The ‘constants’ attribute was created to show the usage of constants like ‘e’
and ‘PI’. The ‘cut’ attribute shows the usage of cut function. If you want to specify a string, you
should place it in double quotes (””) as in the last term of this attribute’s expression. If you want
to specify name of an attribute you should not place it in the quotes. First term of expression
cuts first two characters of the ‘class’ attribute values. This is because name of attribute is not
placed in quotes. Last term of the expression selects first two characters of the string ‘class’. As
first two characters of string ‘class’ are ‘cl’, thus cl is appended at the end of this attribute’s val-
ues. The middle term is used to concatenate a blank space between first and last term’s results.
The ‘index’ attribute shows usage of the index function. If the ‘class’ attribute has value ‘no’, 1 is
stored because ‘o’ is at first index. If the ‘class’ attribute has value ‘yes’, -1 is stored because ‘o’
is not present in this value. The ‘date constants’ attribute shows the usage of the date constants.
It shows the date of the ‘deadline’ attribute in full format, but only time is selected for display.
The ‘macro’ attribute shows how to use macros in functions.The ‘macro eval’ attribute shows
how to use macros that contain a number. The macro function %{} always returns a string, so
if you want to obtain the number you have to use the eval function or the parse function.The
‘expression eval’ attribute shows usage of the eval function. If there is a string containing an
expression, for example coming from a macro %{expression} you can evaluate this expression
by using the eval function. The ‘macro with attribute’ attribute shows the usage of the #{} func-
tion. If there is a macro containing the name of an attribute, you can use this attribute in your
expression by using #{attribute_macro} where attribute_macro is the macro containing the at-
tribute name. Using eval(%{attribute_macro}) would lead to the same result, but the #{} function
fails when the macro does not contain an attribute name, while eval(%{attribute_macro}) eval-
uates whatever is contained in the macro.
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Generate Concatenation

Generate Concat. . .

exa exa

ori

This operator merges two attributes into a single new attribute by
concatenating their values. The new attribute is of nominal type.
The original attributes remain unchanged.

Description
TheGenerate Concatenation operatormerges two attributes of the input ExampleSet into a sin-
gle new nominal attribute by concatenating the values of the two attributes. If the resultant
attribute is actually of numerical type, it can be converted from nominal to numerical type by
using the Nominal to Numeric operator. The original attributes remain unchanged, just a new
attribute is added to the ExampleSet. The two attributes to be concatenated are specified by the
first attribute and second attribute parameters.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process.

Output Ports
example set output (exa) The ExampleSet with the new attribute that has concatenated val-

ues of the specified attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
first attribute (string) This parameter specifies the first attribute to be concatenated.

second attribute (string) This parameter specifies the second attribute to be concatenated.

separator (string) This parameter specifies the string which is used as separation of values of
the first and second attribute i.e. the string that is concatenated between the two values.

trim values (boolean) This parameter indicates if the values of the first and second attribute
should be trimmed i.e. leading and trailingwhitespaces should be removed before the con-
catenation is performed.

Tutorial Processes

Generating a concatenated attribute in the Labor-Negotiations data set

The ‘Labor-Negotiations’ data set is loaded using the Retrieve operator. A breakpoint is inserted
here so that you can have a look at the ExampleSet. The ‘vacation’ and ‘statutory-holidays’
attributeswill be concatenated to formanew attribute. TheGenerate Concatenation operator is
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Process

Labor-Negotiations

out

Generate Concat. . .

exa exa

ori

inp

res

res

Figure 2.36: Tutorial process ‘Generating a concatenated attribute in the Labor-Negotiations
data set’.

applied on the Labor-Negotiations data set. The first attribute and second attribute parameters
are set to ‘vacation’ and ‘statutory-holidays’ respectively. The separator parameter is set to ‘-
_’. Thus the values of the ‘vacation’ and ‘statutory-holidays’ attributes will be merged with a ‘_’
between them. You can verify this by seeing the resultant ExampleSet in the ResultsWorkspace.
The ‘vacation’ and ‘statutory-holidays’ attributes remain unchanged. A new attribute named
‘vacation_statutory-holidays’ is created. The type of the new attribute is nominal.
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Generate Copy

Generate Copy

exa exa

ori

This operator generates the copy of an attribute. The original at-
tribute remains unchanged.

Description
TheGenerateCopyoperator addsa copyof the selectedattribute to the inputExampleSet. Please
note that the original attribute remains unchanged, just a new attribute is added to the Exam-
pleSet. The attribute whose copy is required is specified by the attribute name parameter. The
name of the new attribute is specified through the new name parameter. Please note that the
names of attributes of an ExampleSet should be unique. Please note that only the view on the
data column is copied, not the data itself.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process.

Output Ports
example set output (exa) The ExampleSet with the new attribute that is a copy of the spec-

ified attribute is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute name (string) Theattributewhosecopy is required is specifiedby theattributename

parameter.

new name (string) The name of the new attribute is specified through the new name param-
eter. Please note that the names of attributes of an ExampleSet should be unique.

Tutorial Processes

Generating a copy of the Temperature attribute of the Golf data set

The ‘Golf’ data set is loaded using the Retrieve operator. The Generate Copy operator is applied
on it. The attribute name parameter is set to ‘Temperature’. The new name parameter is set to
‘New Temperature’. Run the process. You will see that an attribute named ‘New Temperature’
has been added to the ‘Golf’ data set. Thenewattribute has the samevalues as the ‘Temperature’
attribute. The ‘Temperature’ attribute remains unchanged.
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Process

Golf

out

Generate Copy

exa exa

ori

inp res

res

Figure 2.37: Tutorial process ‘Generating a copy of the Temperature attribute of the Golf data
set’.

Generate Empty Attribute

Generate Empty . . .

exa exa

ori

This operator adds a new attribute of specified name and type to
the input ExampleSet.

Description

The Generate Empty Attribute operator creates an empty attribute of specified name and type
which are specified by the name and the value type parameter respectively. One of the following
types can be selected: nominal, numeric, integer, real, text, binominal, polynominal, file_path,
date_time, date, time. Please note that all values aremissing right after creation of the attribute.
The operators like the Set Data operator can be used to fill values of this attribute. Please note
that the name of the attribute can be changed later by the Rename operator andmany type con-
version operators are also available for changing the type of the attribute. Please note that this
operator creates an empty attribute independent of the input ExampleSet, if you want to gener-
ate an attribute from the existing attributes of the input ExampleSet you can use the Generate
Attributes operator.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Re-
trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports

example set output (exa) An empty attribute of the specified name and type is added to the
input ExampleSet and the resultant ExampleSet is delivered through this output port.
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original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
name (string) This parameter specifies the name of the new attribute. Please note that the

names of attributes should be unique. Please make sure that the input ExampleSet does
not have an attribute with the same name.

value type (selection) The type of the new attribute is specified by this parameter. One of the
following types can be selected: nominal, numeric, integer, real, text, binominal, poly-
nominal, file_path, date_time, date, time.

Tutorial Processes

Adding an empty attribute to the ’Golf’ data set

Process

Golf

out

Generate Empty . . .

exa exa

ori

inp

res

res

Figure 2.38: Tutorial process ‘Adding an empty attribute to the ’Golf’ data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so
that you can have a look at the input ExampleSet. As you can see that the ‘Golf’ data set has
5 attributes: Play, Outlook, Temperature, Humidity and Wind. The Generate Empty Attribute
operator is applied on the ‘Golf’ data set. The name parameter is set to ‘name’ and the value
type parameter is set to ‘nominal’. When the process execution is complete, you can see the
ExampleSet in the Results Workspace. This ExampleSet has one attribute more than the ‘Golf’
data set. The name and type of the attribute are the same as specified in the parameters of the
Generate Empty Attribute operator. Please note that all values of this new attribute are miss-
ing. These values can be filled by using operators like the Set Data operator. Please note that the
created empty attribute is independent of the input ExampleSet, if you want to generate an at-
tribute from the existing attributes of the input ExampleSet you can use the Generate Attributes
operator.
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Generate Function Set

Generate Functio. . .

exa exa

ori

This is an attribute generation operator which generates new at-
tributes by applying a set of selected functions on all attributes.

Description
This operator applies a set of selected functions on all attributes of the input ExampleSet for
generating new attributes. Numerous functions are available including summation, difference,
multiplication, division, reciprocal, square root, power, sine, cosine, tangent, arc tangent, ab-
solute, minimum, maximum, ceiling, floor and round. It is important to note that the functions
with two arguments will be applied on all possible pairs. For example suppose an ExampleSet
with three numerical attributes A, B and C. If the summation function is applied on this Ex-
ampleSet then three new attributes will be generated with values A+B, A+C and B+C. Similarly
non-commutative functions will be applied on all possible permutations. This is a useful at-
tribute generation operator but if it does not meet your requirements please try the Generate
Attributes operator which is a very powerful attribute generation operator.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports
example set output (exa) New attributes are created by application of the selected functions

and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
keep all (boolean) This parameter indicates if the original attributes should be kept.

use plus (boolean) This parameter indicates if the summation function should be applied for
generation of new attributes.

use diff (boolean) This parameter indicates if the difference function should be applied for
generation of new attributes.

use mult (boolean) This parameter indicates if themultiplication function should be applied
for generation of new attributes.

use div (boolean) This parameter indicates if the division function should be applied for gen-
eration of new attributes.
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use reciprocals (boolean) This parameter indicates if the reciprocal function should be ap-
plied for generation of new attributes.

use square roots (boolean) This parameter indicates if the square roots function should be
applied for generation of new attributes.

use power functions (boolean) This parameter indicates if the power function should be ap-
plied for generation of new attributes.

use sin (boolean) This parameter indicates if the sine function should be applied for genera-
tion of new attributes.

use cos (boolean) This parameter indicates if the cosine function should be applied for gen-
eration of new attributes.

use tan (boolean) This parameter indicates if the tangent function should be applied for gen-
eration of new attributes.

use atan (boolean) This parameter indicates if the arc tangent function should be applied for
generation of new attributes.

use exp (boolean) This parameter indicates if the exponential function should be applied for
generation of new attributes.

use log (boolean) This parameter indicates if the logarithmic function should be applied for
generation of new attributes.

use absolute values (boolean) Thisparameter indicates if theabsolutevalues functionshould
be applied for generation of new attributes.

use min (boolean) This parameter indicates if the minimum values function should be ap-
plied for generation of new attributes.

use max (boolean) This parameter indicates if the maximum values function should be ap-
plied for generation of new attributes.

use ceil (boolean) This parameter indicates if the ceiling function should be applied for gen-
eration of new attributes.

use floor (boolean) This parameter indicates if the floor function should be applied for gen-
eration of new attributes.

use rounded (boolean) This parameter indicates if the round function should be applied for
generation of new attributes.

Tutorial Processes

Using the power function for attribute generation

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that you
can have a look at the ExampleSet. You can see that the ExampleSet has 4 real attributes. The
Generate Function Set operator is applied on this ExampleSet for generation of new attributes,
only the Power function is used. It is not a commutative function e.g. 2 raised to power 3 is not
the same as 3 raised to power 2. The non-commutative functions are applied for all possible
permutations. As there are 4 original attributes, there are 16 (i.e. 4 x 4) possible permutations.
Thus 16 new attributes are created as a result of this operator. The resultant ExampleSet can be
seen in the Results Workspace. As the keep all parameter was set to true, the original attributes
of the ExampleSet are not discarded.
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Figure 2.39: Tutorial process ‘Using the power function for attribute generation’.

Generate ID

Generate ID

exa exa

ori

This operator adds a new attribute with id role in the input Exam-
pleSet. Each example in the input ExampleSet is tagged with an
incremented id. If an attributewith id role already exists, it is over-
ridden by the new id attribute.

Description
This operator adds a new attribute with id role in the input ExampleSet. It assigns a unique id to
each example. This operator is usually used to uniquely identify each example. Each example in
the input ExampleSet is taggedwith an incremented id. The number fromwhere the ids start can
be controlled by the offset parameter. Numerical and integer ids can be assigned. If an attribute
with id role already exists in the input ExampleSet, it is overridden by the new id attribute.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve

operator in the attached Example Process.

Output Ports
example set output (exa) The ExampleSet with an id attribute is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
create nominal ids (boolean) This parameter indicates if nominal ids should be created in-

stead of integer ids. By default this parameter is not checked, thus integer ids are created
by default. Nominal ids are of the format id_1, id_2, id_3 and so on.

offset (integer) This is an expert parameter. It is used if you want to start id from a number
other than 1. This parameter is used to set the offset value. It is 0 by default, thus ids start
from 1 by default.
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Tutorial Processes

Overriding the id attribute of the ’Iris’ data set
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Figure 2.40: Tutorial process ‘Overriding the id attribute of the ’Iris’ data set’.

The ‘Iris’ data set is loadedusing theRetrieve operator. TheGenerate IDoperator is applied on
it. All parameters are usedwith default values. The ‘Iris’ data set already has an id attribute. The
old id attribute is overriddenwhen theGenerate IDoperator is applied on it. Run the process and
you can see the ExampleSet with the new id attribute. The type of this new attribute is integer.
Set the create nominal ids parameter to true and run the process again, you will see that the ids
are in nominal form now (i.e. id_1, id_2 and so on). The offset parameter is set to 0 that is why
the ids start from 1. Now set the offset parameter to 10 and run the process again. Now you can
see that ids start from 11.
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Generate Products

Generate Products

exa exa

ori

This operator generates new attributes by taking the products of
the specified attributes.

Description
TheGenerate Products operator generates new attributes by taking the products of the specified
attributes. The attributes are specified through the first attribute name and second attribute name
parameters. For example, if the first attribute name parameter has attributes A and B, and the
second attribute name has attributes C and D. Then four attributes A*C, A*D, B*C and B*Dwill be
generated by this operator. These attributes will have products of the corresponding attribute
values.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is output of the Generate

Data operator in the attached Example Process.

Output Ports
example set output (exa) New attributes are generated by taking the products of the speci-

fied attributes and the resultant ExampleSet is returned through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
first attribute name (string) This parameter specifies the name(s) of the first attribute(s) to

be multiplied. Attribute names can be specified through regular expressions.

second attribute name (string) Thisparameter specifies thename(s)of the secondattribute(s)
to be multiplied. Attribute names can be specified through regular expressions.

Tutorial Processes

Generating products of attributes

TheGenerateData operator provides a sample ExampleSet. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the ExampleSet has four real attributes
i.e. att1, att2, att3 and att4. The Generate Products operator is applied on this ExampleSet.
Have a look at the parameters of this operator. The att1 and att2 attributes are selected through
the first attribute name parameter. The att3 and att4 attributes are selected through the second
attribute name parameter. The resultant ExampleSet can be seen in the ResultsWorkspace. You
can see that this ExampleSet hasnewattributes that havebeengeneratedbymultiplying thefirst
attribute name attributes with the second attribute name attributes.
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Process

Generate  Data

out

Generate Products

exa exa

ori

inp res

res

Figure 2.41: Tutorial process ‘Generating products of attributes’.

Generate TFIDF

Generate TFIDF

exa exa

ori

This operator performs a TF-IDF filtering of the given ExampleSet.
TF-IDF is anumerical statisticwhich reflectshow important aword
is to a document.

Description

The Generate TFIDF operator generates TF-IDF values from the given ExampleSet The Exam-
pleSet must contain either the binary occurrences (which will be normalized during calculation
of the term frequency TF) or it should already contain the calculated term frequency values (in
this case no normalization will be done). This behavior can be selected using the calculate term
frequencies parameter.
The TF-IDF (term frequency–inverse document frequency) is a numerical statistic which re-

flects how important a word is to a document in a collection or corpus. It is often used as a
weighting factor in information retrieval and text mining. The tf-idf value increases propor-
tionally to the number of times a word appears in the document, but is offset by the frequency
of the word in the corpus, which helps to control for the fact that somewords are generallymore
common than others.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is output of the Read CSV
operator in the attached Example Process.

Output Ports

example set output (exa) The TF-IDF is calculated and the resultant ExampleSet is returned
through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.
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Parameters
calculate term frequencies (boolean) Thisparameter indicates if termfrequencyvalues should

be generated. This parameter must be set to true if the input data is given as simple oc-
currence counts.

Tutorial Processes

Introduction to the Generate TFIDF operator

Process

Subprocess

in ou t

ou t

Generate TFIDF

exa exa

ori

inp res

res

Figure 2.42: Tutorial process ‘Introduction to the Generate TFIDF operator’.

This Example Process startswith a Subprocesses operatorwhich generates a sample Example-
Set. A breakpoint is inserted here so that you can have a look at the ExampleSet. This is a very
simple ExampleSet. It has a text attribute which has different words. There are three integer
attributes named Doc1, Doc2 and Doc3 that have the count of the corresponding words in these
documents. The Generate TFIDF operator is applied on this ExampleSet to calculate the TFIDF.
The resultant ExampleSet can be seen in the Results Workspace.
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Generate Weight (Stratification)

Generate Weight . . .

exa exa

ori

This operator distributes the specified weight over all the exam-
ples, such that weights sum up equally per label.

Description
TheGenerateWeight (Stratification)operatordivides theweight specified through the totalweight
parameter among all the examples. While dividing theweight, this operatormakes sure that the
sum of example weights of all label values is same. This often improves the representativeness
of the label values. Please study the attached Example Process for better understanding.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve

operator in the attached Example Process.

Output Ports
example set output (exa) The examples are assigned weights and the resultant ExampleSet

is returned through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
total weight (real) This parameter specifies the total weight that should be distributed over

all the examples.

Tutorial Processes

Assigning weights such that weights sum up equally per label

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the label of this ExampleSet has two
possible values i.e. ‘yes’ and ‘no’. The Generate Weight (Stratification) operator is applied on
this ExampleSet for weight assignment. The total weight parameter is set to 10. This operator
assigns weight to examples such that:
The sum of all weights is equal to the total weight.The sum of weights is equal per label.
Thus in this process, the sum of all weights should be 10 and the weight sum of examples with

label ‘no’ should be equal to the weight sum of examples with label ‘yes’. You can verify this by
viewing the resultant ExampleSet in the Results Workspace.
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Process

Golf

out

Generate Weight . . .

exa exa

ori

inp res

res

Figure 2.43: Tutorial process ‘Assigning weights such that weights sum up equally per label’.

2.2 Examples

2.2.1 Filter
Filter Example Range

Filter Example R.. .

exa exa

ori

This operator selects which examples (i.e. rows) of an ExampleSet
should be kept and which examples should be removed. Examples
within the specified index range are kept, remaining examples are
removed.

Description

This operator takes an ExampleSet as input and returns a new ExampleSet including only those
examples that are within the specified index range. Lower and upper bound of index range are
specified using first example and last example parameters. This operator may reduce the num-
ber of examples in an ExampleSet but it has no effect on the number of attributes. The Select
Attributes operator is used to select required attributes.
If you want to filter examples by options other than index range, you may use the Filter Ex-

amples operator. It takes an ExampleSet as input and returns a new ExampleSet including only
those examples that satisfy the specified condition. Several predefined conditions are provided;
users can select any of them. Users can also define their own conditions to filter examples. The
Filter Examples operator is frequently used to filter examples that have (or do not have) missing
values. It is also frequently used to filter examples with correct or wrong predictions (usually
after testing a learnt model).

Input Ports

example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve
operator in the attached Example Process.
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Output Ports
example set output (exa) AnewExampleSet including only the examples that are within the

specified index range is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
first example (integer) This parameter is used to set the lower bound of the index range. The

last example parameter is used to set the upper bound of the index range. Examples within
this index range are delivered to the output port. Examples outside this index range are
discarded.

last example (integer) This parameter is used to set the upper bound of the index range. The
first example parameter is used to set the lower bound of the index range. Examples within
this index range are delivered to the output port. Examples outside this index range are
discarded.

invert filter (boolean) If this parameter is set to true, it acts as a NOT gate, it reverses the
selection. In that case all the selected examples are removed and previously removed ex-
amples are selected. In other words it inverts the index range. For example if the first
example parameter is set to 1 and the last exampleparameter is set to 10. Then the output
port will deliver an ExampleSet with all examples other than the first ten examples.

Tutorial Processes

Filtering examples using the invert filter parameter

Process

Golf

out

Generate ID

exa exa

ori

Filter Example R.. .

exa exa

ori

inp res

res

Figure 2.44: Tutorial process ‘Filtering examples using the invert filter parameter’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Generate ID operator is applied
on it with offset set to 0. Thus all examples are assigned unique ids from 1 to 14. This is done so
that examples can be distinguished easily. A breakpoint is inserted here so that you can have a
look at the data set before application of the Filter Example Range operator. In the Filter Exam-
ple Range operator the first example parameter is set to 5 and the last example parameter is set
to 10. The invert filter parameter is also set to true. Thus all examples other than examples in
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index range 5 to 10 are delivered through the output port. You can clearly identify rows through
their ids. Rows with IDs from 1 to 4 and from 11 to 14 make it to the output port.
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Filter Examples

Filter Examples

exa exa

ori

u n m

This Operator selects which Examples of an ExampleSet are kept
and which Examples are removed.

Description
The Operator returns those Examples that match the given condition. The conditions are de-
fined by the user. Several pre-defined conditions also exist as advanced options.

Differentiation
• Select Attributes
Filter Examples may reduce the number of Examples in an ExampleSet but it has no effect
on the number of Attributes. The Select Attributes Operator is used to select Attributes.

See page 199 for details.

• Filter Example Range
The Filter Example Range Operator can be used to select Examples that lie in the specified
index range (i.e. number of lines).

See page 238 for details.

Input Ports
example set input (exa) This input port expects an ExampleSet on which the defined filter

will be applied.

Output Ports
example set output (exa) This port outputs an ExampleSet with only the Examples, that sat-

isfied the specified condition.

original (ori) The ExampleSet, that was given as input is passed through without changes.

unmatched example set (unm) An ExampleSet including only those Examples, that did not
meet the specified condition.

Parameters
filters This is the default parameter for defining filter condtions via ‘Add Filters...’ dialog win-

dow. It is also available when the ‘custom_filters’ condition class is selected. This option
allows the definition of a custom filter condition. A condition consists of an Attribute, a
comparison function and a value to match. More conditions can be added by the “Add
Entry” button. Several filters can be joined either by “Match all” or “Match any”.
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condition class This parameter only appears when the ‘show advanced parameters’ is acti-
vated. Otherwise the default selection ‘custom_filters’ is shown. Various predefined con-
ditions are available for filtering Examples. Examplesmatching the selected condition are
passed to the output port, others are removed. The available conditions are:

• all If this option is selected, no Examples are removed.
• correct_predictions If this option is selected, only those Examples are returned,
where the prediction is correct. This option requires that the ExampleSet has two
Attributes with the special roles Label and Prediction. Then only those Examples
are returned, where the values of the label Attribute and prediction Attribute are the
same.

• wrong predictions This option is the same as the correct_predictions option, but
with the reversed result. Those Examples are matched, where the prediction is not
the same as the label.

• no_missing_attributes If this option is selected, only those Examples are matched
that have no missing values. Missing values or null values are shown as ‘?’ in Rapid-
Miner.

• missing_attributes If this option is selected, only those Examples arematched, that
have missing values. Missing values are shown as ‘?’ in RapidMiner.

• no_missing_labels If this option is selected, only those Examples are matched, that
don’t have a missing value in the special Attribute with the label role.

• missing_labels If this option is selected, only those Examples arematched, that have
a missing value in the special Attribute with the label role.

• attribute_value_filter If thisoption is selected, a conditioncanbeentered in thefield
of the parameter string. The option is like the default filter. The details are explained
below in the parameter string description. The benefit of declaring a filter statement
as a string is an increased flexibility using macros.

• expression With this option, expressions can be defined that offer more functions
to write matching condition. How expressions can be used to filter Examples is ex-
plained below in the parameter expression description.

• custom_filters This option is the same as the default filters parameter.

parameter string This parameter is available when the parameter ‘attribute_value_filter’ is
selected as condition class. The condition format is an Attribute name, followed by a com-
parison function and a value tomatch. For numerical Attributes the comparison functions
are >, <, <=, >= and = while the matching value has to be a number. Nominal Attributes
can be compared by = and != with an arbitrary string, which can also include a regular ex-
pression. Multiple conditions can be linked by a logical OR (||) or a logical AND (&&).
Missing values can be written as ‘?’ for numerical attributes and as ‘\?’ for nominal at-
tributes.

parameter expression This parameter is available when the parameter ‘expression’ is se-
lectedas condition class. ExpressionscanbeenteredasStringorwith theexpressionbuilder
dialog. Theexpressionneeds toevaluate toabooleanvalueandshould includeoneormore
Attributes. This option is useful to buildmore complexmatching conditions. For example
including mathematical calculations or text manipulation.

invert filter If this parameter is set to true the selected condition is inverted. All matching
Examples are removed from the output and Examples that don’t match the condition are
in the output.
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Tutorial Processes

Filter Examples using custom filters
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Figure 2.45: Tutorial process ‘Filter Examples using custom filters’.

This tutorial Process shows how to filter the Golf ExampleSet by combining two filter condi-
tions.

Filter Examples using attribute value filter

This tutorial Process uses the advanced parameter attribute_filter to define a condition string. It
uses the regular expression .*n.* to filter all Examples where the value of the Outlook Attribute
contains the letter ‘n’. The second statement filters the Examples where the Temperature At-
tribute is greater than 70. Both conditions are combined with an OR statement ( || )

Filter Examples using expression

This tutorial Process loads the Titanic data and uses an expression string to select all passengers
whose name contains “Miss.” and who are younger than 30, as well as all male passengers.
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2. Blending

Process
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Figure 2.46: Tutorial process ‘Filter Examples using attribute value filter’.

2.2.2 Sampling
Sample

Sample

exa exa

ori

This operator creates a sample from an ExampleSet by selecting
examples randomly. The size of a sample can be specified on ab-
solute, relative and probability basis.

Description
This operator is similar to the Filter Examples operator in principle that it takes an ExampleSet
as input and delivers a subset of the ExampleSet as output. The difference is this that the Filter
Examples operator filters examples on the basis of specified conditions. But the Sample operator
focuses on the number of examples and class distribution in the resultant sample. Moreover,
the samples are generated randomly. The number of examples in the sample can be specified
on absolute, relative or probability basis depending on the setting of the sample parameter. The
class distribution of the sample can be controlled by the balance data parameter.
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2.2. Examples
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Figure 2.47: Tutorial process ‘Filter Examples using expression’.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve
operator in the attached Example Process.

Output Ports

example set output (exa) A randomized sample of the input ExampleSet is output of this
port.

original (ori) ExampleSet that was given as input is passed without changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

sample (selection) This parameter determines how the amount of data is specified.

• absolute If the sampleparameter is set to ‘absolute’ the sample is createdof anexactly
specified number of examples. The required number of examples is specified in the
sample size parameter.

• relative If the sampleparameter is set to ‘relative’ the sample is createdas a fractionof
the total numberof examples in the inputExampleSet. The required ratioof examples
is specified in the sample ratio parameter.
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• probability If the sample parameter is set to ‘probability’ the sample is created of
probability basis. The required probability is specified in the sample probability pa-
rameter.

balance data (boolean) You can set this parameter to true if you need to sample differently
for examples of a certain class. If this parameter is set to true, sample size, sample ratio and
sample probability parameters are replaced by sample size per class, sample ratio per class
and sample probability per class parameters respectively. These parameters allow you to
specify different sample sizes for different values of the label attribute.

sample size (integer) This parameter specifies the exact number of exampleswhich should be
sampled. This parameter is only available when the sample parameter is set to ‘absolute’
and the balance data parameter is not set to true.

sample ratio (real) This parameter specifies the fraction of examples which should be sam-
pled. This parameter is only available when the sample parameter is set to ‘relative’ and
the balance data parameter is not set to true.

sample probability (real) This parameter specifies the sample probability for each example.
This parameter is only available when the sample parameter is set to ‘probability’ and the
balance data parameter is not set to true.

sample size per class This parameter specifies the absolute sample size per class. This pa-
rameter is only available when the sample parameter is set to ‘absolute’ and the balance
data parameter is set to true.

sample ratio per class This parameter specifies the fraction of examples per class. This pa-
rameter is only available when the sample parameter is set to ‘relative’ and the balance
data parameter is set to true.

sample probability per class This parameter specifies the probability of examples per class.
This parameter is only available when the sample parameter is set to ‘probability’ and the
balance data parameter is set to true.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomizing examples of the sample. Using the same value of local random seed
will produce the same sample. Changing the value of this parameter changes the way the
examples are randomized, thus the sample will have a different set of examples.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Sampling the Ripley-Set data set

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. The Generate ID operator is ap-
plied on it so that the examples can be identified uniquely. A breakpoint is inserted at this stage
so that you can see the ExampleSet before the Sample operator is applied. You can see that there
are 250 exampleswith twopossible classes: 0 and 1. 125 examples have class 0 and 125 examples
have class 1. Now, the Sample operator is applied on the ExampleSet. The sample parameter is
set to ‘relative’. The balance data parameter is set to true. The sample ratio per class parameter
specifies two ratios. Class 0 is assigned ratio 0.2. Thus, of all the examples where label attribute
is 0 only 20 percent will be selected. There were 125 examples with class 0, so 25 (i.e. 20% of

246



2.2. Examples
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Figure 2.48: Tutorial process ‘Sampling the Ripley-Set data set’.

125) examples will be selected. Class 1 is assigned ratio 1. Thus, of all the examples where label
attribute is 1, 100 percent will be selected. There were 125 examples with class 1, so all 125 (i.e.
100% of 125) examples will be selected. Run the process and you can verify the results. Also
note that the examples are taken randomly. The randomization can be changed by changing
the local random seed parameter.
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Sample (Bootstrapping)

Sample (Bootstra. . .

exa exa

ori

This operator creates a bootstrapped sample from an ExampleSet.
Bootstrapped sampling uses sampling with replacement, thus the
sample may not have all unique examples. The size of the sample
can be specified on absolute and relative basis.

Description
This operator is different from other sampling operators because it uses sampling with replace-
ment. In sampling with replacement, at every step all examples have equal probability of being
selected. Once an example has been selected for the sample, it remains candidate for selection
and it can be selected again in any other coming steps. Thus a samplewith replacement canhave
the same example multiple number of times. More importantly, a sample with replacement can
be used to generate a sample that is greater in size than the original ExampleSet. The number of
examples in the sample can be specified on absolute or relative basis depending on the setting
of the sample parameter.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is output of the Generate

ID operator in the attached Example Process.

Output Ports
example set output (exa) A bootstrapped sample of the input ExampleSet is output of this

port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
sample (selection) This parameter determines how the amount of data is specified.

• absolute If the sample parameter is set to ‘absolute’ the sample is created of the ex-
actly specified number of examples. The required number of examples is specified in
the sample size parameter.

• relative If the sampleparameter is set to ‘relative’ the sample is createdas a fractionof
the total numberof examples in the inputExampleSet. The required ratioof examples
is specified in the sample ratio parameter.

sample size (integer) This parameter specifies the exact number of exampleswhich should be
sampled. This parameter is only available when the sample parameter is set to ‘absolute’.

sample ratio (real) This parameter specifies the fraction of examples which should be sam-
pled. This parameter is only available when the sample parameter is set to ‘relative’.
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use weights (boolean) If set to true, exampleweightswill be consideredduring thebootstrap-
ping if such weights are present.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomizing examples of the sample. Using the same value of the local random
seedwill produce the same sample. Changing the value of this parameter changes the way
the examples are randomized, thus the sample will have a different set of examples.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Bootstrapped Sampling of the Golf data set

Process
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exa exa
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Sample (Bootstr . . .
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ori

inp
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Figure 2.49: Tutorial process ‘Bootstrapped Sampling of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Generate ID operator is applied
on it to create an id attribute with ids starting from 1. This is done so that the examples can be
identified uniquely, otherwise the id attribute was not necessary here. A breakpoint is inserted
here so that you can view the ExampleSet before the application of the Sample (Bootstrapping)
operator. As you can see, the ExampleSet has 14 examples. The Sample (Bootstrapping) opera-
tor is applied on the ExampleSet. The sample parameter is set to ‘absolute’ and the sample size
parameter is set to 140. Thus a sample 10 times in size of the original ExampleSet is generated.
Instead of repeating each example of the input ExampleSet 10 times, examples are selected ran-
domly. You can verify this by seeing the results of this process in the Results Workspace.
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Sample (Kennard-Stone)

Sample (Kennard. . .

exa exa

ori

This operator creates a sample from the given ExampleSet by us-
ing the Kennard-Stone algorithm. The size of the sample can be
specified on absolute and relative basis.

Description
The Sample (Kennard-Stone) operator performs a Kennard-Stone Sampling. This sampling al-
gorithm works as follows:

• Find the two most separated points in the ExampleSet.

• For each candidate point, find the smallest distance to any already selected object.

• Select the point which has the largest of these smallest distances.

This algorithm always gives the same result because the two starting points are always the
same. This implementation reduces the number of iterations by holding a list with candidates
of the largest smallest distances. Please note that the number of examples in the sample may
not be exactly the same as specified because of the way this algorithm works.
The sampling operators are similar to the Filter Examples operator in principle that they take

an ExampleSet as input and delivers a subset of the ExampleSet as output. The difference is
this that the Filter Examples operator filters examples on the basis of specified conditions. But
the Sample operators focus on the number of examples and class distribution in the resultant
sample. Moreover, the samples are generated randomly. The number of examples in the sample
can be specified on absolute and relative basis depending on the setting of the sampleparameter.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve

operator in the attached Example Process.

Output Ports
example set output (exa) The Kennard-Stone algorithm is applied and the resultant sample

of the input ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
sample (selection) This parameter determines how the amount of data is specified.

• absolute If the sample parameter is set to ‘absolute’ then the sample is created of an
exactly specified number of examples. The required number of examples is specified
in the sample size parameter.
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• relative If the sample parameter is set to ‘relative’ then the sample is created as a
fraction of the total number of examples in the input ExampleSet. The required ratio
of examples is specified in the sample ratio parameter.

sample size (integer) This parameter specifies the exact number of exampleswhich should be
sampled. This parameter is only available when the sample parameter is set to ‘absolute’.

sample ratio (real) This parameter specifies the fraction of examples which should be sam-
pled. This parameter is only available when the sample parameter is set to ‘relative’.

Tutorial Processes

Kennard-Stone sampling of the Iris data set

Process

I r is

out

Sample (Kennar. . .

exa exa
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inp res

res

Figure 2.50: Tutorial process ‘Kennard-Stone sampling of the Iris data set’.

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can view the ExampleSet. You can see that the ExampleSet has 150 examples. The Sample
(Kennard-Stone) operator is applied on the ExampleSet. The sample parameter is set to ‘abso-
lute’ and the sample size parameter is set to 15. Thus the resultant sample will have only 15
examples. The resultant ExampleSet with 15 examples can be seen in the Results Workspace.
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Sample (Stratified)

Sample (Strat i f ied)

exa exa

ori

This operator creates a stratified sample from an ExampleSet.
Stratified sampling builds random subsets and ensures that the
class distribution in the subsets is the same as in the whole Ex-
ampleSet. This operator cannot be applied on data sets without
a label or with a numerical label. The size of the sample can be
specified on absolute and relative basis.

Description
The stratified sampling builds random subsets and ensures that the class distribution in the sub-
sets is the same as in the whole ExampleSet. For example in the case of a binominal classifica-
tion, Stratified sampling builds random subsets such that each subset contains roughly the same
proportions of the two values of class labels.
When there are different classes in an ExampleSet, it is sometimes advantageous to sample

each class independently. Stratification is the process of dividing examples of the ExampleSet
into homogeneous subgroups (i.e. classes) before sampling. The subgroups should be mutually
exclusive i.e. every examples in theExampleSetmust beassigned toonlyone subgroup (or class).
The subgroups should also be collectively exhaustive i.e. no example can be excluded. Then
random sampling is applied within each subgroup. This often improves the representativeness
of the sample by reducing the sampling error.
A real-world example of using stratified sampling would be for a political survey. If the re-

spondents needed to reflect the diversity of the population, the researcher would specifically
seek to include participants of various minority groups such as race or religion, based on their
proportionality to the total population asmentioned above. A stratified survey could thus claim
to be more representative of the population than a survey of simple random sampling or sys-
tematic sampling.
In contrast to the simple sampling operator (the Sample operator), this operator performs

a stratified sampling of the data sets with nominal label attributes, i.e. the class distributions
remains (almost) the same after sampling. Hence, this operator cannot be applied on data sets
without a label or with a numerical label. In these cases a simple samplingwithout stratification
should be performed through the Sample operator.
This operator is similar to theFilter Examples operator inprinciple that it takes anExampleSet

as input and delivers a subset of the ExampleSet as output. The difference is this that the Filter
Examples operator filters examples on the basis of specified conditions. But the Sample operator
focuses on the number of examples and class distribution in the resultant sample. Moreover,
the samples are generated randomly. The number of examples in the sample can be specified
on absolute and relative basis depending on the setting of the sample parameter.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is output of the Filter Ex-

amples operator in the attached Example Process.

Output Ports
example set output (exa) A randomized sample of the input ExampleSet is output of this

port. The class distributions of the sample is (almost) the same as the class distribution of
the complete ExampleSet.
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original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
sample (selection) This parameter determines how the amount of data is specified.

• absolute If the sample parameter is set to ‘absolute’ then the sample is created of an
exactly specified number of examples. The required number of examples is specified
in the sample size parameter.

• relative If the sample parameter is set to ‘relative’ then the sample is created as a
fraction of the total number of examples in the input ExampleSet. The required ratio
of examples is specified in the sample ratio parameter.

sample size (integer) This parameter specifies the exact number of exampleswhich should be
sampled. This parameter is only available when the sample parameter is set to ‘absolute’.

sample ratio (real) This parameter specifies the fraction of examples which should be sam-
pled. This parameter is only available when the sample parameter is set to ‘relative’.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomizing examples of the sample. Using the same value of local random seed
will produce the same sample. Changing the value of this parameter changes the way the
examples are randomized, thus sample will have a different set of examples.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Stratified Sampling of the Golf data set

The ‘Golf’ data set is loaded using the Retrieve operator. The Filter Example Range operator
is applied on it to select the first 10 examples. This is done to simplify the Example Process
otherwise the filtering was not necessary here. A breakpoint is inserted here so that you can
view the ExampleSet before the application of the Sample (Stratified) operator. As you can see,
the ExampleSet has 10 examples. 6 examples (i.e. 60%) belong to class ‘yes’ and 4 examples
(i.e. 40%) belong to class ‘no’. The Sample (Stratified) operator is applied on the ExampleSet.
The sample parameter is set to ‘absolute’ and the sample size parameter is set to 5. Thus the
resultant sample will have only 5 examples. The sample will have the same class distribution
as the class distribution of the input ExampleSet i.e. 60% examples with class ‘yes’ and 40%
examples with class ‘no’. You can verify this by viewing the results of this process. 3 out of 5
examples (i.e. 60%) have class ‘yes’ and 2 out of 5 examples (i.e. 40%) have class ‘no’.
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Figure 2.51: Tutorial process ‘Stratified Sampling of the Golf data set’.

Split Data

Spli t  Data

exa par
This operator produces the desired number of subsets of the given
ExampleSet. TheExampleSet is partitioned into subsets according
to the specified relative sizes.

Description

The Split Data operator takes an ExampleSet as its input and delivers the subsets of that Exam-
pleSet through its output ports. The number of subsets (or partitions) and the relative size of
each partition are specified through the partitions parameter. The sum of the ratio of all parti-
tions should be 1. The sampling type parameter decides how the examples should be shuffled in
the resultant partitions. For more information about this operator please study the parameters
sectionof this description. This operator is different fromother sampling andfiltering operators
in the sense that it is capable of delivering multiple partitions of the given ExampleSet.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process.

Output Ports

partition (par) This operator can havemultiple number of partition ports. The number of use-
ful partition ports depends on the number of partitions (or subsets) this operator is con-
figured to produce. The partitions parameter is used for specifying the desired number of
partitions.
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Parameters
partitions (enumeration) This is the most important parameter of this operator. It specifies

the number of partitions and the relative ratio of each partition. The user just requires
to specify the ratio of all partitions. The number of required partitions is not explicitly
specifiedby theuser because it is calculatedautomatically by thenumberof ratios specified
in this parameter. The ratios should be between 0 and 1. The sum of all ratios should be
1. For better understanding of this parameter please study the attached Example Process.

sampling type (selection) TheSplitDataoperator canuse several typesof sampling for build-
ing the subsets. Following options are available:

• Linear samplingLinear sampling simplydivides theExampleSet intopartitionswith-
out changing the order of the examples i.e. subsets with consecutive examples are
created.

• Shuffled sampling Shuffled sampling builds random subsets of the ExampleSet. Ex-
amples are chosen randomly for making subsets.

• Stratified sampling Stratified sampling builds random subsets and ensures that the
class distribution in the subsets is the same as in the whole ExampleSet. For example
in the case of a binominal classification, Stratified sampling builds random subsets
such that each subset contains roughly the same proportions of the two values of the
class labels.

• Automatic Uses stratified sampling if the label is nominal, shuffled sampling other-
wise.

use local random seed (boolean) Indicates if a local randomseed shouldbeused for random-
izing examples of a subset. Using the samevalueof local randomseedwill produce the same
subsets. Changing the value of this parameter changes the way examples are randomized,
thus subsets will have a different set of examples. This parameter is only available if Shuf-
fled or Stratified sampling is selected. It is not available for Linear sampling because it
requires no randomization, examples are selected in sequence.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Creating partitions of the Golf data set using the Split Data operator

The ‘Golf’ data set is loaded using the Retrieve operator. The Generate ID operator is applied on
it so the examples can be identified uniquely. A breakpoint is inserted here so the ExampleSet
can be seen before the application of the Split Data operator. It can be seen that the ExampleSet
has 14 examples which can be uniquely identified by the id attribute. The examples have ids
from 1 to 14. The Split Data operator is applied next. The sampling type parameter is set to
‘linear sampling’. The partitions parameter is configured to produce two partitions with ratios
0.8 and 0.2 respectively. The partitions can be seen in the Results Workspace. The number of
examples in each partition is calculated by this formula:
(Total number of examples) / (sum of ratios) * ratio of this partition
If the answer is a decimal number it is rounded off. The number of examples in each partition

turns out to be: (14) / (0.8 + 0.2) * (0.8) = 11.2 which is rounded off to 11(14) / (0.8 + 0.2) * (0.2)
= 2.8 which is rounded off to 3
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Figure 2.52: Tutorial process ‘Creating partitions of the Golf data set using the Split Data
operator’.

It is a goodpractice to adjust ratios such that the sumof ratios is 1. But this operator alsoworks
if the sumof ratios is lower than or greater than 1. For example if two partitions are createdwith
ratios 1.0 and 0.4. The resultant partitionswould be calculated as follows: (14) / (1.0 + 0.4) * (1.0)
= 10(14) / (1.0 + 0.4) * (0.4) = 4
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2.2.3 Sort
Shuffle

Shuff le

exa exa

ori

This operator creates a new, shuffled ExampleSet from the given
ExampleSet by making a new copy of the given ExampleSet in the
main memory.

Description
The Shuffle operator creates a new, shuffled ExampleSet by making a new copy of the given Ex-
ampleSet in themainmemory. Please note that the systemmay run out ofmemory, if the Exam-
pleSet is too large. The local random seed parameter can be used for randomizing the shuffling
process.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve

operator in the attached Example Process.

Output Ports
example set output (exa) The shuffled ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
use local random seed (boolean) This parameter indicates if a local random seed should be

used for randomization. Using the same value of the local random seed will produce the
same randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Shuffling the Iris data set

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the ExampleSet has an id attribute.
The ExampleSet is sorted in ascending order of this attribute. The Shuffle operator is applied
on this ExampleSet to randomize the order of its examples. The resultant shuffled ExampleSet
can be seen in the Results Workspace.
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Figure 2.53: Tutorial process ‘Shuffling the Iris data set’.

Sort

Sort

exa exa

ori

This operator sorts the input ExampleSet in ascending or descend-
ing order according to a single attribute.

Description

This operator sorts the ExampleSet provided at the input port. The complete data set is sorted
according to a single attribute. This attribute is specified using the attribute name parameter.
Sorting is done in increasing or decreasing direction depending on the setting of the sorting
direction parameter.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve
operator in the attached Example Process.

Output Ports

example set output (exa) The sorted ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

attribute name (string) This parameter is used to specify the attribute which should be used
for sorting the ExampleSet.

sorting direction This parameter indicates the direction of the sorting. The ExampleSet can
be sorted in increasing(ascending) or decreasing(descending) order.
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Tutorial Processes

Sorting the Golf data set according to Temperature
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Figure 2.54: Tutorial process ‘Sorting the Golf data set according to Temperature’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Sort operator is applied on it.
The attribute name parameter is set to ‘Temperature’. The sort direction parameter is set to
‘increasing’. Thus the ‘Golf’ data set is sorted in ascending order of the ‘Temperature’ attribute.
The example with the smallest value of the ‘Temperature’ attribute becomes the first example
and the example with the largest value of the ‘Temperature’ attribute becomes the last example
of the ExampleSet.

Sorting on multiple attributes

This Example Process shows how two Sort operators can be used to sort an ExampleSet on two
attributes. The ‘Golf’ data set is loaded using the Retrieve operator. The Sort operator is applied
on it. The attribute name parameter is set to ‘Temperature’. The sort direction parameter is set
to ‘increasing’. Then another Sort operator is applied on it. The attribute name parameter is set
to ‘Humidity’ this time. The sort direction parameter is set to ‘increasing’. Thus the ‘Golf’ data
set is sorted in ascending order of the ‘Humidity’ attribute. The example with smallest value
of the ‘Humidity’ attribute becomes the first example and the example with the largest value of
the ‘Humidity’ attribute becomes the last example of the ExampleSet. If some examples have
the same value of the ‘Humidity’ attribute, they are sorted using the ‘Temperature’ attribute.
Where examples have same value of the ‘Humidity’ attribute then the examples with smaller
valueof the ‘Temperature’ attributeprecede theexampleswithhigher valueof the ‘Temperature’
attribute. This can be seen in the Results Workspace.
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Figure 2.55: Tutorial process ‘Sorting on multiple attributes’.

2.3 Table
2.3.1 Grouping
Aggregate

Aggregate

exa exa

ori

This operator performs the aggregation functions known from
SQL. This operator provides a lot of functionalities in the same for-
mat as provided by the SQL aggregation functions. SQL aggrega-
tion functions andGROUPBYandHAVINGclauses can be imitated
using this operator.

Description
The Aggregate operator creates a new ExampleSet from the input ExampleSet showing the re-
sults of the selected aggregation functions. Manyaggregation functions are supported including
SUM, COUNT, MIN, MAX, AVERAGE and many other similar functions known from SQL. The
functionality of the GROUP BY clause of SQL can be imitated by using the group by attributes
parameter. You need to have a basic understanding of the GROUP BY clause of SQL for under-
standing the use of this parameter because it works exactly the sameway. If you want to imitate
the known HAVING clause from SQL, you can do that by applying the Filter Examples operator
after the Aggregation operator. This operator imitates aggregation functions of SQL. It focuses
on obtaining summary information, such as averages and counts etc. It can group examples in
an ExampleSet into smaller sets and apply aggregation functions on those sets. Please study the
attached Example Process for better understanding of this operator.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of the Filter Examples

operator in the attached Example Process. Output of other operators can also be used as
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input.

Output Ports
example set (exa) The ExampleSet generated after applying the specified aggregation func-

tions is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
use default aggregation (boolean) This parameter allows you to define the default aggrega-

tion for selected attributes. A number of parameters become available if this parameter is
set to true. These parameters allow you to select the attributes and corresponding default
aggregation function.

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose all ex-
amples satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.
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attribute (string) The required attribute can be selected from this option. The attribute name
can be selected from the drop down box of parameter attribute if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list. Attributes can be shifted
to the right list, which is the list of selected attributes.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes selected irrespective of the conditions in the Select Attribute operator. If
this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.
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invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

default aggregation function This parameter is only available when the use default aggrega-
tion parameter is set to true. It is used for specifying the default aggregation function for
the selected attributes.

aggregation attributes This parameter is one of the most important parameters of the op-
erator. It allows you to select attributes and the aggregation function to apply on them.
Many aggregation functions are available including count, average, minimum, maximum
variance and many more.

group by attributes This operator can group examples of the input ExampleSet into smaller
groups using this parameter. The aggregation functions are applied on these groups. This
parameterallows theAggregateoperator to replicate the functionalityof theknownGROUP
BY clause of SQL. From version 6.0.3 on the operator will cause an error if a given attribute
can’t be found in the example set.

count all combinations (boolean) This parameter indicates if all possible combinations of
the values of the group by attributes are counted, even if they don’t occur. All possible
combinations may result in a huge number so handle this parameter carefully.

only distinct (boolean) This parameter indicates if only examples with distinct values for the
aggregation attribute should be used for the calculation of the aggregation function.

ignore missings (boolean) This parameter indicates if missing values should be ignored and
aggregation functions should be applied only on existing values. If this parameter is not
set to true then the aggregated value will be a missing value in the presence of missing
values in the selected attribute.

Tutorial Processes

Imitating an SQL aggregation query using the Aggregate operator

Process
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out
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exa exa

ori
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exa exa
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ori
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Figure 2.56: Tutorial process ‘ImitatinganSQLaggregationqueryusing theAggregateoperator’.

This Example Process discusses an arbitrary scenario. Then describes how this scenario could
be handled using SQL aggregation functions. Then the SQL’s solution is imitated in RapidMiner.
The Aggregate operator plays a key role in this process.
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Let us assume a scenario where we want to apply certain aggregation functions on the Golf
data set. We don’t want to include examples where the Outlook attribute has the value ‘over-
cast’. We group the remaining examples of the ‘Golf’ data set by values of the Play and Wind
attributes. We wish to find the average Temperature and average Humidity for these groups.
Once these averages have been calculated, we want to see only those examples where the aver-
age Temperature is above 71. Lastly, wewant to see the results in ascending order of the average
Temperature.
This problem can be solved by the following SQL query:
SELECT Play, Wind, AVG (Temperature), AVG (Humidity)
FROM Golf
WHERE Outlook NOT LIKE ‘overcast’
GROUP BY Play, Wind
HAVING AVG (Temperature)>71
ORDER BY AVG (Temperature)
The SELECT clause selects the attributes to be displayed. The FROM clause specifies the data

set. TheWHERE clause pre-excludes the examples where the Outlook attribute has value ‘over-
cast’. The GROUP BY clause groups the data set according to the specified attributes. The HAV-
ING clause filters the results after the aggregation functions have been applied. Finally the OR-
DER BY clause sorts the results in ascending order of the Temperature averages.
Here is how this scenario can be tackled using RapidMiner. First of all the Retrieve operator

is used for loading the ‘Golf’ data set. This is similar to the FROM clause. Then the Select At-
tributes operator is applied on it to select the required attributes. This works a little different
from the SQL query. If we select only the Play andWind attributes as in the query, then the com-
ing operators cannot be applied. Thus we select all attributes for now. You will see later that
the attribute set will be reduced automatically, thus the Select Attributes operator is not really
required here. Then the Filter Examples operator is applied to pre-exclude examples where the
Outlook attribute has the value ‘overcast’. This is similar to theWHERE clause of SQL. Then the
Aggregate operator is applied on the remaining examples. The Aggregate operator performs a
number of tasks here. Firstly, it specifies the aggregation functions using the aggregation at-
tributes parameter. We need averages of the Temperature and Humidity attribute; this is spec-
ified using the aggregation attributes parameter. Secondly, we do not want the averages of the
entire data set. We want the averages by groups, grouped by the Play andWind attribute values.
These groups are specified using the group by attributes parameter of the Aggregate operator.
Thirdly, required attributes are automatically filtered by this operator. Only those attributes
appear in the resultant data set that have been specified in the Aggregate operator. Next, we
are interested only in those examples where the average Temperature is greater than 71. This
condition can be applied using the Filter Examples operator. This step is similar to the HAVING
clause. Lastly we want the results to be sorted. The Sort operator is used to do the required
sorting. This step is very similar to the ORDER BY clause. Breakpoints are inserted after every
operator in the Example Process so that you can understand the part played by each operator.
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2.3.2 Rotation
De-Pivot

De-Pivot

exa exa

ori

This operator transforms the ExampleSet by converting the exam-
ples of the selected attributes (usually attributes that measure the
same characteristic) into examples of a single attribute.

Description
This operator is usually used when your ExampleSet has multiple attributes that measure the
same characteristic (may be at different time intervals) and you want to merge these observa-
tions into a single attribute without loss of information. If the original ExampleSet has n ex-
amples and k attributes that measure the same characteristic, after application of this operator
the ExampleSet will have k x n examples. The k attributes will be combined into one attribute.
This attribute will have n examples of each of the k attributes. This can be easily understood by
studying the attached Example Process.
In other words, this operator converts an ExampleSet by dividing examples which consist of

multiple observations (at different times) into multiple examples, where each example covers
one point in time. An index attribute is added in the ExampleSet, which denotes the actual point
in time the example belongs to after the transformation.
The keep missings parameter specifies whether an example should be kept, even if it has miss-

ing values for all series at a certain point in time. The create nominal index parameter is only
applicable if only one time series per example exists. Instead of using a numeric index, then the
names of the attributes representing the single time points are used as index attribute values.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-

process operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports
example set output (exa) The selected attributes are converted into examples of a new at-

tribute and the resultant ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute name (list) Thisparametermapsanumberof sourceattributesonto result attributes.

Theattributenameparameter isused for specifying thegroupof attributes that youwant to
combine and the name of the new attribute. The attributes of a group are selected through
a regular expression. There can be numerous groups with each group having multiple at-
tributes.
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index attribute (string) This parameter specifies the name of the newly created index at-
tribute. The index attribute is used for differentiating between examples of different at-
tributes of a group after the transformation.

create nominal index (boolean) The createnominal indexparameter isonlyapplicable if only
one time series per example exists. Instead of using a numeric index, then the names of
the attributes representing the single time points are used as index attribute values.

keep missings (boolean) The keep missings parameter specifies whether an example should
be kept, even if it has missing values for all series at a certain point in time.

Tutorial Processes

Merging multiple attributes that measure the same characteristic into a single
attribute

Process

Subprocess

in ou t

ou t

De-Pivot

exa exa

ori

inp res

res

Figure 2.57: Tutorial process ‘Merging multiple attributes that measure the same characteristic
into a single attribute’.

This process starts with the Subprocess operator which delivers an ExampleSet. The subpro-
cess is used for creating a sample ExampleSet therefore it is not important to understand what
is going on inside the subprocess. A breakpoint is inserted after the subprocess so that you can
have a look at the ExampleSet. You can see that the ExampleSet has 14 examples and it has two
attributes i.e. ‘Morning’ and ‘Evening’. These attributes measure the temperature of an area in
morning and evening respectively. We want to convert these attributes into a single attribute
but we still want to be able to differentiate between morning and evening temperatures.
The De-Pivot operator is applied on this ExampleSet to perform this task. The attribute name

parameter is used for specifying the group of attributes that you want to combine and the name
of the new attribute. The attributes of a group are selected through a regular expression. There
can be numerous groups with each group having multiple attributes. In our case, there is only
one group which has all the attributes of the ExampleSet (i.e. both ‘Morning’ and ‘Evening’
attributes). The new attribute is named ‘Temperatures’ and the regular expression: ‘ .* ‘ is used
for selecting all the attributes of the ExampleSet. The index attribute is used for differentiating
between examples of different attributes of a group after transformation. The name of the index
attribute is set to ‘Time’. The create nominal index parameter is also set to true so that the
resultant ExampleSet is more self-explanatory.
Execute the process and have a look at the resultant ExampleSet. You can see that there are 28

examples in this ExampleSet. The original ExampleSet had 14 examples, and 2 attributes were
grouped, therefore the resultant ExampleSet has 28 (i.e. 14 x 2) examples. There are 14 exam-
ples from theMorning attribute and 14 examples of the Evening attribute in the ‘Temperatures’
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attribute. The ‘Time’ attribute explains whether an examplemeasuresmorning or evening tem-
perature.
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Pivot

Pivot

exa exa

ori

This operator rotates an ExampleSet by grouping multiple exam-
ples of same groups to single examples.

Description

The Pivot operator rotates the given ExampleSet by groupingmultiple examples of same groups
to single examples. The group attribute parameter specifies the grouping attribute (i.e. the at-
tribute which identifies examples belonging to the groups). The resultant ExampleSet has n
examples where n is the number of unique values of the group attribute. The index attribute pa-
rameter specifies the attribute whose values are used to identify the examples inside the groups.
The values of this attribute are used to name the group attributes which are created during the
pivoting. Typically the values of such an attribute capture subgroups or dates. The resultant
ExampleSet has m regular attributes in addition to the group attribute where m is the number
of unique values of the index attribute. If the given ExampleSet contains example weights (i.e.
an attribute with weight role), these weights may be aggregated in each group to maintain the
weightings among groups. This description can be easily understood by studying the attached
Example Process.

Differentiation

• TransposeTheTransposeoperator simply rotates thegivenExampleSet (i.e. interchanges
rows and columns) but the Pivot operator provides additional options like grouping and
handling weights. See page 271 for details.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-
process operator in the attached Example Process.

Output Ports

example set output (exa) The ExampleSet produced after pivoting is the output of this port.

original (ori) The ExampleSet that was given as input is passed without any modifications to
the output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

group attribute (string) This parameter specifies the grouping attribute (i.e. the attribute
which identifies examples belonging to the groups). The resultant ExampleSet has n ex-
amples where n is the number of unique values of the group attribute.
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index attribute (string) This parameter specifies the attributewhose values are used to iden-
tify the examples inside the groups. The values of this attribute are used toname the group
attributes which are created during the pivoting. Typically the values of such an attribute
capture subgroups or dates. The resultant ExampleSet hasm regular attributes in addition
to the group attribute where m is the number of unique values of the index attribute.

consider weights (boolean) Thisparameter specifieswhetherattributeweights (if any) should
be kept and aggregated or ignored.

weight aggregation (selection) This parameter is only available when the consider weights
parameter is set to true. It specifies how example weights should be aggregated in the
groups. It has the following options: average, variance, standard_deviation, count, mini-
mum, maximum, sum, mode, median, product.

skip constant attributes (boolean) Thisparameter specifies if theattributes shouldbe skipped
if their value never changes within a group.

data management (selection) This is anexpertparameter. Therearedifferentoptions, users
can choose any of them

Related Documents
• Transpose (page 271)

Tutorial Processes

Introduction to the Pivot operator

Process

Subprocess

in ou t

ou t

Pivot

exa exa

ori
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res

res

res

Figure 2.58: Tutorial process ‘Introduction to the Pivot operator’.

This Example Process starts with the Subprocess operator. There is a sequence of operators
in this Subprocess operator that produces an ExampleSet that is easy to understand. A break-
point is inserted after the Subprocess operator to show this ExampleSet. The Pivot operator
is applied on this ExampleSet. The group attribute and index attribute parameters are set to
‘group_attribute’ and ‘index_attribute’ respectively. The consider weights parameter is set to
true and the weight aggregation parameter is set to ‘sum’. The group_attribute has 5 possible
values therefore the pivoted ExampleSet has 5 examples i.e. one for each possible value of the
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group_attribute. The index_attribute has 5 possible values therefore the pivotedExampleSet has
5 regular attributes (in addition to the group_attribute). Here is an explanation of values of the
first example of the pivoted ExampleSet. The remaining examples also follow the same idea.
The value of the group_attribute of the first example of the pivoted ExampleSet is ‘group0’,

therefore all values of this example will be derived from all examples of the input ExampleSet
where the group_attribute had the value ‘group0’. The ids of examples with ‘group0’ in the in-
put ExampleSet are 12, 16, 19 and 20. In the coming explanation these examples will be called
group0 examples for simplicity.
The value of the weight_attribute attribute of the pivoted ExampleSet is 11. It is the sum of

weights of group0 examples i.e. 4 + 4 + 0 + 3 = 11. The weights were added because the weight
aggregation parameter is set to ‘sum’. The value of the value_attribute_index0 attribute of the
pivoted ExampleSet is 4. Only two examples (id 12 and 16) of the group0 examples had ‘index0’
in index_attribute. The value of the latter of these examples (id 16) is selected i.e. 4 is selected.
The value of the value_attribute_index1 attribute of the pivoted ExampleSet is 1. Only one ex-
ample (id 19) of the group0 examples had ‘index1’ in index_attribute. Therefore its value (i.e. 1)
is selected. The value of the value_attribute_index2 attribute of the pivoted ExampleSet is un-
defined because no example of the group0 examples had ‘index2’ in index_attribute. Therefore
its value ismissing in the pivoted ExampleSet. The value of the value_attribute_index3 attribute
of the pivoted ExampleSet is 3. Only one example (id 20) of the group0 examples had ‘index3’ in
index_attribute. Therefore its value (i.e. 3) is selected. The value of the value_attribute_index4
attribute of the pivoted ExampleSet is undefined because no example of the group0 examples
had ‘index4’ in index_attribute. Therefore its value is missing in the pivoted ExampleSet.
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Transpose

Transpose

exa exa

ori

This operator transposes the input ExampleSet i.e. the cur-
rent rows become columns of the output ExampleSet and current
columns become rows of the output ExampleSet. This operator
works very similar to the well known transpose operation for ma-
trices.

Description
This operator transposes the input ExampleSet i.e. the current rows become the columns of
the output ExampleSet and the current columns become the rows of the output ExampleSet. In
other words every example or row becomes a column with attribute values and each attribute
column becomes an example row. This operator works very similar to the well known transpose
operation for matrices. The transpose of a transpose of a matrix is same as the original matrix,
but the same rule cannot be applied here because the types of the original ExampleSet and the
transpose of the transpose of an ExampleSet may be different.
If an id attribute is part of the input ExampleSet, the ids will become the names of the new

attributes. The names of the old attributes will be transformed into the id values of a new id
attribute. All other new attributes will have regular role after the transformation. You can use
the Set Role operator after the transpose operator to assign roles to new attributes.
If all old attributes have the same value type, all new attributes will have the same value type.

If at least one nominal attribute is part of the input ExampleSet, the type of all new attributes
will be nominal. If the old attribute valueswere allmixed numbers, the type of all new attributes
will be real. This operator produces a copy of the data in themainmemory. Therefore, it should
not be used on very large data sets.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve

operator in the attached Example Process.

Output Ports
example set output (exa) The transpose of the input ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Tutorial Processes

Different scenarios of Transpose

There are four different cases in this Example Process:
Case 1: The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here

so that you can have a look at the ExampleSet before application of the Transpose operator. You
can see that the ‘Golf’ data set has no id attribute. The types of attributes are different including
attributes of nominal type. Press the Run button to continue. Now the Transpose operator is
applied on the ‘Golf’ data set. A breakpoint is inserted here so that you can see the ExampleSet
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Figure 2.59: Tutorial process ‘Different scenarios of Transpose’.

after the application of the Transpose operator. Here you can see that a new attribute with id
role has been created. The values of the new id attribute are the names of the old attributes. New
attributes are named in a general format like ‘att_1’, ‘att_2’ etc because the input ExampleSet
had no id attribute. The type of all new attributes is nominal because there were attributes with
different types including at least one nominal attribute in the input ExampleSet.
Case 2: The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here

so that you can have a look at the ExampleSet before application of the Transpose operator. You
can see that the ‘Iris’ data set has an id attribute. The types of attributes are different including
attributes of nominal type. Press the Run button to continue. Now the Transpose operator is
applied on the ‘Iris’ data set. A breakpoint is inserted here so that you can see the ExampleSet
after the application of the Transpose operator. Here you can see that a new attribute with id
role has been created. The values of the new id attribute are the names of the old attributes. The
ids of the old ExampleSet become names of the new attributes. The type of all new attributes
is nominal because there were attributes with different types including at least one nominal
attribute in the input ExampleSet.
Case 3:The ‘Market-Data’ data set is loaded using the Retrieve operator. A breakpoint is in-

serted here so that you can have a look at the ExampleSet before application of the Transpose
operator. You can see that the ‘Market-Data’ data set has no special attributes. The type of all
attributes is integer. Press the Run button to continue. Now the Transpose operator is applied
on the ‘Market-Data’ data set. A breakpoint is inserted here so that you can see the ExampleSet
after the application of the Transpose operator. Here you can see that a new attribute with id
role has been created. Values of the new id attribute are the names of the old attributes. New
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attributes are named in a general format like ‘att_1’, ‘att_2’ etc because the input ExampleSet
had no id attribute. The Type of all new attributes is real because there were attributes with
mixed numbers type in the input ExampleSet.
Case 4:The ‘Golf-Testset’ data set is loaded using the Retrieve operator. A breakpoint is in-

serted here so that you can have a look at the ExampleSet before application of the Transpose
operator. The Transpose operator is applied on the ‘Golf-Testset’ data set. Then the Transpose
operator is applied on the output of the first Transpose operator. Note that the types of the at-
tributes of the original ExampleSet and the Transpose of the Transpose of the original data set
are different.
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2.3.3 Joins
Append

Append

exa mer This operator builds a merged ExampleSet from two or more com-
patible ExampleSets by adding all examples into a combined set.

Description
This operator builds amerged ExampleSet from two ormore compatible ExampleSets by adding
all examples into a combined set. All input ExampleSetsmust have the sameattribute signature.
This means that all ExampleSets must have the same number of attributes. Names and roles of
attributes should be the same in all input ExampleSets. Please note that themerged ExampleSet
is built in memory and this operator might therefore not be applicable for merging huge data
set tables from database. In that case other preprocessing tools should be used that aggregate,
join, and merge tables into one table which is then used by RapidMiner.

Input Ports
example set (exa) TheAppendoperator canhavemultiple inputs. Whenone inputport is con-

nected, another input port becomes available which is ready to accept another input (if
any).This input port expects an ExampleSet. It is output of the Retrieve operator in the
attached Example Process. Output of other operators can also be used as input. It is es-
sential thatmeta data should be attachedwith the data for the input because attributes are
specified in their meta data. The Retrieve operator provides meta data along-with data.

Output Ports
merged set (mer) The merged ExampleSet is delivered through this port.

Parameters
data management (selection) This is an expert parameter. A long list is provided; users can

select any option from this list.

Tutorial Processes

Merging Golf and Golf-Testset data sets

In this process the ‘Golf’ data set and ‘Golf-Testset’ data set are loaded using the Retrieve op-
erators. Breakpoints are inserted after the Retrieve operators so that you can have a look at the
input ExampleSets. When you run the process, first you see the ‘Golf’ data set. As you can see,
it has 14 examples. When you continue the process, you will see the ‘Golf-Testset’ data set. It
also has 14 examples. The Append operator is applied to merge these two ExampleSets into a
single ExampleSet. The merged ExampleSet has all examples from all input ExampleSets, thus
it has 28 examples. You can see that both input ExampleSets had the same number of attributes,
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Figure 2.60: Tutorial process ‘Merging Golf and Golf-Testset data sets’.

same names and roles of attributes. This is why the Append operator could produce a merged
ExampleSet.
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Intersect

Intersect

exa

sec

exa

ori

This operator returns those examples of the first ExampleSet
(givenat the example set inputport)whose IDs are containedwithin
theotherExampleSet (givenat the secondport). It isnecessary that
both ExampleSets should have the ID attribute. The ID attribute
of both ExampleSets should be of the same type.

Description

This operator performs a set intersection on two ExampleSets on the basis of the ID attribute
i.e. the resulting ExampleSet contains all the examples of the first ExampleSet (given at the
example set input port) whose IDs appear in the second ExampleSet (given at the second port).
It is important to note that the ExampleSets do not need to have the same number of columns
or the same data types. The operation only depends on the ID attributes of the ExampleSets. It
should be made sure that the ID attributes of both ExampleSets are of the same type i.e. either
both are nominal or both are numerical.

Differentiation

• Set Minus The Set Minus and Intersect operators can be considered as opposite of each
other. The SetMinus operator performs a setminus on twoExampleSets on the basis of the
ID attribute i.e. the resulting ExampleSet contains all the examples of the first ExampleSet
whose IDs do NOT appear in the second ExampleSet. See page 281 for details.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Gen-
erate ID operator in the attached Example Process because this operator only works if the
ExampleSets have the ID attribute.

second (sec) This input port expects an ExampleSet. It is the output of the Generate ID oper-
ator in the attached Example Process because this operator only works if the ExampleSets
have the ID attribute.

Output Ports

example set output (exa) The ExampleSet with remaining examples (i.e. examples remain-
ing after the set intersection) of the first ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input (at example set input port) is passedwith-
out changing to the output through this port. This is usually used to reuse the same Ex-
ampleSet in further operators or to view the ExampleSet in the Results Workspace.

Related Documents

• Set Minus (page 281)
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Tutorial Processes

Intersection of two ExampleSets
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Figure 2.61: Tutorial process ‘Intersection of two ExampleSets’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Generate ID operator is applied
on it with the offset parameter set to 0. Thus the ids of the ‘Golf’ data set are from 1 to 14. A
breakpoint is insertedhere so you canhave a look at the ‘Golf’ data set. The ‘Polynomial’ data set
is loaded using the Retrieve operator. The Generate ID operator is applied on it with the offset
parameter set to 10. Thus the ids of the ‘Polynomial’ data set are from 11 to 210. A breakpoint
is inserted here so you can have a look at the ‘Polynomial’ data set.
The Intersect operator is applied next. The ‘Golf’ data set is provided at the example set input

port and the ‘Polynomial’ data set is provided at the second port. The order of ExampleSets is
very important. The Intersect operator compares the ids of the ‘Golf’ data set with the ids of
the ‘Polynomial’ data set and then returns only those examples of the ‘Golf’ data set whose id is
present in the ‘Polynomial’ data set. The ‘Golf’ data set ids are from 1 to 14 and the ‘Polynomial’
data set ids are from 11 to 210. Thus ‘Golf’ data set examples with ids 11 to 14 are returned by
the Intersect operator. It is important to note that the meta data of both ExampleSets is very
different but it does notmatter because the Intersect operator only depends on the ID attribute.
If the ExampleSets are switched at the input ports of the Intersect operator the results will be

verydifferent. In this case the Intersectoperator returnsonly thoseexamplesof the ‘Polynomial’
data set whose id is present in the ‘Golf’ data set. The ‘Golf’ data set ids are from 1 to 14 and the
‘Polynomial’ data set ids are from 11 to 210. Thus the ‘Polynomial’ data set examples with ids
11 to 14 are returned by the Intersect operator.
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Join

Join

lef

r ig

joi This Operator joins two ExampleSets using one ormore Attributes
of the input ExampleSets as key attributes.

Description
This Operator joins two ExampleSets using one or more Attributes of the input ExampleSets as
key attributes.
Identical values of the key attributes indicate matching Examples. An Attribute with id role is

selectedas keybydefault but anarbitrary set of oneormoreAttributes canbe chosenas key. Four
types of joins are possible: inner, left, right and outer join. All these types of joins are explained
in the parameters section.

Differentiation
• Append
The Append Operator merges the Examples of the input ExampleSets into the resulting
ExampleSet. Therefore all input ExampleSet need to have the same structure (number of
Attributes, Attribute names and value types).
See page 274 for details.

• Cartesian Product
The Cartesian Product Operator builds a cartesian product of the input ExampleSets, i.e.
every Example from the left ExampleSet is joined with each Example of the right Exam-
pleSet.
See page ?? for details.

• Union
The Union Operator combines both input ExampleSets in such a way that all Attributes
and Examples are part of the resulting union ExampleSet.
See page 285 for details.

• Superset
The Superset Operator expects two ExampleSets as input and adds the Attributes of the
first ExampleSet to the second ExampleSet and vice versa. Both resulting ExampleSets are
delivered as output of the Superset Operator.
See page 283 for details.

Input Ports
left (lef) The left input port expects an ExampleSet. This ExampleSet will be used as the left

ExampleSet for the join.

right (rig) The right input port expects an ExampleSet. This ExampleSet will be used as the
right ExampleSet for the join.
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Output Ports
join (joi) The output port delivers the joint ExampleSet.

Parameters
remove double attributes This parameter indicates if double Attributes should be removed

or renamed. Double Attributes are those Attributes that are present in both ExampleSets.
If this parameter is checked, from Attributes which are present in both ExampleSets only
the one from the left ExampleSet will be taken and the one from the right ExampleSet will
be discarded. If this parameter is unchecked, the Attributes from the right ExampleSet are
renamed. The key attributes will always be taken from the left ExampleSet. Please note
that this check for double Attributes will only be applied for regular Attributes. Special
Attributes of the right ExampleSet which do not exist in the left ExampleSet will simply
be added. If they already exist they are simply skipped.

join type This parameter specifies which join should be performed. You can easily understand
these joins by studying the tutorial Process. Four types of joins are supported:

• inner The resulting ExampleSet will contain only those Examples where the key at-
tributes of both input ExampleSets match, i.e. have the same value.

• left This is also called left outer join. The resulting ExampleSet will contain all Ex-
amples from the left ExampleSet. If no matching Examples were found in the right
ExampleSet, then its Attributes will consist of missing values. Missing values or null
values are shown as ‘?’ in RapidMiner. The left join will always contain the results of
the inner join; however it can contain some Examples that have no matching Exam-
ples in the right ExampleSet.

• right This is also called right outer join. The resulting ExampleSet will contain all
records from the right ExampleSet. If no matching Examples were found in the left
ExampleSet, then its Attributes will consist of missing values. Missing values or null
values are shown as ‘?’ in RapidMiner. The right join will always contain the results
of the inner join; however it can contain some Examples that have no matching Ex-
amples in the left ExampleSet.

• outer This is also called full outer join. This type of join combines the results of
the left and the right join. All Examples from both ExampleSets will be part of the
resulting ExampleSet, whether the matching key attribute value exists in the other
ExampleSet or not. If no matching key attribute value was found the corresponding
resulting Attributes will consist of missing values. Missing values or null values are
shown as ‘?’ in RapidMiner. The outer joinwill always contain the results of the inner
join; however it can contain some Examples that have no matching Examples in the
other ExampleSet.

use id attribute as key This parameter indicates if the Attribute with the id role should be
used as the key attribute. This option is checked by default. If unchecked, then you have
to specify the key attributes for both left and right ExampleSets. Identical values of the key
attributes indicate matching Examples.

key attributes This parameter is available when when the parameter use id attribute as key
is unchecked. This parameter specifies Attribute(s) which are used as the key attributes.
Identical values of the key attributes indicate matching Examples. For each key attribute
from the left ExampleSet a corresponding key attribute from the right ExampleSet has to
be chosen. Choosing appropriate key attributes is critical for obtaining the desired results.
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keep both join attributes If checked, both Attributes of a join pair will be kept. Usually this
is unneccessary since both Attributes are identical. It may be useful to keep such a column
if there are missing values on one side.

Tutorial Processes

Explore the different join types

After creating two similar ExampleSets which are connected to each port of the Join Operator
you can play around with the available join types. The description inside this process explains
the created ExampleSets as well as the results of each join type.
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Set Minus

Set Minus

exa

sub

exa

ori

This operator returns those examples of the ExampleSet (given at
the example set input port) whose IDs are not contained within the
other ExampleSet (given at the subtrahend port). It is necessary
that both ExampleSets should have the ID attribute. The ID at-
tribute of both ExampleSets should be of the same type.

Description

This operator performs a set minus on two ExampleSets on the basis of the ID attribute i.e. the
resultingExampleSet containsall theexamplesof theminuendExampleSet (givenat the example
set input port) whose IDs do not appear in the subtrahend ExampleSet (given at the subtrahend
port). It is important to note that the ExampleSets do not need to have the same number of
columns or the same data types. The operation only depends on the ID attributes of the Exam-
pleSets. It should be made sure that the ID attributes of both ExampleSets are of the same type
i.e. either both are nominal or both are numerical.

Differentiation

• Intersect The Set Minus and Intersect operators can be considered as opposite of each
other. The Intersect operator performs a set intersect on two ExampleSets on the basis of
the ID attribute i.e. the resulting ExampleSet contains all the examples of the first Exam-
pleSet whose IDs appear in the second ExampleSet. See page 276 for details.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Gen-
erate ID operator in the attached Example Process because this operator only works if the
ExampleSets have the ID attribute.

subtrahend (sub) This input port expects an ExampleSet. It is the output of the Generate ID
operator in the attached Example Process because this operator only works if the Exam-
pleSets have the ID attribute.

Output Ports

example set output (exa) The ExampleSet with remaining examples (i.e. examples remain-
ing after the set minus) of the minuend ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input (at example set input port) is passedwith-
out changing to the output through this port. This is usually used to reuse the same Ex-
ampleSet in further operators or to view the ExampleSet in the Results Workspace.

Related Documents

• Intersect (page 276)
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Tutorial Processes

Introduction to the Set Minus operator

The ‘Golf’ data set is loaded using the Retrieve operator. The Generate ID operator is applied
on it with the offset parameter set to 0. Thus the ids of the ‘Golf’ data set are from 1 to 14. A
breakpoint is insertedhere so you canhave a look at the ‘Golf’ data set. The ‘Polynomial’ data set
is loaded using the Retrieve operator. The Generate ID operator is applied on it with the offset
parameter set to 10. Thus the ids of the ‘Polynomial’ data set are from 11 to 210. A breakpoint
is inserted here so you can have a look at the ‘Polynomial’ data set.
The SetMinus operator is applied next. The ‘Golf’ data set is provided at the example set input

port and the ‘Polynomial’ data set is provided at the subtrahend port. The order of ExampleSets
is very important. The Set Minus operator compares the ids of the ‘Golf’ data set with the ids
of the ‘Polynomial’ data set and then returns only those examples of the ‘Golf’ data set whose
id is not present in the ‘Polynomial’ data set. The ‘Golf’ data set ids are from 1 to 14 and the
‘Polynomial’ data set ids are from 11 to 210. Thus ‘Golf’ data set examples with ids 1 to 10 are
returned by the Set Minus operator. It is important to note that the meta data of both Example-
Sets is very different but it does not matter because the Set Minus operator only depends on the
ID attribute.
If the ExampleSets are switched at the input ports of the SetMinus operator the results will be

very different. In this case the Set Minus operator returns only those examples of the ‘Polyno-
mial’ data set whose id is not present in the ‘Golf’ data set. The ‘Golf’ data set ids are from 1 to
14 and the ‘Polynomial’ data set ids are from 11 to 210. Thus the ‘Polynomial’ data set examples
with ids 15 to 210 are returned by the Set Minus operator.
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Superset

Superset

exa

exa

sup

sup

This operator takes two ExampleSets as input and adds new fea-
tures of the first ExampleSet to the second ExampleSet and vice
versa to generate two supersets. The resultant supersets have the
same set of attributes but the examples may be different.

Description

The Superset operator generates supersets of the given ExampleSets by adding new features
of one ExampleSet to the other ExampleSet. The values of the new features are set to missing
values in the supersets. This operator delivers two supersets as output:

1. The first has all attributes and examples of the first ExampleSet + all attributes of the sec-
ond ExampleSet (with missing values)

2. The second has all attributes and examples of the second ExampleSet + all attributes of
the first ExampleSet (with missing values)

Thus both supersets have the same set of regular attributes but the examplesmay be different.
It is important to note that the supersets can have only one special attribute of a kind. By default
this operator adds only new ‘regular’ attributes to the other ExampleSet for generating super-
sets. For example, if both input ExampleSets have a label attribute then the first superset will
have all attributes of the first ExampleSet (including label) + all regular attributes of the second
ExampleSet. The second superset will behave correspondingly. The include special attributes
parameter can be used for changing this behavior. But it should be used carefully because even
if this parameter is set to true, the resultant supersets can have only one special attribute of a
kind. Please study the attached Example Process for better understanding.

Input Ports

example set 1 (exa) This input port expects an ExampleSet. It is the output of the Retrieve
operator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with the data for the input be-
cause attributes are specified in their meta data.

example set 2 (exa) This input port expects an ExampleSet. It is the output of the Retrieve
operator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with the data for the input be-
cause attributes are specified in their meta data.

Output Ports

superset 1 (sup) The first superset of the input ExampleSets is delivered through this port.

superset 2 (sup) The second superset of the input ExampleSets is delivered through this port.
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Parameters
include special attributes (boolean) Thisparameter indicates if the special attributes should

be included for generation of the supersets. This operator should be used carefully espe-
cially if both ExampleSets have the same special attributes because the resultant supersets
can have only one special attribute of a kind.

Tutorial Processes

Generating supersets of the Golf and Iris data sets

In this process the ‘Golf’ and ‘Iris’ data sets are loaded using the Retrieve operators. Breakpoints
are inserted after the Retrieve operators so that you can have a look at the input ExampleSets.
When you run the process, first you see the ‘Golf’ data set. It has four regular and one special
attribute with 14 examples each. When you continue the process, you will see the ‘Iris’ data set.
It has four regular and two special attributes with 150 examples each. Note that themeta data of
both ExampleSets is very different. The Superset operator is applied for generating supersets of
these two ExampleSets. The resultant supersets can be seen in the Results Workspace. You can
see that one superset has all attributes and examples of the ‘Iris’ data set + 4 regular attributes
of the ‘Golf’ data set (with missing values). The other superset has all attributes and examples
of the ‘Golf’ data set + 4 regular attributes of the ‘Iris’ data set (with missing values).
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Union

Union

exa

exa

uni
This operator builds the union of the input ExampleSets. The in-
put ExampleSets are combined in such a way that attributes and
examplesof both inputExampleSets arepart of the resultantunion
ExampleSet.

Description
The Union operator builds the superset of features of both input ExampleSets such that all reg-
ular attributes of both ExampleSets are part of the superset. The attributes that are common in
both ExampleSets are not repeated in the superset twice, a single attribute is created that holds
data of both ExampleSets. If the special attributes of both input ExampleSets are compatible
with each other then only one special attribute is created in the superset which has examples of
both the input ExampleSets. If special attributes of ExampleSets are not compatible, the spe-
cial attributes of the first ExampleSet are kept. If both ExampleSets have any attributes with the
samename, they should be compatible with each other; otherwise youwill get an errormessage.
This can be understood by studying the attached Example Process.

Input Ports
example set 1 (exa) This input port expects an ExampleSet. It is the output of the Retrieve

operator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with the data for the input be-
cause attributes are specified in their meta data.

example set 2 (exa) This input port expects an ExampleSet. It is the output of the Retrieve
operator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with the data for the input be-
cause attributes are specified in their meta data.

Output Ports
union (uni) The union of the input ExampleSets is delivered through this port.

Tutorial Processes

Union of the Golf and Golf-Testset data sets

In this process the ‘Golf’ data set and ‘Golf-Testset’ data set are loaded using the Retrieve op-
erators. Breakpoints are inserted after the Retrieve operators so that you can have a look at the
input ExampleSets. When you run the process, first you see the ‘Golf’ data set. As you can see, it
has 14 examples. When you continue the process, you will see the ‘Golf-Testset’ data set. It also
has 14 examples. Note that the meta data of both ExampleSets is almost the same. The Union
operator is applied to combine these two ExampleSets into a single ExampleSet. The combined
ExampleSet has all attributes and examples from the input ExampleSets, thus it has 28 exam-
ples. You can see that both input ExampleSets had the same number of attributes, same names
and roles of attributes. This iswhy theUnionExampleSet also has the samenumber of attributes
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with the same names and roles. Here the Union operator behaves like the Append operator i.e.
it simply combines examples of two ExampleSets with compatible meta data.

Union of the Golf and Iris data sets

In this process the ‘Golf’ data set and the ‘Iris’ data set are loaded using the Retrieve operators.
Breakpoints are inserted after the Retrieve operators so that you can have a look at the input
ExampleSets. When you run the process, first you see the ‘Golf’ data set. As you can see, it has
14 examples. When you continue the process, you will see the ‘Iris’ data set. It has 4 regular
and 2 special attributes with 150 examples. Note that themeta data of both ExampleSets is very
different. The Union operator is applied to combine these two ExampleSets into a single Exam-
pleSet. The combined ExampleSet has all attributes and examples from the input ExampleSets,
thus it has 164 (14+150) examples. Note that the ‘Golf’ data set has an attribute with label role:
the ‘Play’ attribute. The ‘Iris’ data set also has an attribute with label role: the ‘label’ attribute.
As these two label attributes are not compatible, only the label attribute of the first ExampleSet
is kept. The examples of ‘Iris’ data set have null values in this attribute of the resultant Union
ExampleSet.

Union of the Golf(with id attribute) and Iris data sets

In this process the ‘Golf’ data set and ‘Iris’ data set are loaded using the Retrieve operators. The
Generate ID operator is applied on the Golf data set to generate nominal ids starting from id_1.
Breakpoints are inserted before the Union operator so that you can have a look at the input Ex-
ampleSets. When you run the process, first you see the ‘Golf’ data set. As you can see, it has 14
examples. It has two special attributes. When you continue the process, you will see the ‘Iris’
data set. It has 4 regular and 2 special attributes with 150 examples. Note that the meta data
of both ExampleSets is very different. The Union operator is applied to combine these two Ex-
ampleSets into a single ExampleSet. The combined ExampleSet has all attributes and examples
from the input ExampleSets, thus it has 164 (14+150) examples. Note that the ‘Golf’ data set
has an attribute with label role: the ‘Play’ attribute. The ‘Iris’ data set also has an attribute with
label role: the ‘label’ attribute. As these two label attributes are not compatible, only the la-
bel attribute of the first ExampleSet is kept. The examples of the ‘Iris’ data set have null values
in this attribute of the union ExampleSet. Also note that both input ExampleSets have id at-
tributes. The names of these attributes are the same and they both have nominal values, thus
these two attributes are compatible with each other. Thus a single id attribute is created in the
resultant Union ExampleSet. Also note that the values of ids are not unique in the resultant
ExampleSet.
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2.4 Values
Adjust Date

Adjust Date

exa exa

ori

This operator adjusts the date in the specified attribute by adding
or subtracting the specified amount of time.

Description

TheAdjust Date operator adjusts the values of the specified date attribute by adding or subtract-
ing constant values. Year, month, day, hour, minute, second and millisecond adjustments are
allowed. Multiple adjustments can be made to a single attribute. For example, you can add a
month and subtract 2 hours from an attribute. If the keep old attribute parameter is set to true,
the old attributewill be kept alongwith the adjusted attribute. Otherwise, the adjusted attribute
will replace the previous attribute.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-
process operator in the attached Example Process. The output of other operators can also
be used as input. The ExampleSet should have at least one date/time attribute because if
there is no such attribute, the use of this operator does not make sense.

Output Ports

example set output (exa) The values of the selected date attribute are adjusted and the re-
sultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

attribute name (string) This parameter specifies thenameof the date attributewhich should
be adjusted.

adjustments (list) This parameter defines the list of all date adjustments. Multiple adjust-
ments can be made to a single attribute. For example, you can add a month and subtract
2 hours from the selected attribute.

keep old attribute (boolean) This parameter indicates if the original date attribute should
bekept. If this parameter is set to true, theold attributewill be kept alongwith the adjusted
attribute. Otherwise, the adjusted attribute will replace the previous attribute.
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Tutorial Processes

Making multiple adjustments in a date attribute

This Example Process starts with the Subprocess operator. The operator chain inside the Sub-
process operator generates an ExampleSet for this process. The explanation of this inner chain
of operators is not relevant here. A breakpoint is inserted here so that you can have a look at
the ExampleSet. You can see that this ExampleSet has a date attribute named ‘deadline_date’.
The Adjust Date operator is applied on this ExampleSet to adjust this date attribute. Two ad-
justments are made to this attribute. 1) 5 days are added 2) 2 months are subtracted. Run the
process and compare the resultant ExampleSet with the original ExampleSet. You can clearly
see that the date values have been adjusted. For example, the date value 20-August has been
changed to 25-June after addition of 5 days and subtraction of two months.
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Cut

Cut

exa exa

ori

This operator cuts the nominal values of the specified regular at-
tributes. The resultant attributes have values that are substrings
of the original attribute values.

Description
The Cut operator creates new attributes from nominal attributes where the new attributes con-
tain only substrings of the original values. The range of characters to be cut is specified by the
first character index and last character index parameters. The first character index parameter spec-
ifies the index of the first character and the last character index parameter specifies the index of
the last character to be included. All characters of the attribute values that are at index equal
to or greater than the first character index and less than or equal to the last character index are
included in the resulting substring. Please note that the counting starts with 1 and that the
first and the last character will be included in the resulting substring. For example, if the value
is “RapidMiner” and the first index is set to 6 and the last index is set to 9 the result will be
“Mine”. If the last index is larger than the length of the word, the resulting substrings will end
with the last character.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process.

Output Ports
example set output (exa) The ExampleSet with new attributes that have values that are sub-

strings of the original attributes is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
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parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4 the Op-
erator will fail if a selected Attribute is not in the ExampleSet)

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
windowwith two lists. All attributes are present in the left list and shifted to the right list,
which is the list of selected attributes.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.
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except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes are selected irrespective of the conditions in the Select Attribute operator.
If this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

first character index (integer) This parameter specifies the index of thefirst character of the
substring which should be kept. Please note that the counting starts with 1.

last character index (integer) This parameter specifies the index of the last character of the
substring which should be kept. Please note that the counting starts with 1.

Tutorial Processes

Applying the Cut operator on label of the Iris data set

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that you
can view the data set before application of the Cut operator. You can see that the label attribute
has three possible values: ‘Iris-setosa’, ‘Iris-versicolor’ and ‘Iris-virginica’. If wewant to remove
the ‘Iris-’ substring from the start of all the label values we can use the Cut operator. The Cut
operator is applied on the Iris data set. The first character index parameter is set to 6 becausewe
want to remove first 5 characters (’Iris-’). The last character index parameter can be set to any
value greater than the length of longest possible value. Thus the last character index parameter
can be safely set to 20 because if the last index is larger than the length of theword, the resulting
substrings will end with the last character. Run the process and you can see that the substring
‘Iris-’ has been removed from the start of all possible values of the label attribute.
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Map

M a p

exa exa

ori

This operator maps specified values of selected attributes to new
values. This operator can be applied on both numerical and nom-
inal attributes.

Description
This operator can be used to replace nominal values (e.g. replace the value ‘green’ by the value
‘green_color’) as well as numerical values (e.g. replace all values ‘3’ by ‘-1’). But, one use of this
operator can do mappings for attributes of only one type. A single mapping can be specified
using the parameters replace what and replace by as in Replace operator. Multiple mappings can
be specified through the value mappings parameter. Additionally, the operator allows defining
a default mapping. This operator allows you to select attributes to make mappings in. This
operator allows you to specify a regular expression. Attribute values of selected attributes that
match this regular expression are mapped by the specified value mapping. Please go through
the parameters and the Example Process to develop a better understanding of this operator.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with the data for the input be-
cause attributes are specified in theirmeta data. The Retrieve operator providesmeta data
along-with data.

Output Ports
example set (exa) The ExampleSet with value mappings is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; themethod youwant to use for selecting attributes onwhich youwant to applymap-
pings. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
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option will not work if the meta data is not known. When this option is selected an-
other parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)

• regular_expression This option allows you to specify a regular expression for the
attribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. The user should have a basic understanding of type hi-
erarchy when selecting attributes through this option. When this option is selected
some other parameters (value type, use value type exception) become visible in the
Parameters panel.

• block_type This option is similar in working to the value_type option. This option
allows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the
Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are not selected.

• numeric_value_filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose exam-
ples all satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes.

regular expression (string) Attributes whose name match this expression will be selected.
Regular expression is very powerful tool but needs a detailed explanation to beginners. It
is always good to specify the regular expression through edit and preview regular expression
menu. This menu gives a good idea of regular expressions. This menu also allows you to
try different expressions and preview the results simultaneously. This will enhance your
concept of regular expressions.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.
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use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) Attributes matching this type will be removed from the final
outputeven if theymatched thepreviouslymentioned type i.e. value typeparameter’s value.

block type (selection) Block type of attributes to be selected can be chosen from drop down
list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) Attributes matching this block type will be removed from the
final output even if they matched the previously mentioned block type.

numeric condition (string) Numeric condition for testing examples of numeric attributes is
mentionhere. For example thenumeric condition ‘>6’will keepall nominal attributes and
all numeric attributes having a value of greater than 6 in every example. A combination
of conditions is possible: ‘> 6 && < 11’ or ‘<= 5 || < 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) Special attributesareattributeswith special roleswhich
identify the examples. In contrast regular attributes simply describe the examples. Spe-
cial attributes are: id, label, prediction, cluster, weight and batch. By default all special
attributes are selected irrespective of the conditions in the Select Attribute operator. If
this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
removed prior to selection of this parameter. After selection of this parameter ‘att1’ will
be removed and ‘att2’ will be selected.

value mappings Multiple mappings can be specified through this parameter. If only a single
mapping is required. It can be done using the parameters replace what and replace by as
in the Replace operator. Old values and new values can be easily specified through this
parameter. Multiplemappings canbedefined for the sameold value but only thenewvalue
corresponding to the first mapping is taken as replacement. Regular expressions can also
be used here if the consider regular expressions parameter is set to true.

replace what (string) This parameter specifies what is to be replaced. This can be specified
using regular expressions. This parameter is useful only if single mapping is to be done.
For multiple mappings use the value mappings parameter

replace by (string) Regionsmatching regular expression of the replace what parameter are re-
placed by the value of the replace by parameter.This parameter is useful only if singlemap-
ping is to be done. For multiple mappings use the value mappings parameter.
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consider regular expressions (boolean) This parameter enablesmatching based on regular
expressions; old values(old values are original values, old values and ‘replace what’ rep-
resent the same thing) may be specified as regular expressions. If the parameter consider
regular expressions is enabled, old values are replaced by the new values if the old values
match thegiven regular expressions. Thevalue corresponding to thefirstmatching regular
expression in the mappings list is taken as a replacement.

add default mapping (boolean) If set to true, all values that occur in the selected attributes
of the ExampleSet but are not listed in the value mappings list are mapped to the value of
the default value parameter.

default value (string) This parameter is only available if the add default mapping parameter
is checked. If add default mapping is set to true and the default value is properly set, all
values that occur in the selected attributes of the ExampleSet but are not listed in the value
mappings list are replaced by thedefault value. This may be helpful in cases where only
some values should bemapped explicitly andmany unimportant values should bemapped
to a default value (e.g. ‘other’).

Tutorial Processes

Mapping multiple values

Focus of this Example Process is the use of the value mappings parameter and the default value
parameter. Use of the replacewhat and replace by parameter can be seen in the Example Process
of the Replace operator. Almost all other parameters of the Map operator are also part of the
SelectAttributesoperator, their use canbebetterunderstoodby studying theAttributesoperator
and it’s Example Process.
The ‘Golf’ data set is loaded using the Retrieve operator. The Map operator is applied on it.

‘Wind’ and ‘Outlook’ attributes are selected for mapping. Thus, the effect of the Map opera-
tor will be limited to just these two attributes. Four value mappings are specified in the value
mappings parameter. ‘true’, ‘false’, ‘overcast’ and ‘sunny’ are replaced by ‘yes’, ‘no’, ‘bad’ and
‘good’ respectively. The add default mappings parameter is set to true and ‘other’ is specified in
the default value parameter. ‘Wind’ attribute has only two possible values i.e. ‘true’ and ‘false’.
Both of them were mapped in the mappings list. ‘Outlook’ attribute has three possible values
i.e. ‘sunny’, ‘overcast’ and ‘rain’. ‘sunny’ and ‘overcast’ were mapped in the mappings list but
‘rain’ was not mapped. As add default mappings parameter is set to true, ‘rain’ will be mapped
to the default value i.e. ‘other’.
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Merge

M e r g e

exa exa

ori

This operator merges two nominal values of the specified regular
attribute.

Description

The Merge operator is used for merging two nominal values of the specified attribute of the in-
put ExampleSet. Please note that this operator can merge only the values of regular attributes.
The required regular attribute is specified using the attribute name parameter. The first value pa-
rameter is used for specifying the first value to be merged. The second value parameter is used
for specifying the second value to bemerged. The two values are merged in ‘first_second’ format
where first is the value of the first value parameter and second is the value of the second value pa-
rameter. It is not compulsory for the first value and second value parameters to have values from
the range of possible values of the selected attribute. However, at least one of the first value and
second value parameters should have a value from the range of possible values of the selected
attribute. Otherwise this operator will have no affect on the input ExampleSet.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve
operator in the attached Example Process.

Output Ports

example set output (exa) The ExampleSet with the merged attribute values is output of this
port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

attribute name (string) The required nominal attribute whose values are to bemerged is se-
lected through this parameter. This operator can be applied only on regular attributes.

first value (string) This parameter is used for specifying the first value to be merged. It is not
compulsory for the first value parameter to have a value from the range of possible values
of the selected attribute.

second value (string) This parameter is used for specifying the second value to bemerged. It
is not compulsory for the second value parameter to have a value from the range of possible
values of the selected attribute.
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Tutorial Processes

Introduction to the Merge operator

The Golf data set is loaded using the Retrieve operator. The Merge operator is applied on it.
The attribute name parameter is set to ‘Outlook’. The first value parameter is set to ‘sunny’
and the second value parameter is set to ‘hot’. All the occurrences of value ‘sunny’ are replaced
by ‘sunny_hot’ in the Outlook attribute of the resultant ExampleSet. Now set the value of the
secondvalueparameter to ‘rain’ and run theprocess again. As ‘rain’ is also apossible valueof the
Outlook attribute, all occurrences of ‘sunny’ and ‘rain’ in the Outlook attribute are replaced by
‘sunny_rain’ in the resultant ExampleSet. This Example Process is just to explain basic working
of the Merge operator.
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Remap Binominals

Remap Binominals

exa exa

ori

This operator modifies the internal value mapping of binominal
attributes according to the specified negative and positive values.

Description
The Remap Binominals operator modifies the internal mapping of binominal attributes accord-
ing to the specified positive and negative values. The positive and negative values are specified
by the positive value and negative value parameters respectively. If the internal mapping differs
from the specified values then the internal mapping is switched. If the internal mapping con-
tains other values than the specified ones themapping is not changed and the attribute is simply
skipped. Please note that this operator changes the internal mapping so the changes are not
explicitly visible in the ExampleSet. This operator can be applied only on binominal attributes.
Please note that if there is a nominal attribute in the ExampleSet with only two possible values,
this operatorwill still not be applicable on it. This operator requires the attribute to be explicitly
defined as binominal in the meta data.

Input Ports
example set input (exa) This inputport expects anExampleSet. Pleasenote that there should

be at least one binominal attribute in the input ExampleSet.

Output Ports
example set output (exa) The resultant ExampleSet is output of this port. Externally this

data set is the same as the input ExampleSet, only the internal mappingsmay be changed.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.
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• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
can be selected from the drop down box of parameter attribute if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list. Attributes can be shifted
to the right list, which is the list of selected attributes.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.
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block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes are selected irrespective of the conditions in the Select Attribute operator.
If this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

negative value (string) Thisparameter specifies the internalmapping for thenegativeor false
value of the selected binominal attributes.

positive value (string) This parameter specifies the internal mapping for the positive or true
value of the selected binominal attributes.

Tutorial Processes

Changing mapping of the Wind attribute of the Golf data set

The ‘Golf’ data set is loadedusing theRetrieve operator. In this Example Processwe shall change
the internal mapping of the ‘Wind’ attribute of the ‘Golf’ data set. A breakpoint is inserted af-
ter the Retrieve operator so that you can view the ‘Golf’ data set. As you can see the ‘Wind’
attribute of the ‘Golf’ data set is nominal but it has only two possible values. The Remap Bi-
nominals operator cannot be applied on such an attribute; it requires that the attribute should
be explicitly declared as binominal in the meta data. To accomplish this, the Nominal to Bi-
nominal operator is applied on the ‘Golf’ data set to convert the ‘Wind’ attribute to binominal
type. A breakpoint is inserted here so that you can view the ExampleSet. Now that the ‘Wind’
attribute has been converted to binominal type, the Remap Binominals operator can be applied
on it. The ‘Wind’ attribute is selected in the Remap Binominals operator. The negative value
and positive value parameter are set to ‘true’ and ‘false’ respectively. Run the process and the
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internal mapping is changed. This change is an internal one so it will not be visible explicitly
in the Results Workspace. Now change the value of the positive value and negative value pa-
rameters to ‘a’ and ‘b’ respectively and run the complete process. Have a look at the log. You
will see the following message: “WARNING: Remap Binominals: specified values do not match
values of attribute Wind, attribute is skipped.” This log shows that as the values ‘a’ and ‘b’ are
not values of the ‘Wind’ attribute so no change in mapping is done.
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Replace

Replace

exa exa

ori

This operator replaces parts of the values of selected nominal at-
tributes matching a specified regular expression by a specified re-
placement.

Description

This operator allows you to select attributes to make replacements in and to specify a regular
expression. Attribute values of selected attributes that match this regular expression are re-
placed by the specified replacement. The replacement can be empty and can contain capturing
groups. Please keep in mind that although regular expressions are much more powerful than
simple strings, you might simply enter characters to search for.

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator
in theattachedExampleProcess. Theoutputofotheroperators canalsobeusedas input. It
is essential thatmetadata shouldbe attachedwith thedata for the input because attributes
are specified in theirmeta data. TheRetrieve operator providesmeta data along-with data.

Output Ports

example set (exa) An ExampleSet with replacements is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; the method you want to use for selecting attributes in which you want to make re-
placements. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.(Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.(Since RapidMiner 6.0.4 the Op-
erator will fail if a selected Attribute is not in the ExampleSet)
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• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. User should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Param-
eters panel.

• block_type This option is similar in working to the value_type option. This option
allows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the
Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are not selected.

• numeric_value_filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose exam-
ples all satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes.

regular expression (string) Attributes whose name match this expression will be selected.
Regular expression is very powerful tool but needs a detailed explanation to beginners. It
is always good to specify the regular expression through the edit and preview regular expres-
sionmenu. It gives a good idea of regular expressions and also allows you to try different
expressions and preview the results simultaneously. This will enhance your concept of
regular expressions.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from drop down
list.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.
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except value type (selection) Attributes matching this type will be removed from the final
outputeven if theymatched thepreviouslymentioned type i.e. value typeparameter’s value.

block type (selection) The Block type of attributes to be selected can be chosen from drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) Attributes matching this block type will be removed from the
final output even if they matched the previously mentioned block type.

numeric condition (string) Numeric condition for testing examples of numeric attributes is
mentionhere. For example thenumeric condition ‘>6’will keepall nominal attributes and
all numeric attributes having a value of greater than 6 in every example. A combination
of conditions is possible: ‘> 6 && < 11’ or ‘<= 5 || < 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) Special attributesareattributeswith special roleswhich
identify the examples. In contrast regular attributes simply describe the examples. Spe-
cial attributes are: id, label, prediction, cluster, weight and batch. By default all special
attributes are selected irrespective of the conditions in the Select Attribute operator. If
this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
removed prior to selection of this parameter. After selection of this parameter ‘att1’ will
be removed and ‘att2’ will be selected.

replace what (string) This parameter specifies what is to be replaced. This can be specified
using regular expressions. The edit regular expression menu can assist you in specifying
the right regular expression.

replace by (string) The regionsmatching regular expressionof the replacewhatparameter are
replaced by the value of the replace by parameter.

Tutorial Processes

Use of replace what and replace by parameters

The focus of this process is to show the use of the replace what and replace by parameters. All
other parameters are for the selection of attributes on which the replacement is to be made.
For understanding these parameters please study the Example Process of the Select Attributes
operator.
The ‘Golf’ data set is loaded using the Retrieve operator. The attribute filter type parameter is

set to ‘all’ and the include special attributes parameter is also checked. Thus, replacements are
made on all attributes including special attributes. The replace what parameter is providedwith
the regular expression ‘.*e.*’ which means any attribute value that has character ‘e’ in it. The
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replace byparameter is given the value ‘E’. Run theprocess. Youwill see that ‘E’ is placed inplace
of ‘yes’, ‘overcast’, ‘true’ and ‘false’. This is because all the values have an ‘e’ in it. You can see
the power of this operator. Now set the regular expression of replace what operator to ‘e’. Run
the process again. This time you will see that the entire values are not replaced by ‘E’, instead
only the character ‘e’ is replaced by ‘E’. Thus new values of ‘yes’, ‘overcast’, ‘true’ and ‘false’ are
‘yEs’, ‘ovErcast’, ‘truE’ and ‘falsE’ respectively. Youcan see thepowerof this operator and regular
expressions. Thus it should be made sure that the correct regular expression is provided. If you
leave the replace by parameter empty or write ‘?’ in it, the null value is used as replacement
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Replace (Dictionary)

Replace (Diction.. .

exa

dic

exa

ori

pre

This operator replaces substrings (in the values) of the selected
nominal attributes of the first ExampleSet by using the dictionary
specified by the second ExampleSet.

Description
This operator takes two ExampleSets as input. It replaces substrings (in the values) of the se-
lected nominal attributes of the first ExampleSet by using the value-mappings defined in the
second ExampleSet. This operator uses the second ExampleSet as a dictionary. The second Ex-
ampleSet must have two nominal attributes for value-mappings i.e. the ‘from’ attribute (i.e.
specified through the from attribute parameter) and the ‘to’ attribute (i.e. specified through the
to attribute parameter). For every example in the second ExampleSet a dictionary entry is cre-
ated that matches the ‘from attribute’ value to the ‘to attribute’ value. Finally, this dictionary is
used for replacing substrings in the first ExampleSet. If the values of the ‘from’ attribute of the
second ExampleSet are found (as a whole or as a substring) in the selected nominal attributes of
the first ExampleSet, then the corresponding value of the ‘to’ attribute is used as a replacement
for the substring in the first ExampleSet. Please study the attached Example Process for better
understanding.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input. The ExampleSet should have at least one nominal attribute because if
there is no such attribute, the use of this operator does not make sense. The substrings of
this ExampleSet will be replaced by using the second ExampleSet.

dictionary (dic) This input port expects an ExampleSet. It is the output of the Subprocess op-
erator in the attached Example Process. The output of other operators can also be used
as input. This ExampleSet should have a ‘from attribute’ and ‘to attribute’ as specified in
the description of this operator. These attributes will be used for substring replacements
in the first ExampleSet.

Output Ports
example set output (exa) The substrings of the selected nominal attributes of the first Ex-

ampleSet are replaced and the resultant ExampleSet is delivered through this port.

original (ori) The first ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has the infor-
mation regarding the parameters of this operator in the current process.
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Parameters
create view (boolean) It is possible to create a View instead of changing the underlying data.

Simply select this parameter to enable this option. The transformation that would be nor-
mally performed directly on the datawill then be computed every time a value is requested
and the result is returned without changing the data.

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to thenumeric type. Users should have a basic understanding of typehierarchy
when selecting attributes through this option. When it is selected some other param-
eters (value type, use value type exception) become visible in the Parameters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
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also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

from attribute (string) This parameter specifies the name of the attribute of the second Ex-
ampleSet that specifies the substrings that should be replaced.
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to attribute (string) This parameter specifies the name of the attribute of the second Exam-
pleSet that specifies the replacements of the substrings.

use regular expressions (boolean) This parameter specifies if the replacements should be
treated as regular expressions.

convert to lowercase (boolean) This parameter specifies if the strings should be converted
to lower case.

first match only (boolean) This parameter specifies if only the first match in the dictionary
should be considered. If set to false, subsequent matches will be applied iteratively.

Tutorial Processes

Replacing substrings by using a dictionary

The ‘Golf’ data set is loadedusing theRetrieveoperator. Abreakpoint is insertedhere so that you
can have a look at this ExampleSet. This ExampleSet will be used as the first ExampleSet for the
Replace (Dictionary) operator. Therefore substring replacements will be made in this Example-
Set. The second ExampleSet is provided by the Subprocess operator. The operator chain inside
the Subprocess operator generates a dictionary ExampleSet for this process. The explanation
of this inner chain of operators is not relevant here. A breakpoint is inserted here so that you
can have a look at the ExampleSet. You can see that this ExampleSet has two nominal attributes
‘att1’ and ‘att2’. The Replace (Dictionary) operator takes these two ExampleSets as input and
makes substring replacements in the first ExampleSet by using the second ExampleSet. Have a
look at the parameters of the Replace (Dictionary) operator. The attribute filter type parameter
is set to ‘all’, thus substring replacements will be done in all attributes of the first ExampleSet.
The from attribute and to attribute parameters are set to ‘att1’ and ‘att2’ respectively. Thus if
the values of the ‘att1’ attribute (i.e. ‘true’ and ‘false’) are found in any attribute of the first Ex-
ampleSet, they will be replaced by the corresponding ‘att2’ attribute values (i.e. ‘YES’ and ‘NO’
respectively). All other parameters are used with default values. Run the process and compare
the resultant ExampleSetwith theoriginal ExampleSet. You can clearly see in theWindattribute
that the substrings ‘true’ and ‘false’ have been replaced by ‘YES’ and ‘NO’ respectively. Please
note that this operator is a substring replacement tool, although it was used for value replace-
ment in this process. If the ‘att1’ attribute had the value ‘tr’ instead of ‘true’; all occurrences of
this substring would have been replaced by ‘YES’. In that case ‘true’ value in the Wind attribute
would have been changed to ‘YESue’.
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Set Data

Set  Data

exa exa

ori

This operator sets the value of one or more attributes of the spec-
ified example.

Description

The Set Data operator sets the value of one or more attributes of the specified example of the
input ExampleSet. The example is specified by the example index parameter. The attribute name
parameter specifies the attribute whose value is to be set. The value parameter specifies the
new value. Values of other attributes of the same example can be set by the additional values
parameter. Please note that the values should be consistent with the type of the attribute e.g.
specifying a string value is not allowed for an integer type attribute.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Re-
trieve operator in the attached Example Process.

Output Ports

example set output (exa) TheExampleSetwithnewvaluesof the selectedexample’s attributes
is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

example index (integer) Thisparameter specifies the indexof theexamplewhosevalue should
be set. Please note that counting starts from 1.

attribute name (string) Thisparameter specifies thenameof theattributewhosevalue should
be set.

count backwards (boolean) If set to true, the counting order is reversed. The last example
is addressed by index 1, the second last example is addressed by index 2 and so on.

value (string) This parameter specifies the new value of the selected attribute (selected by the
attribute name parameter) of the specified example (specified by the example index param-
eter).

additional values The values of other attributes of the same example can be set by this pa-
rameter.
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Tutorial Processes

Introduction to the Set Data operator

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can view the data set before application of the Set Data operator. You can see that the value
of the Temperature and Wind attributes is ‘85’ and ‘false’ respectively in the first example. The
Set Data operator is applied on the ‘Golf’ data set. The example index parameter is set to 1, the
attribute name parameter is set to ‘Temperature’ and the value parameter is set to 50. Thus the
value of the Temperature attribute will be set to 50 in the first example. Similarly, the value of
theWind attribute in the first example is set to ‘fast’ using the additional values parameter. You
can verify this by running the process and seeing the results in the Results Workspace. Please
note that a string value cannot be set for the Temperature attribute because it is of integer type.
An integer value can be specified for the Wind attribute (nominal type) but it will be stored as a
nominal value.
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Split

Spli t

exa exa

ori

This operator creates new attributes from the selected nominal at-
tributes by splitting the nominal values into parts according to the
specified split criterion.

Description
The Split operator creates new attributes from the selected nominal attributes by splitting the
nominal values into parts according to the split criterion which is specified through the split
patternparameter in formof a regular expression. This operatorprovides twodifferentmodes for
splitting; the desiredmode can be selected by the split mode parameter. The two splittingmodes
are explainedwith an imaginaryExampleSetwith anominal attributenamed ‘att’ assumimg that
the split pattern parameter is set to ‘,’ (comma). Suppose the ExampleSet has three examples:

1. value1

2. value2, value3

3. value3

Ordered Splits

In case of ordered split the resulting attributes get the name of the original attribute together
with a number indicating the order. In our example scenario there will be two attributes named
‘att_1’ and ‘att_2’ respectively. After splitting the three examples will have the following values
for ‘att_1’ and ‘att_2’ (described in form of tuples):

1. (value1,?)

2. (value2,value3)

3. (value3,?)

This mode is useful if the original values indicated some order like, for example, a preference.

Unordered Splits

In case of unordered split the resulting attributes get the name of the original attribute together
with the value for each of the occurring values. In our example scenario there will be three at-
tributes named ‘att_value1’, ‘att_value2’ and ‘att_value3’ respectively. All these new attributes
are boolean. After splitting the three examples will have the following values for ‘att_value1’,
‘att_value2’ and ‘att_value3’ (described in form of tuples):

1. (true, false, false)

2. (false, true, true)

3. (false, false, true)

Thismode is useful if the order is not important but the goal is a basket like data set containing
all occurring values.
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Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-

process operator in the attached Example Process. The output of other operators can also
be used as input. The ExampleSet should have at least one nominal attribute because if
there is no such attribute, the use of this operator does not make sense.

Output Ports
example set output (exa) The selected nominal attributes are split into new attributes and

the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to thenumeric type. Users should have a basic understanding of typehierarchy
when selecting attributes through this option. When it is selected some other param-
eters (value type, use value type exception) become visible in the Parameters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.
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attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.
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include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

split pattern (string) This parameter specifies the patternwhich is used for dividing thenom-
inal values into different parts. It is specified in form of a regular expression. Regular
expression is a very powerful tool but needs a detailed explanation to beginners. It is al-
ways good to specify the regular expression through the edit and preview regular expression
menu. This menu gives a good idea of regular expressions.

split mode (selection) This parameter specifies the split mode for splitting. The two options
of this parameter are explained in the description of this operator.

Tutorial Processes

Ordered and unordered splits

This Example Process starts with a Subprocess operator. The operator chain inside the Subpro-
cess operator generates an ExampleSet for this process. The explanation of this inner chain of
operators is not relevant here. A breakpoint is inserted here so that you can have a look at the
ExampleSet before the application of the Split operator. You can see that this ExampleSet is
the same ExampleSet that is described in the description of this operator. The Split operator is
applied on it with default values of all parameters. The split mode parameter is set to ‘ordered
split’ by default. Run the process and compare the results with the explanation of ordered split
in the description section of this document. Nowchange the splitmodeparameter to ‘unordered
split’ and run the process again. You can understand the results by studying the description of
unordered split in the description of this operator.
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Trim

Tr im

exa exa

ori

This operator removes leading and trailing spaces from the values
of the selected nominal attributes.

Description

TheTrimoperator createsnewattributes fromthe selectednominal attributes by removing lead-
ing and trailing spaces from the nominal values. The required attributes can be selected through
parameters. Please note that this operator only removes leading and trailing spaces from at-
tribute values; spaces between a value are not removed. For example, values ‘ value 1’, ‘value 2
‘ and ‘ value 3 ‘ will be trimmed to ‘value 1’, ‘value 2’ and ‘value 3’ respectively.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-
process operator in the attached Example Process. The output of other operators can also
be used as input. The ExampleSet should have at least one nominal attribute because if
there is no such attribute, the use of this operator does not make sense.

Output Ports

example set output (exa) The values of the selected nominal attributes are trimmed and the
resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel. (Since Rapid-
Miner 6.0.4 the Operator will fail if a selected Attribute is not in the ExampleSet)

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel. (Since RapidMiner 6.0.4
the Operator will fail if a selected Attribute is not in the ExampleSet)
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• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to thenumeric type. Users should have a basic understanding of typehierarchy
when selecting attributes through this option. When it is selected some other param-
eters (value type, use value type exception) become visible in the Parameters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.
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except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

Tutorial Processes

Removing leading and trailing spaces from attribute values

This Example Process starts with the Subprocess operator. The operator chain inside the Sub-
process operator generates an ExampleSet for this process. The explanation of this inner chain
of operators is not relevant here. A breakpoint is inserted here so that you can have a look at the
ExampleSet before the application of the Trim operator. You can see that this ExampleSet has
two nominal attributes ‘att1’ and ‘att2’. You can see that some values of these attributes have
leading and trailing spaces. The Trim operator is applied on this ExampleSet to remove these
spaces. All parameters are used with default values. Run the process and compare the resul-
tant ExampleSet with the original ExampleSet. You can clearly see that the leading and trailing
spaces have been removed.
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Process

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
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If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Please make sure you have clicked on 'Show advanced parameters' in the parameter panel of the Join Operator to see all parameters described here! 
 
The last Operator of this Process is the Join Operator. 
The sequence of Operators leading to the left (upper) input port of the Join Operator is used to generate the left ExampleSet. 
Similarly, the sequence of Operators leading to the right (lower) input port of the Join Operator is used to generate the right ExampleSet.

The sequence of Operators leading to the left and right input ports of the Join Operator are pretty similar. 
 
In both cases the Retrieve Operator is used to load the 'Golf' data set. Then the Generate Attribute Operator is applied on it to generate a dummy Attribute. 
All Attributes of the 'Golf' data set other than the 'Play' Attribute and the newly generated Attribute are discarded because the 'keep all' parameter is unchecked. 
Then the Generate ID Operator is applied to generate an Attribute with the id role. This Attribute will later be used as the key attribute for joining. 
 
The first difference is that for the left ExampleSet, the name of the Attribute generated by the Generate Attribute Operator is 'Golf 1 Attribute' and for the right ExampleSet the 
name of this Attribute is 'Golf 2 Attribute'. 
The other major difference is in the value of the 'offset' parameter of the Generate ID Operator. For the left ExampleSet the 'offset' parameter of the Generate ID Operator is 
set to 0 and for the right ExampleSet it is set to 7. 
Thus the id values of the left ExampleSet range from 1 to 14 and the id values of the right ExampleSet range from 8 to 21. 
Breakpoints are inserted after each Generate ID Operator so that you can have a look at the left and right ExampleSets before the application of the Join Operator.

The 'use id attribute as key' parameter of the Join Operator is set to true. Thus Attributes with id role will be used to join the left and right ExampleSets. 
The 'remove double attributes' parameter is also checked. Since this parameter only affects regular Attributes it has no influence in our Process since only the 'Play' Attribute 
(with the role label) and 'id' Attribute (with the role id) are present in both the ExampleSets. 
Special Attributes (e.g. with the role label, prediction, weight, ...) will always be taken from the left ExampleSet. If they exist only in the right ExampleSet they are added, 
otherwise they are simply skipped. 
 
In this tutorial Process the 'join type' is set as inner join. You can change it to other values and run the Process again. Below is an explanation of the results that are obtained 
on each value of the 'join type' parameter. 
 
Inner Join: The resulting ExampleSet has examples with ids from 8 to 14. 
An inner join delivers only those examples where the key attribute of both input ExampleSets has the same value. 
In this tutorial Process, the left ExampleSet has ids from 1 to 14 and the right ExampleSet has ids from 8 to 21. Thus examples with ids from 8 to 14 have equal value of the key 
attribute (i.e. the id Attribute). 
 
Left Join: The resulting ExampleSet has examples with ids from 1 to 14. 
A left join delivers all examples of the left ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the right 
ExampleSet are joined. 
If there is no match present in the right ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type left you can see 
that the 'Golf 2 Attribute' has null values for ids 1 to 7. 
 
Right Join: The resulting ExampleSet has examples with ids from 8 to 21. 
A right join delivers all examples of the right ExampleSet and only where the key attribute of both input ExampleSets has the same value the Attribute(s) from the left 
ExampleSet are joined. 
If there is no match present in the left ExampleSet, a null value (i.e. a missing value) is inserted at its place. When you execute this Process with the join type right you can see 
that the 'Golf 1 Attribute' has null values for ids 15 to 21. 
 
Outer Join: The resulting ExampleSet has examples with ids from 1 to 21. 
An outer join delivers all examples from both ExampleSets. It combines the result of a left and a right join. 
If no matching key attribute value was found then the value of the corresponding Attribute(s) in the joint ExampleSet is null. 
Since the ids 8 to 14 are present in both ExampleSets this applies for the examples with the ids 1 to 7 and 15 to 21. 
 
In addition, the 'Play' Attribute has null values in examples with id from 15 to 21. This is because special Attributes (i.e. not regular Attributes) are taken from the left 
ExampleSet only.

Golf 1

out

Generate Attr ibu. . .

exa exa

ori

Generate ID 1

exa exa

ori

Golf 2

out

Generate Attr ibu. . .

exa exa

ori

Generate ID 2

exa exa

ori

Join (2)

lef

r ig

joi

inp

res

res

Figure 2.62: Tutorial process ‘Explore the different join types’.
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2. Blending
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Figure 2.63: Tutorial process ‘Introduction to the Set Minus operator’.
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Figure 2.64: Tutorial process ‘Generating supersets of the Golf and Iris data sets’.
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2.4. Values
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Figure 2.65: Tutorial process ‘Union of the Golf and Golf-Testset data sets’.
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Figure 2.66: Tutorial process ‘Union of the Golf and Iris data sets’.
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Figure 2.67: Tutorial process ‘Union of the Golf(with id attribute) and Iris data sets’.
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Figure 2.68: Tutorial process ‘Making multiple adjustments in a date attribute’.
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2.4. Values
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Figure 2.69: Tutorial process ‘Applying the Cut operator on label of the Iris data set’.
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Figure 2.70: Tutorial process ‘Mapping multiple values’.

Process

Retr ieve

out

M e r g e

exa exa

ori

inp

res

res

Figure 2.71: Tutorial process ‘Introduction to the Merge operator’.
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Figure 2.72: Tutorial process ‘Changing mapping of the Wind attribute of the Golf data set’.
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Figure 2.73: Tutorial process ‘Use of replace what and replace by parameters’.

324
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Figure 2.74: Tutorial process ‘Replacing substrings by using a dictionary’.
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Figure 2.75: Tutorial process ‘Introduction to the Set Data operator’.
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Figure 2.76: Tutorial process ‘Ordered and unordered splits’.
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Figure 2.77: Tutorial process ‘Removing leading and trailing spaces from attribute values’.
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3Cleansing

3.1 Normalization
Normalize

Normal ize

exa exa

ori

pre

This Operator normalizes the values of the selected Attributes.

Description
Normalization is used to scale values so they fit in a specific range. Adjusting the value range is
very important when dealing with Attributes of different units and scales. For example, when
using the Euclidean distance all Attributes should have the same scale for a fair comparison.
Normalization is useful to compare Attributes that vary in size. This Operator performs normal-
ization of the selectedAttributes. Four normalizationmethods are provided. Thesemethods are
explained in the parameters.

Differentiation
• Scale by Weights
This Operator can be used to scale Attributes by pre-calculated weights. Instead of ad-
justing the value range to a common scale, this Operator can be used to give important
Attributes even more weight.

See page 332 for details.

• De-Normalize
This Operator can be used to revert a previously applied normalization. It requires the
preprocessing model returned by a Normalization Operator.

See page ?? for details.

Input Ports
example set (exa) This input port expects an ExampleSet.

Output Ports
example set (exa) The ExampleSet with the selected Attributes in normalized form is output

of this port.

original (ori) The ExampleSet that was given as input is passed through without changes.
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3. Cleansing

preprocessing model (pre) This port delivers the preprocessing model. It can be used by the
Apply Model Operator to perform the specified normalization on another ExampleSet.
This is helpful for example if the normalization is used during training and the same trans-
formation has to be applied on test or actual data.

The preprocessing model can also be grouped together with other preprocessing models
and learning models by the Group Models Operator.

Parameters
create view Create a View instead of changing the underlying data. If this option is checked,

the normalization is delayed until the transformations are needed. This parameter can be
considered a legacy option.

attribute filter type This parameter allows you to select the Attribute selection filter; the
method you want to use for selecting Attributes. It has the following options:

• all This option selects all the Attributes of the ExampleSet, so that no Attributes are
removed. This is the default option.

• single This option allows the selection of a single Attribute. The required Attribute
is selected by the attribute parameter.

• subset This option allows the selection of multiple Attributes through a list (see pa-
rameter attributes). If the meta data of the ExampleSet is known, all Attributes are
present in the list and the required ones can easily be selected.

• regular_expression This option allows you to specify a regular expression for theAt-
tribute selection. The regular expressionfilter is configured by theparameters regular
expression, use except expression and except expression.

• value_type This option allows selection of all the Attributes of a particular type. It
should be noted that types are hierarchical. For example, both real and integer types
belong to thenumeric type. The value typefilter is configured by theparameters value
type, use value type exception, except value type.

• block_type This option allows the selection of all the Attributes of a particular block
type. It should be noted that block types may be hierarchical. For example, value-
_series_start and value_series_end block types both belong to the value_series block
type. The block type filter is configured by the parameters block type, use block type
exception, except block type.

• no_missing_values This option selects all Attributes of the ExampleSet, which do
not containamissingvalue inanyExample. Attributes thathaveevena singlemissing
value are removed.

• numeric_value_filter All numeric Attributes whose Examples all match a given nu-
meric condition are selected. The condition is specified by the numeric condition pa-
rameter. Please note that all nominal Attributes are also selected irrespective of the
given numerical condition.

attribute The required Attribute can be selected from this option. The Attribute name can be
selected from the drop down box of the parameter if the meta data is known.

attributes The required Attributes can be selected from this option. This opens a newwindow
with two lists. All Attributes are present in the left list. They can be shifted to the right
list, which is the list of selected Attributes that will make it to the output port.
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3.1. Normalization

regular expression Attributes whose names match this expression will be selected. The ex-
pression can be specified through the edit and preview regular expressionmenu. This menu
gives a good idea of regular expressions and it also allows you to try different expressions
and preview the results simultaneously.

use except expression If enabled, an exception to the first regular expression can be speci-
fied. This exception is specified by the except regular expression parameter.

except regular expression This option allows you to specify a regular expression. Attributes
matching this expression will be filtered out even if they match the first expression (ex-
pression that was specified in regular expression parameter).

value type This option allows to select a type of Attribute. One of the following types can be
chosen: nominal, numeric, integer, real, text, binominal, polynominal, file_path, date-
_time, date, time.

use value type exception If enabled, an exception to the selected type can be specified. This
exception is specified by the except value type parameter.

except value type The Attributes matching this type will be removed from the final output
even if theymatched the type selected before, specified by the value typeparameter. One of
the following types can be selected here: nominal, numeric, integer, real, text, binominal,
polynominal, file_path, date_time, date and time.

block type This option allows to select a block type ofAttribute. One of the following types can
be chosen: single_value, value_series, value_series_start, value_series_end, value_matrix,
value_matrix_start, value_matrix_end and value_matrix_row_start.

use block type exception If enabled, an exception to the selected block type can be specified.
This exception is specified by the except block type parameter.

except block type TheAttributesmatching this block typewill be removed from the final out-
put even if they matched the type selected before by the block type parameter. One of the
following block types can be selected here: single_value, value_series, value_series_start,
value_series_end, value_matrix, value_matrix_start, value_matrix_end and value_matrix-
_row_start.

numeric condition The numeric condition used by the numeric condition filter type. A nu-
meric Attribute is kept if all Examplesmatch the specified condition for this Attribute. For
example, the numeric condition ‘> 6’ will keep all numeric Attributes having a value of
greater than 6 in every Example. A combination of conditions is possible: ‘> 6 && < 11’
or ‘<= 5 || < 0’. But && and || cannot be used together in one numeric condition. Condi-
tions like ‘(> 0 &&< 2) || (>10 &&< 12)’ are not allowed because they use both && and
||. Nominal Attributes are always kept, regardless of the specified numeric condition.

invert selection If this parameter is set to true, the selection is reversed. In this case, all At-
tributes matching the specified condition are removed and the other Attributes remain in
the output ExampleSet. Special Attributes are kept independent of the invert selection pa-
rameter as along as the include special attributes parameter is not set to true. If so, the
condition is also applied to the special Attributes and the selection is reversed if this pa-
rameter is checked.

include special attributes Special Attributes are Attributes with special roles. These are: id,
label, prediction, cluster,weightandbatch. Alsocustomroles canbeassigned toAttributes.
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3. Cleansing

By default, all special Attributes are delivered to the output port irrespective of the condi-
tions in the Select Attributes Operator. If this parameter is set to true, special Attributes
are also testedagainst conditions specified in theSelectAttributesOperator andonly those
Attributes are selected that match the conditions.

method Four methods are provided here for normalizing data. These methods are also ex-
plained in the attached tutorial Process.

• z_transformation This is also called statistical normalization. This normalization
subtracts the mean of the data from all values and then divides them by the standard
deviation. Afterwards, the distribution of the data has a mean of zero and a variance
of one. This is a common and very useful normalization technique. It preserves the
original distribution of the data and is less influenced by outliers.

• range_transformation Range transformation normalizes all Attribute values to a
specifiedvalue range. When thismethod is selected, twootherparameters (min,max)
appear in the Parameters panel. So the largest value is set to ‘max’ and the smallest
value is set to ‘min’. All other values are scaled, so they fit into the given range. This
method can be influenced by outliers, because the bounds move towards them. On
the other hand, this method keeps the original distribution of the data points, so it
can also be used for data anonymization, for example to obfuscate the true range of
observations.

• proportion_transformation This normalization is based on the proportion eachAt-
tribute value has on the complete Attribute. This means each value is divided by the
total sum of that Attribute values. The sum is only formed from finite values, ignor-
ingNaN/missing values as well as positive and negative infinity. When thismethod is
selected, another parameter (allow negative values) appears in the Parameters panel.
If checked, negative values will be treated as absolute values, otherwise theywill pro-
duce an error when executed.

• interquartile_range Normalization is performed using the interquartile range. The
interquartile range is the distance between the 25th and 75th percentile, which are
also called lower and upper quartile, orQ1 andQ3. They are calculated by first sorting
the data and then taking the data value that separates the first (or the last) 25% of
the Examples from the rest. The median is the 50th percentile, so it is the value that
separates the sorted values in half. The interquartile range (IQR) is the difference
between Q3 and Q1. The final formula for the interquartile range normalization is
then: (value median) / IQR The IQR is the range between the middle 50% of the data,
so this normalization method is less influenced by outliers. NaN/missing values, as
well as infinite values will be ignored for this method. Also, if no finite values could
be found, the corresponding Attribute will be ignored.

min This parameter is available only when the method parameter is set to ‘range transforma-
tion’. It is used to specify the minimum point of the range.

max This parameter is available only when the method parameter is set to ‘range transforma-
tion’. It is used to specify the maximum point of the range.

allow negative values This parameter is available only when the method parameter is set to
‘proportion transformation’. It is used to allowor disallownegative values in theprocessed
Attributes. Negative values then will be counted as their absolute values.
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3.1. Normalization

Tutorial Processes

Normalizing Age and Passenger Fare for the Titanic data

Process

Selecting only two Attributes from Titanic ExampleSet: 
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Both are numeric, but have a very different range of values. 
Also Passenger Fare has one outlier, with a value much higher than all 
the other fares.

After normalization both 
Attributes have a similar range 

of their Attribute values. 
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the Z-Transformation and the 

Interquartile Range shows how 
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Figure 3.1: Tutorial process ‘Normalizing Age and Passenger Fare for the Titanic data’.

This tutorial Process takes the Age and the Passenger Fare Attributes from the Titanic data
and performs a normalization on them. The Attributes have a very different range of values (the
highest Age is 80 and the highest fare is around 500). Also, the Passenger Fare has one value
that ismuch higher than all the other fares. So it can be considered as an outlier. When applying
the Z-Transformation, both Attributes are centered around 0. When changing the method to
Interquartile Range, the values of the Passenger Fare are spread out a bit more evenly, as the
one outlier does not have so much influence. For visualization, it is best to use the Histogram
charts view.
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Scale by Weights

Scale by Weights

exa

wei

exa
This operator scales the input ExampleSet according to the given
weights. This operator deselects attributes with weight 0 and cal-
culates new values for numeric attributes according to the given
weights.

Description
The Scale by Weights operator selects attributes with non zero weight. The values of the re-
maining numeric attributes are recalculated based on theweights delivered at the weights input
port. The new values of numeric attributes are calculated by multiplying the original values by
the weight of that attribute. This operator can hardly be used for selecting a subset of attributes
according to weights determined by a former weighting scheme. For this purpose the Select by
Weights operator should beusedwhich selects only those attributes that fulfill a specifiedweight
relation.

Input Ports
example set (exa) This input port expects anExampleSet. It is the output of theWeight byChi

Squared Statistic operator in the attached Example Process. The output of other operators
can also be used as input. It is essential that meta data should be attached with the data
for the input because attributes are specified in their meta data.

weights (wei) This port expects the attributeweights. There are numerous operators that pro-
vide the attribute weights. The Weight by Chi Squared Statistic operator is used in the
Example Process.

Output Ports
example set (exa) The attributes with weight 0 are removed from the input ExampleSet. The

values of the remaining numeric attributes are recalculated based on theweights provided
at the weights input port. The resultant ExampleSet is delivered through this port.

Tutorial Processes

Applying the Scale by Weights operator on the Golf data set

The ‘Golf’ data set is loaded using the Retrieve operator. The Weight by Chi Squared Statistic
operator is applied on it to generate attribute weights. A breakpoint is inserted here. You can
see the attributes with their weights here. You can see that the Wind, Humidity, Outlook and
Temperature attributes have weights 0, 0.438, 0.450 and 1 respectively. The Scale by Weights
operator is appliednext. The ‘Golf’ data set is provided at the example set input port andweights
calculatedby theWeight byChi SquaredStatistic operator are provided at theweights input port.
The Scale by Weights operator removes the attributes with weight 0 i.e. the Wind attribute is
removed. The values of the remaining numeric attributes (i.e. the Temperature and Humidity
attribute) are recalculated based on their weights. The weight of the Temperature attribute is
1 thus its values remain unchanged. The weight of the Humidity attribute is 0.438 thus its new
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Figure 3.2: Tutorial process ‘Applying the Scale by Weights operator on the Golf data set’.

values are calculated bymultiplying the original values by 0.438. This can be verified by viewing
the results in the Results Workspace.
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3.2 Binning
Discretize by Binning

Discretize

exa exa

ori

pre

This operator discretizes the selected numerical attributes into
user-specified number of bins. Bins of equal range are automat-
ically generated, the number of the values in different bins may
vary.

Description
This operator discretizes the selected numerical attributes to nominal attributes. The number of
binsparameter is used to specify the requirednumberof bins. This discretization is performedby
simple binning. The range of numerical values is partitioned into segments of equal size. Each
segment represents a bin. Numerical values are assigned to the bin representing the segment
covering the numerical value. Each range is named automatically. The naming format for range
can be changed using the range name type parameter. Values falling in the range of a bin are
named according to the name of that range. This operator also allows you to apply binning only
on a range of values. This can be enabled by using the define boundaries parameter. The min
value andmax value parameter are used for defining the boundaries of the range. If there are any
values that are less than themin value parameter, a separate range is created for them. Similarly
if there are any values that are greater than themax value parameter, a separate range is created
for them. Then, the discretization by binning is performed only on the values that are within
the specified boundaries.

Differentiation
• Discretize by FrequencyTheDiscretizeByFrequencyoperator creates bins in suchaway
that the number of unique values in all bins are (almost) equal. See page 343 for details.

• Discretize by Size The Discretize By Size operator creates bins in such a way that each
bin has user-specified size (i.e. number of examples). See page 348 for details.

• Discretize by Entropy The discretization is performed by selecting bin boundaries such
that the entropy is minimized in the induced partitions. See page 339 for details.

• Discretize by User Specification This operator discretizes the selected numerical at-
tributes into user-specified classes. See page 352 for details.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator

in the attachedExampleProcess. the output of other operators can also beused as input. It
is essential thatmetadata shouldbe attachedwith thedata for the input because attributes
are specified in their meta data. The Retrieve operator provides meta data along-with the
data. Note that there should be at least one numerical attribute in the input ExampleSet,
otherwise the use of this operator does not make sense.
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Output Ports
example set (exa) The selected numerical attributes are converted into nominal attributes by

binning and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters
create view (boolean) It is possible to create a View instead of changing the underlying data.

Simply select this parameter to enable this option. The transformation that would be nor-
mally performed directly on the datawill then be computed every time a value is requested
and the result is returned without changing the data.

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
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all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list, which is the list of selected attributes.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes are selected irrespective of the conditions in the Select Attribute operator.
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If this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

number of bins (integer) This parameter specifies the number of bins which should be used
for each attribute.

define boundaries: (boolean) The Discretize by Binning operator allows you to apply bin-
ning only on a range of values. This can be enabled by using the define boundaries parame-
ter. If this is set to true, discretization by binning is performed only on the values that are
within the specified boundaries. The lower and upper limit of the boundary is specified by
the min value and max value parameters respectively.

min value (real) This parameter is only available when the define boundaries parameter is set
to true. It is used to specify the lower limit value for the binning range.

max value (real) This parameter is only available when the define boundaries parameter is set
to true. It is used to specify the upper limit value for the binning range.

range name type (selection) This parameter is used to change the naming format for range.
‘long’, ‘short’ and ‘interval’ formats are available.

automatic number of digits (boolean) This is anexpertparameter. It is onlyavailablewhen
the range name typeparameter is set to ‘interval’. It indicates if the number of digits should
be automatically determined for the range names.

number of digits (integer) This is an expert parameter. It is used to specify the minimum
number of digits used for the interval names.

Related Documents
• Discretize by Frequency (page 343)

• Discretize by Size (page 348)

• Discretize by Entropy (page 339)

• Discretize by User Specification (page 352)

Tutorial Processes

Discretizing numerical attributes of the ’Golf’ data set by Binning

The focus of this Example Process is the binning procedure. For understanding the parameters
related to attribute selection please study the Example Process of the Select Attributes operator.
The ‘Golf’ data set is loaded using the Retrieve operator. TheDiscretize by Binning operator is

applied on it. The ‘Temperature’ and ‘Humidity’ attributes are selected for discretization. The
number of bins parameter is set to 2. The define boundaries parameter is set to true. The min
valueandmaxvalueparameters are set to70and80 respectively. Thusbinningwill beperformed
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Figure 3.3: Tutorial process ‘Discretizing numerical attributes of the ’Golf’ data set by Binning’.

only in the range from 70 to 80. As the number of bins parameter is set to 2, the range will be
divided into two equal segments. Approximately speaking, the first segment of the range will
be from 70 to 75 and the second segment of the range will be from 76 to 80. These are not exact
values, but they are good enough for the explanation of this process. There will be a separate
range for all those values that are less than themin value parameter i.e. less than 70. This range
is automatically named ‘range1’. The first and second segment of the binning range are named
‘range2’ and ‘range3’ respectively. There will be a separate range for all those values that are
greater than the max value parameter i.e. greater than 80. This range is automatically named
‘range4’. Run the process and compare the original data set with the discretized one. You can
see that the values less than or equal to 70 in the original data set are named ‘range1’ in the
discretized data set. The values greater than 70 and less than or equal to 75 in the original data
set are named ‘range2’ in the discretized data set. The values greater than 75 and less than or
equal to 80 in the original data set are named ‘range3’ in the discretized data set. The values
greater than 80 in the original data set are named ‘range4’ in the discretized data set.

338



3.2. Binning

Discretize by Entropy

Discretize

exa exa

ori

pre

Thisoperator converts the selectednumerical attributes intonom-
inal attributes. The boundaries of the bins are chosen so that the
entropy is minimized in the induced partitions.

Description

Thisoperatordiscretizes the selectednumerical attributes tonominal attributes. Thediscretiza-
tion is performed by selecting a bin boundary that minimizes the entropy in the induced parti-
tions. Each bin range is named automatically. The naming format of the range can be changed
using the range name type parameter. The values falling in the range of a bin are named accord-
ing to the name of that range.
The discretization is performed by selecting a bin boundary that minimizes the entropy in

the induced partitions. Themethod is then applied recursively for both new partitions until the
stopping criterion is reached. For more information please study:

• Multi-intervaldiscretizationof continued-valuesattributes for classification learning (Fayyad,Irani)

• Supervised and Unsupervised Discretization (Dougherty,Kohavi,Sahami).

This operator can automatically remove all attributeswith only one range i.e. those attributes
which are not actually discretized since the entropy criterion is not fulfilled. This behavior can
be controlled by the remove useless parameter.

Differentiation

• Discretize by Binning TheDiscretize By Binning operator creates bins in such a way that
the range of all bins is (almost) equal. See page 334 for details.

• Discretize by FrequencyTheDiscretizeByFrequencyoperator creates bins in suchaway
that the number of unique values in all bins are (almost) equal. See page 343 for details.

• Discretize by Size The Discretize By Size operator creates bins in such a way that each
bin has user-specified size (i.e. number of examples). See page 348 for details.

• Discretize by User Specification This operator discretizes the selected numerical at-
tributes into user-specified classes. See page 352 for details.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Re-
trieve operator in the attached Example Process. The output of other operators can also
be used as input. Please note that there should be at least one numerical attribute in the
input ExampleSet, otherwise the use of this operator does not make sense.
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Output Ports
example set output (exa) The selected numerical attributes are converted into nominal at-

tributes by discretization and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters
create view (boolean) It is possible to create a View instead of changing the underlying data.

Simply select this parameter to enable this option. The transformation that would be nor-
mally performed directly on the datawill then be computed every time a value is requested
and the result is returned without changing the data.

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have a basic understanding of type hierar-
chy when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.
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attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.
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include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

remove useless (boolean) This parameter indicates if the useless attributes, i.e. attributes
containing only a single range, should be removed. If this parameter is set to true then all
those attributes that are not actually discretized since the entropy criterion is not fulfilled
are removed.

range name type (selection) Thisparameter isused for changing thenaming format for range.
‘long’, ‘short’ and ‘interval’ formats are available.

automatic number of digits (boolean) This is anexpertparameter. It is onlyavailablewhen
the range name typeparameter is set to ‘interval’. It indicates if the number of digits should
be automatically determined for the range names.

number of digits (integer) This is an expert parameter. It is used to specify the minimum
number of digits used for the interval names.

Related Documents
• Discretize by Binning (page 334)

• Discretize by Frequency (page 343)

• Discretize by Size (page 348)

• Discretize by User Specification (page 352)

Tutorial Processes

Discretizing the ’Sonar’ data set by entropy

The focus of this Example Process is the discretization procedure. For understanding the pa-
rameters related to attribute selection please study the Example Process of the Select Attributes
operator.
The ‘Sonar’ data set is loadedusing theRetrieve operator. A breakpoint is insertedhere so that

you can gave a look at the ExampleSet. You can see that this data set has 60 regular attributes
(all of real type). The Discretize by Entropy operator is applied on it. The attribute filter type
parameter is set to ‘all’, thus all the numerical attributes will be discretized.The remove useless
parameter is set to true, thus attributes with only one range are removed from the ExampleSet.
Run the process and switch to the Results Workspace. You can see that the ‘Sonar’ data set has
been reduced to just 22 regular attributes. These numerical attributes have been discretized to
nominal attributes.
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Figure 3.4: Tutorial process ‘Discretizing the ’Sonar’ data set by entropy’.

Discretize by Frequency

Discretize
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Thisoperator converts the selectednumerical attributes intonom-
inal attributes by discretizing the numerical attribute into a user-
specified number of bins. Bins of equal frequency are automati-
cally generated, the range of different bins may vary.

Description
This operator discretizes the selected numerical attributes to nominal attributes. The number
of bins parameter is used to specify the required number of bins. The number of bins can also be
specified by using the use sqrt of examples parameter. If the use sqrt of examples parameter is set
to true, then the number of bins is calculated as the square root of the number of examples with
non-missing values (calculated for every single attribute). This discretization is performed by
equal frequency binning i.e. the thresholds of all bins is selected in a way that all bins contain
the samenumber of numerical values. Numerical values are assigned to the bin representing the
range segment covering the numerical value. Each range is named automatically. The naming
format for the range can be changed using the range name type parameter. Values falling in the
range of a bin are named according to the name of that range.
Other discretization operators are also available in RapidMiner. The Discretize By Frequency

operator creates bins in such a way that the number of unique values in all bins are (almost)
equal. In contrast, the Discretize By Binning operator creates bins in such a way that the range
of all bins is (almost) equal.

Differentiation
• Discretize by Binning TheDiscretize By Binning operator creates bins in such a way that
the range of all bins is (almost) equal. See page 334 for details.
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• Discretize by Size The Discretize By Size operator creates bins in such a way that each
bin has user-specified size (i.e. number of examples). See page 348 for details.

• Discretize by Entropy The discretization is performed by selecting bin boundaries such
that the entropy is minimized in the induced partitions. See page 339 for details.

• Discretize by User Specification This operator discretizes the selected numerical at-
tributes into user-specified classes. See page 352 for details.

Input Ports

example set (exa) This inputport expects anExampleSet. It is theoutput of theRetrieveoper-
ator in attached Example Process. The output of other operators can also be used as input.
Please note that there should be at least one numerical attribute in the input ExampleSet,
otherwise use of this operator does not make sense.

Output Ports

example set (exa) The selected numerical attributes are converted into nominal attributes by
discretization (frequency) and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters

create view (boolean) It is possible to create a View instead of changing the underlying data.
Simply select this parameter to enable this option. The transformation that would be nor-
mally performed directly on the datawill then be computed every time a value is requested
and the result is returned without changing the data.

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.
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• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type. When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list, which is the list of selected attributes.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.
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use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch. By default all spe-
cial attributes are selected irrespective of the conditions in the Select Attribute operator.
If this parameter is set to true, Special attributes are also tested against conditions speci-
fied in the Select Attribute operator and only those attributes are selected that satisfy the
conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

use sqrt of examples (boolean) If set to true, thenumber of bins is determinedby the square
root of the number of non-missing values instead of using the number of bins parameter.

number of bins (integer) This parameter is available only when the use sqrt of examples pa-
rameter is not set to true. This parameter specifies the number of bins which should be
used for each attribute.

range name type (selection) Thisparameter isused for changing thenaming format for range.
‘long’, ‘short’ and ‘interval’ formats are available.

automatic number of digits (boolean) This is anexpertparameter. It is onlyavailablewhen
the range name typeparameter is set to ‘interval’. It indicates if the number of digits should
be automatically determined for the range names.

number of digits (integer) This is an expert parameter. It is used to specify the minimum
number of digits used for the interval names.

Related Documents
• Discretize by Binning (page 334)

• Discretize by Size (page 348)

• Discretize by Entropy (page 339)

• Discretize by User Specification (page 352)
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Tutorial Processes

Discretizing the Temperature attribute of the ’Golf’ data set by Frequency
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Figure 3.5: Tutorial process ‘Discretizing the Temperature attribute of the ’Golf’ data set by
Frequency’.

The focus of this Example Process is the discretization (by frequency) procedure. For under-
standing the parameters related to attribute selection please study the Example Process of the
Select Attributes operator.
The ‘Golf’ data set is loaded using theRetrieve operator. TheDiscretize by Frequency operator

is applied on it. The ‘Temperature’ attribute is selected for discretization. The number of bins
parameter is set to 3. Run the process and switch to the ResultsWorkspace. You can see that the
‘Temperature’ attribute has been changed from numerical to nominal form. The values of the
‘Temperature’ attribute have been divided into three ranges. Each range has an equal number
of unique values. You can see that ‘range1’ and ‘range3’ have 4 examples while the ‘range2’ has
6 examples. But in ‘range2’ the ‘Temperature’ values 72 and 75 occur twice. Thus essentially 4
unique numerical values are present in ‘range2’.
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Discretize by Size
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This operator converts the selectednumerical attributes intonom-
inal attributes by discretizing the numerical attribute into bins of
user-specified size. Thus each bin contains a user-defined number
of examples.

Description

This operator discretizes the selected numerical attributes to nominal attributes. The size of
bins parameter is used for specifying the required size of bins. This discretization is performed
by binning examples into bins containing the same, user-specified number of examples. Each
bin range is named automatically. The naming format of the range can be changed by using the
range name type parameter. The values falling in the range of a bin are named according to the
name of that range.
It should be noted that if the number of examples is not evenly divisible by the requested num-

ber of examples per bin, the actual result may slightly differ from the requested bin size. Simi-
larly, if a range of examples cannot be split, because the numerical values are identical within
this set, only all or none can be assigned to a bin. This may lead to further deviations from the
requested bin size.
This operator is closely related to the Discretize By Frequency operator. There you have to

specify the number of bins you need (say x) and the operator automatically creates it with an
almost equal number of values (i.e. n/x values where n is the total number of values). In the
Discretize by Size operator you have to specify the number of values you need in each bin (say
y) and the operator automatically creates n/y bins with y values.

Differentiation

• Discretize by Binning The Discretize By Binning operator creates bins so their range is
(almost) equal. See page 334 for details.

• Discretize by Frequency The Discretize By Frequency operator creates bins so the num-
ber of unique values in all bins are (almost) equal. See page 343 for details.

• Discretize by EntropyThe discretization is performed by selecting bin boundaries so the
entropy is minimized in the induced partitions. See page 339 for details.

• Discretize by User Specification This operator discretizes the selected numerical at-
tributes into user-specified classes. See page 352 for details.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Re-
trieve operator in the attached Example Process. The output of other operators can also
be used as input. Please note that there should be at least one numerical attribute in the
input ExampleSet, otherwise the use of this operator does not make sense.
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Output Ports
example set output (exa) The selected numerical attributes are converted into nominal at-

tributes by discretization and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters
create view (boolean) It is possible to create a View instead of changing the underlying data.

Simply select this parameter to enable this option. The transformation that would be nor-
mally performed directly on the datawill then be computed every time a value is requested
and the result is returned without changing the data.

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have a basic understanding of type hierar-
chy when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. It allows selec-
tion of all the attributes of a particular block type. When this option is selected some
other parameters (block type, use block type exception) become visible in the Parame-
ters panel.

• no_missing_valuesThis option simply selects all attributes of the ExampleSetwhich
don’t contain amissing value in any example. Attributes that have even a singlemiss-
ing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.
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attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

350



3.2. Binning

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

size of bins (integer) This parameter specifies the required size of bins i.e. number of exam-
ples contained in a bin.

sorting direction (selection) This parameter indicates if the values should be sorted in in-
creasing or decreasing order.

range name type (selection) Thisparameter isused for changing thenaming format for range.
‘long’, ‘short’ and ‘interval’ formats are available.

automatic number of digits (boolean) This is anexpertparameter. It is onlyavailablewhen
the range name typeparameter is set to ‘interval’. It indicates if the number of digits should
be automatically determined for the range names.

number of digits (integer) This is an expert parameter. It is used to specify the minimum
number of digits used for the interval names.

Related Documents
• Discretize by Binning (page 334)

• Discretize by Frequency (page 343)

• Discretize by Entropy (page 339)

• Discretize by User Specification (page 352)

Tutorial Processes

Discretizing the Temperature attribute of the ’Golf’ data set

The focus of this Example Process is the discretization procedure. For understanding the pa-
rameters related to attribute selection please study the Example Process of the Select Attributes
operator.
The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that

you can gave a look at the ExampleSet. You can see that the ‘Temperature’ attribute is a numer-
ical attribute. The Discretize by Size operator is applied on it. The ‘Temperature’ attribute is
selected for discretization. The size of bins parameter is set to 5. Run the process and switch
to the Results Workspace. You can see that the ‘Temperature’ attribute has been changed from
numerical to nominal form. The values of the ‘Temperature’ attribute have been divided into
three ranges. Each range has an equal number of unique values. You can see that ‘range1’ and
‘range3’ have 4 examples while the ‘range2’ has 6 examples. All bins do not have exactly equal
values because 14 examples cannot be grouped by 5 examples per bin. But in ‘range2’ the ‘Tem-
perature’ values 72 and 75 occur twice. Thus essentially 4 unique numerical values are present
in ‘range2’.
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Figure 3.6: Tutorial process ‘Discretizing the Temperature attribute of the ’Golf’ data set’.

Discretize by User Specification

Discretize

exa exa

ori

pre

This operator discretizes the selected numerical attributes into
user-specified classes. The selected numerical attributes will be
changed to nominal attributes.

Description
This operator discretizes the selectednumerical attributes to nominal attributes. Thenumerical
values are mapped to the classes according to the thresholds specified by the user in the classes
parameter. The user can define the classes by specifying the upper limit of each class. The lower
limit of every class is automatically defined as the upper limit of the previous class. The lower
limit of the first class is assumed to be negative infinity. ‘Infinity’ can be used to specify positive
infinity as upper limit in the classes parameter. This is usually done in the last class. If a class
is named as ‘?’, the numerical values falling in this class will be replaced by unknown values in
the resulting attributes.

Differentiation
• Discretize by Binning TheDiscretize By Binning operator creates bins in such a way that
the range of all bins is (almost) equal. See page 334 for details.

• Discretize by FrequencyTheDiscretizeByFrequencyoperator creates bins in suchaway
that the number of unique values in all bins are (almost) equal. See page 343 for details.

• Discretize by Size The Discretize By Size operator creates bins in such a way that each
bin has user-specified size (i.e. number of examples). See page 348 for details.
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• Discretize by Entropy The discretization is performed by selecting bin boundaries such
that the entropy is minimized in the induced partitions. See page 339 for details.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator

in the attached Example Process. The output of other operators can also be used as input.
It is essential that meta data should be attached with the data for input because attributes
are specified in theirmeta data. TheRetrieve operator providesmeta data along-with data.
Note that there should be at least one numerical attribute in the input ExampleSet, oth-
erwise use of this operator does not make sense.

Output Ports
example set (exa) The selectednumerical attributes are converted intonominal attributes ac-

cording to the user specified classes and the resultant ExampleSet is delivered through this
port.

original (ori) ExampleSet that was given as input is passed without changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters
create view (boolean) It is possible to create a View instead of changing the underlying data.

Simply select this parameter to enable this option. The transformation that would be nor-
mally performed directly on the datawill then be computed every time a value is requested
and the result is returned without changing the data.

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to the numeric type. Users should have basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
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other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value_type option. This option al-
lows selection of all the attributes of a particular block type. It should be noted that
block types may be hierarchical. For example value_series_start and value_series_end
block types both belong to the value_series block type.When this option is selected
some other parameters (block type, use block type exception) become visible in the Pa-
rameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose all ex-
amples satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list. Attributes can be shifted
to the right list, which is the list of selected attributes.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners.
It is always good to specify the regular expression through the edit and preview regular ex-
pressionmenu. This menu gives a good idea of regular expressions and it also allows you
to try different expressions and preview the results simultaneously.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributes matching this expression will be filtered out even if they match the first regular
expression (regular expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is enabled, another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will not be selected even if
they match the previously mentioned type i.e. value type parameter’s value.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

354



3.2. Binning

except block type (selection) The attributesmatching this block type will be not be selected
even if they match the previously mentioned block type i.e. block type parameter’s value.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributeswith special roles.
Special attributes are those attributes which identify the examples. In contrast regular at-
tributes simply describe the examples. Special attributes are: id, label, prediction, clus-
ter, weight and batch. By default all special attributes selected irrespective of the condi-
tions in the Select Attribute operator. If this parameter is set to true, Special attributes
are also tested against conditions specified in the Select Attribute operator and only those
attributes are selected that satisfy the conditions.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

classes This is the most important parameter of this operator. It is used to specify the classes
intowhich the numerical valueswill bemapped. The names and upper limits of the classes
are specifiedhere. Thenumerical values aremapped to the classes according to thedefined
thresholds. The user can define the classes by specifying the upper limit of each class. The
lower limit of every class is automatically defined as the upper limit of the previous class.
The lower limit of the first class is assumed to be negative infinity. ‘Infinity’ can be used
to specify positive infinity as upper limit in the classes parameter. This is usually done in
the last class. If a class is named as ‘?’, the numerical values falling in this class will be
replaced by unknown values in the resulting attributes.

Related Documents
• Discretize by Binning (page 334)

• Discretize by Frequency (page 343)

• Discretize by Size (page 348)

• Discretize by Entropy (page 339)

Tutorial Processes

Discretizing numerical attributes of the Golf data set

The focus of this Example Process is the classes parameter. Almost all parameters other than
the classes parameter are for selection of attributes on which discretization is to be performed.
For understanding these parameters please study the Example Process of the Select Attributes
operator.
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Figure 3.7: Tutorial process ‘Discretizing numerical attributes of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Discretize by User Specification
operator is appliedon it. The ‘Temperature’ and ‘Humidity’ attributes are selected for discretiza-
tion. As you can see in the classes parameter, four classes have been specified. The values from
negative infinity to 70 will be mapped to ‘low’ class. The values above 70 to 80 will be mapped
to ‘average’ class. The values above 80 to 90 will be mapped to ‘high’ class. The values above 90
will be considered as unknown (missing) values. This can be verified by running the process and
viewing the results in the ResultsWorkspace. Note that value of the ‘Humidity’ attribute was 96
and 95 in Row No. 4 and 8 respectively. In the discretized attributes these values are replaced
by unknown values because of the last class defined in the classes parameter.
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3.3 Missing
Declare Missing Value

Declare Missing . . .

exa exa

ori

This operator declares the specified values of the selected at-
tributes as missing values.

Description
The Declare Missing Value operator replaces the specified values of the selected attributes by
Double.NaN, thus these valueswill becomemissing values. These valueswill be treated asmiss-
ing values by the subsequent operators. The desired values can be selected through nominal,
numeric or regular expression mode. This behavior can be controlled by the mode parameter.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports
example set output (exa) The specifiedvaluesof the selectedattributes are replacedbymiss-

ing values and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.
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• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to thenumeric type. Users should have a basic understanding of typehierarchy
when selecting attributes through this option. When it is selected some other param-
eters (value type, use value type exception) become visible in the Parameters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.
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block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

mode (selection) This parameter specifies the type of the value that should be set to miss-
ing value. The type can be nominal or numeric or it can be specified through a regular
expression.

numeric value (real) This parameter specifies the numerical value that should be declared as
missing value.

nominal value (string) This parameter specifies the nominal value that should be declared as
missing value.

expression value (string) This parameter specifies the value that should be declared asmiss-
ing value through an expression.

Tutorial Processes

Declaring a nominal value as missing value

The ‘Golf’ data set is loadedusing theRetrieveoperator. Abreakpoint is insertedhere so that you
can have a look at the ExampleSet. You can see that the ‘Outlook’ attribute has three possible
values i.e. ‘sunny’, ‘rain’ and ‘overcast’. The Declare Missing Value operator is applied on this
ExampleSet to change the ‘overcast’ value of the ‘Outlook’ attribute to a missing value. The
attribute filter type parameter is set to ‘single’ and the attribute parameter is set to ‘Outlook’.
The mode parameter is set to ‘nominal’ and the nominal value parameter is set to ‘overcast’.
Run the process and compare the resultant ExampleSet with the original ExampleSet. You can
clearly see that the value ‘overcast’ has been replaced by missing values.
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Figure 3.8: Tutorial process ‘Declaring a nominal value as missing value’.

Fill Data Gaps

Fill  Data Gaps

exa exa

ori

This operator fills the gaps (based on the ID attribute) in the given
ExampleSet by addingnewexamples in thegaps. Thenewexample
will have null values.

Description

The Fill Data Gaps operator fills the gaps (based on gaps in the ID attribute) in the given Ex-
ampleSet by adding new examples in the gaps. The new examples will have null values for all
attributes (except the id attribute) which can be replenished by operators like the Replace Miss-
ing Values operator. It is ideal that the ID attribute should be of integer type. This operator
performs the following steps:

• The data is sorted according to the ID attribute

• All occurring distances between consecutive ID values are calculated.

• The greatest common divisor (GCD) of all distances is calculated.

• All rows which would have an ID value which is a multiple of the GCD but are missing are
added to the data set.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-
process operator in the attached Example Process. The output of other operators can also
be used as input. It is essential that meta data should be attached with the data for the
input because attributes are specified in their meta data.

Output Ports

example set output (exa) The gaps in the ExampleSet are filled with new examples and the
resulting ExampleSet is output of this port.
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original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
use gcd for step size (boolean) Thisparameter indicates if thegreatest commondivisor (GCD)

should be calculated and used as the underlying distance between all data points.

step size (integer) This parameter is only available when the use gcd for step size parameter is
set to false. This parameter specifies the step size to be used for filling the gaps.

start (integer) This parameter can be used for filling the gaps at the beginning (if they occur)
before the first data point. For example, if the ID attribute of the given ExampleSet starts
with 3 and the start parameter is set to 1. Then this operator will fill the gaps in the be-
ginning by adding rows with ids 1 and 2.

end (integer) This parameter can be used for filling the gaps at the end (if they occur) after the
last data point. For example, if the ID attribute of the given ExampleSet ends with 100 and
the end parameter is set to 105. Then this operator will fill the gaps at the end by adding
rows with ids 101 to 105.

Tutorial Processes

Introduction to the Fill Data Gaps operator

Process

Subprocess

in ou t

ou t

Fill  Data Gaps

exa exa

ori

inp res

res

Figure 3.9: Tutorial process ‘Introduction to the Fill Data Gaps operator’.

This Example Process starts with the Subprocess operator which delivers an ExampleSet. A
breakpoint is inserted here so that you can have a look at the ExampleSet. You can see that the
ExampleSet has 10 examples. Have a look at the id attribute of the ExampleSet. You will see
that certain ids are missing: ids 3, 6, 8 and 10. The Fill Data Gaps operator is applied on this
ExampleSet to fill these data gaps with examples that have the appropriate ids. You can see the
resultant ExampleSet in the Results Workspace. You can see that this ExampleSet has 14 exam-
ples. New examples with ids 3, 6, 8 and 10 have been added. But these examples have missing
values for all attributes (except the id attribute) which can be replenished by using operators
like the Replace Missing Values operator.

361



3. Cleansing

Impute Missing Values

Impute Missing V.. .

exa exa This operator estimates values for the missing values of the se-
lected attributes by applying a model learned for missing values.

Description
This is a nested operator i.e. it has a subprocess. This subprocess should always accept an Ex-
ampleSet and return amodel. The ImputeMissing Values operator estimates values for missing
values by learningmodels for each attribute (except the label) and applying those models to the
ExampleSet. The learner for estimating missing values should be placed in the subprocess of
this operator. Please note that depending on the ability of the inner learner to handle missing
values this operator might not be able to impute all missing values in some cases. This behavior
leads to a warning. It might hence be useful to combine this operator with a subsequent Replace
Missing Values operator.

Input Ports
example set in (exa) This input port expects an ExampleSet. It is the output of the Retrieve

operator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with the data for the input be-
cause attributes are specified in theirmeta data. The Retrieve operator providesmeta data
along-with data.

Output Ports
example set out (exa) The missing values in the ExampleSet are replaced by the values esti-

mated by the given model and the resultant ExampleSet is output of this port.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; the method you want to use for selecting attributes in which you want to replace
missing values. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in Parameters panel.
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• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. User should have basic understanding of type hierarchywhen
selecting attributes through this option. When this option is selected some other pa-
rameters (value type, use value type exception) become visible in Parameters panel.

• block_type This option is similar in working to value_type option. This option allows
selection of all the attributes of a particular block type. It should be noted that block
types may be hierarchical. For example value_series_start and value_series_end block
types both belong to value_series block type. When this option is selected some other
parameters (block type, useblock typeexception) becomevisible inParameterspanel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are not selected.

• numeric_value_filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in Parameters panel. All numeric attributes whose all exam-
ples satisfy the mentioned numeric condition are selected. Please note that all nom-
inal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes.

regular expression (string) Attributes whose name match this expression will be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners. It
is always good to specify the regular expression through edit and preview regular expression
menu. Thismenugives agood ideaof regular expressions. It also allowsyou to trydifferent
expressions and preview the results simultaneously. This will enhance your concept of
regular expressions.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in regular expression parameter).

value type (selection) Type of attributes to be selected can be chosen from drop down list.

use value type exception (boolean) If enabled, anexception to the selected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in Parameters panel.

except value type (selection) Attributes matching this type will be removed from the final
outputeven if theymatched thepreviouslymentioned type i.e. value typeparameter’s value.

block type (selection) Block type of attributes to be selected can be chosen from drop down
list.
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use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in Parameters panel.

except block type (selection) Attributes matching this block type will be removed from the
final output even if they matched the previously mentioned block type.

numeric condition (string) Numeric condition for testing examples of numeric attributes is
mentionhere. For example thenumeric condition ‘>6’will keepall nominal attributes and
all numeric attributes having a value of greater than 6 in every example. A combination
of conditions is possible: ‘> 6 && < 11’ or ‘<= 5 || < 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
removed prior to selection of this parameter. After selection of this parameter ‘att1’ will
be removed and ‘att2’ will be selected.

include special attributes (boolean) Special attributesareattributeswith special roleswhich
identify the examples. In contrast regular attributes simply describe the examples. Spe-
cial attributes are: id, label, prediction, cluster, weight and batch. By default all special
attributes are delivered to the output port irrespective of the conditions in the Select At-
tribute operator. If this parameter is set to true, Special attributes are also tested against
conditions specified in the Select Attribute operator and only those attributes are selected
that satisfy the conditions.

iterate (boolean) Set this parameter to true if you want to impute the missing values imme-
diately (after having learned the corresponding concept) and iterate afterwards.

learn on complete cases (boolean) If this parameter is set to true, concepts are learned for
estimatingmissing values only on the basis of complete cases. This option should be used
when the inner learning approach cannot handle missing values.

order (selection) Thisparameter specifies theorderof attributes inwhichmissingvalues should
be estimated.

sort (selection) This parameter specifies the sort direction to be used in order strategy.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of the local random seed will produce the
same randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Using the K-NN scheme for estimating missing values

The ‘Labor-Negotiations’ data set is loaded using the Retrieve operator. A breakpoint is inserted
here so that you can view the ExampleSet. You can see that there are numerous missing values
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Figure 3.10: Tutorial process ‘Using the K-NN scheme for estimating missing values’.

in this ExampleSet. The Impute Missing Values operator is applied on this ExampleSet for es-
timating missing values. Have a look at the subprocess of this operator. The K-NN operator is
applied there for estimating themissing values. The attribute filter type parameter is set to ‘all’,
thusmissing values of all attributeswill be estimatedusing theK-NNscheme. All parameters are
used with default values. The resultant ExampleSet can be seen in the Results Workspace. You
can see that there are no missing values in this ExampleSet because they have been estimated
using the K-NN scheme.
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Replace Infinite Values

Replace Infinite . . .

exa exa

ori

pre

This operator replaces infinite values of the selected attributes by
the specified replacements.

Description

The Replace Infinite Values operator replaces positive or negative infinite values by the spec-
ified replacements. The following replacements are available: none, zero, max_byte, max_int,
max_double andmissing. The ‘max_byte’, ‘max_int’, ‘max_double’ replacements replace positive
infinity by the upper bound and negative infinity by the lower bound of the range of the byte,
int and double Java types respectively. If ‘missing’ replacement is used then the infinite values
are replaced by nan (not a number), which is internally used to represent missing values. These
missing values can be replenished by the Replace Missing Values operator. Different replace-
ments can be specified for different attributes by using the columns parameter. If an attribute’s
name is not in the list of the columns parameter, the replacement specified by the default pa-
rameter is used.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-
process operator in the attached Example Process. The output of other operators can also
be used as input. It is essential that meta data should be attached with the data for the
input because attributes are specified in their meta data.

Output Ports

example set output (exa) The infinite values are replaced by the specified replacement and
the resultant ExampleSet is output of this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters

create view (boolean) It is possible to create a View instead of changing the underlying data.
Simply select this parameter to enable this option. The transformation that would be nor-
mally performed directly on the datawill then be computed every time a value is requested
and the result is returned without changing the data.
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attribute filter type (selection) This parameter allows you to select the attribute selection
filter; the method you want to use for selecting attributes in which you want to replace
infinite values. It has the following options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of ExampleSet are present in the list; required attributes can be easily selected. This
option will not work if meta data is not known. When this option is selected another
parameter becomes visible in Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. User should have basic understanding of type hierarchywhen
selecting attributes through this option. When this option is selected some other pa-
rameters (value type, use value type exception) become visible in Parameters panel.

• block_type This option is similar in working to value_type option. This option allows
selection of all the attributes of a particular block type. It should be noted that block
types may be hierarchical. For example value_series_start and value_series_end block
types both belong to value_series block type. When this option is selected some other
parameters (block type, useblock typeexception) becomevisible inParameterspanel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are not selected.

• numeric_value_filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in Parameters panel. All numeric attributes whose all exam-
ples satisfy the mentioned numeric condition are selected. Please note that all nom-
inal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbeselected fromthedropdownboxof theparameterattribute if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes.

regular expression (string) Attributes whose name match this expression will be selected.
Regular expression is a very powerful tool but needs a detailed explanation to beginners. It
is always good to specify the regular expression through edit and preview regular expression
menu. Thismenugives agood ideaof regular expressions. It also allowsyou to trydifferent
expressions and preview the results simultaneously. This will enhance your concept of
regular expressions.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in Parameters panel.
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except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in regular expression parameter).

value type (selection) Type of attributes to be selected can be chosen from drop down list.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in Parameters panel.

except value type (selection) Attributes matching this type will be removed from the final
outputeven if theymatched thepreviouslymentioned type i.e. value typeparameter’s value.

block type (selection) Block type of attributes to be selected can be chosen from drop down
list.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in Parameters panel.

except block type (selection) Attributes matching this block type will be removed from the
final output even if they matched the previously mentioned block type.

numeric condition (string) Numeric condition for testing examples of numeric attributes is
mentionhere. For example thenumeric condition ‘>6’will keepall nominal attributes and
all numeric attributes having a value of greater than 6 in every example. A combination
of conditions is possible: ‘> 6 && < 11’ or ‘<= 5 || < 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
removed prior to selection of this parameter. After selection of this parameter ‘att1’ will
be removed and ‘att2’ will be selected.

include special attributes (boolean) Special attributesareattributeswith special roleswhich
identify the examples. In contrast regular attributes simply describe the examples. Spe-
cial attributes are: id, label, prediction, cluster, weight and batch. By default all special
attributes are delivered to the output port irrespective of the conditions in the Select At-
tribute operator. If this parameter is set to true, Special attributes are also tested against
conditions specified in the Select Attribute operator and only those attributes are selected
that satisfy the conditions.

default (selection) This parameter specifies the replacement to apply to all attributes that
are not explicitly specified by the columns parameter. The following options are available:
none, zero, max_byte, max_int, max_double, missing, value.

columns (list) Differentattributes canbeprovidedwithdifferent typesof replacements through
this parameter. The default replacement selected by the default parameter is applied on
attributes that are not explicitly mentioned in the columns parameter

replenish what (selection) Thisparameter specifies if positiveornegative infinityvalues should
be replaced.
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replenishment value (real) This parameter is only available when the default parameter is
set to ‘value’. This value will be inserted instead of infinity.

Tutorial Processes

Replacing infinite values by missing values

Process

Subprocess

in ou t

ou t

Replace Infinite . . .

exa exa

ori

pre

inp res

res

Figure 3.11: Tutorial process ‘Replacing infinite values by missing values’.

This Example Process starts with the Subprocess operator which delivers an ExampleSet. A
breakpoint is inserted here so that you can have a look at the ExampleSet. Have a look at the
Ratio attribute of the ExampleSet. You will see that it has a positive infinity value in the first
example. The Replace Infinite Values operator is applied on this ExampleSet to replace infinite
values by missing values. The default parameter is set to ‘missing’ and all other parameters are
used with default values. You can see the resultant ExampleSet in the Results Workspace. You
can see that the infinite valuesof theRatio attributehavebeen replacedbymissing values. These
missing values can be replenished by using operators like the Replace Missing Values operator.
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Replace Missing Values

Replace Missing .. .

exa exa

ori

pre

This Operator replaces missing values in Examples of selected At-
tributes by a specified replacement.

Description
Missing values can be replaced by the minimum, maximum or average value of that Attribute.
Zero can also be used to replace missing values. Any replenishment value can also be specified
as a replacement of missing values.

Differentiation
• Impute Missing Values
ThisOperator estimates values for themissingvaluesbyapplyingamodel learned formiss-
ing values.

See page 362 for details.

• Replace Infinite Values
This Operator replaces infinte values by specified replacements.

See page 366 for details.

• Declare Missing Value
In contrast to the Replace Missing Values Operators, this Operator set specific values of
selected Attributes to missing values.

See page 357 for details.

Input Ports
example set (exa) This input port expects an ExampleSet.

Output Ports
example set (exa) The ExampleSet with missing values replaced.

original (ori) The ExampleSet that was given as input is passed through without changes.

preprocessing model (pre) This port delivers the preprocessing model. It can be used by the
Apply Model Operator to perform the specified replacement of missing values on another
ExampleSet. This is helpful for example if the Replace Missing Values Operator is used
during training and the same replacement has to be applied on test or actual data.

The preprocessing model can also be grouped together with other preprocessing models
and learning models by the Group Models Operator.
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Parameters
create view Create a View instead of changing the underlying data. If this option is checked,

the replacement is delayed until the transformations are needed. This parameter can be
considered a legacy option.

attribute filter type This parameter allows you to select the Attribute selection filter; the
method you want to use for selecting Attributes. It has the following options:

• all This option selects all the Attributes of the ExampleSet, no Attributes are re-
moved. This is the default option.

• single This option allows the selection of a single Attribute. The required Attribute
is selected by the attribute parameter.

• subset This option allows the selection of multiple Attributes through a list (see pa-
rameter attributes). If the meta data of the ExampleSet is known all Attributes are
present in the list and the required ones can easily be selected.

• regular_expression This option allows you to specify a regular expression for theAt-
tribute selection. The regular expressionfilter is configured by theparameters regular
expression, use except expression and except expression.

• value_type This option allows selection of all the Attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to thenumeric type. The value typefilter is configuredby theparameters value
type, use value type exception, except value type.

• block_type This option allows the selection of all the Attributes of a particular block
type. It should be noted that block types may be hierarchical. For example value-
_series_start and value_series_end block types both belong to the value_series block
type. The block type filter is configured by the parameters block type, use block type
exception, except block type.

• no_missing_values This option selects all Attributes of the ExampleSetwhich donot
contain a missing value in any Example. Attributes that have even a single missing
value are removed.

• numeric_value_filter All numeric Attributes whose Examples all match a given nu-
meric condition are selected. The condition is specified by the numeric condition pa-
rameter. Please note that all nominal Attributes are also selected irrespective of the
given numerical condition.

attribute The required Attribute can be selected from this option. The Attribute name can be
selected from the drop down box of the parameter if the meta data is known.

attributes The required Attributes can be selected from this option. This opens a newwindow
with two lists. All Attributes are present in the left list. They can be shifted to the right
list, which is the list of selected Attributes that will make it to the output port.

regular expression Attributes whose names match this expression will be selected. The ex-
pression can be specified through the edit and preview regular expressionmenu. This menu
gives a good idea of regular expressions and it also allows you to try different expressions
and preview the results simultaneously.

use except expression If enabled, an exception to the first regular expression can be speci-
fied. This exception is specified by the except regular expression parameter.
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except regular expression This option allows you to specify a regular expression. Attributes
matching this expression will be filtered out even if they match the first expression (ex-
pression that was specified in regular expression parameter).

value type This option allows to select a type of Attribute. One of the following types can be
chosen: nominal, numeric, integer, real, text, binominal, polynominal, file_path, date-
_time, date, time.

use value type exception If enabled, an exception to the selected type can be specified. This
exception is specified by the except value type parameter.

except value type The Attributes matching this type will be removed from the final output
even if theymatched the before selected type, specified by the value typeparameter. One of
the following types can be selected here: nominal, numeric, integer, real, text, binominal,
polynominal, file_path, date_time, date, time.

block type This option allows to select a block type ofAttribute. One of the following types can
be chosen: single_value, value_series, value_series_start, value_series_end, value_matrix,
value_matrix_start, value_matrix_end, value_matrix_row_start.

use block type exception If enabled, an exception to the selected block type can be specified.
This exception is specified by the except block type parameter.

except block type TheAttributesmatching this block typewill be removed from the final out-
put even if they matched the before selected type by the block type parameter. One of the
following block types can be selected here: single_value, value_series, value_series_start,
value_series_end, value_matrix, value_matrix_start, value_matrix_end, value_matrix_row-
_start.

numeric condition The numeric condition used by the numeric condition filter type. A nu-
meric Attribute is kept if all Examplesmatch the specified condition for this Attribute. For
example the numeric condition ‘> 6’ will keep all numeric Attributes having a value of
greater than 6 in every Example. A combination of conditions is possible: ‘> 6 && < 11’
or ‘<= 5 || < 0’. But && and || cannot be used together in one numeric condition. Condi-
tions like ‘(> 0 &&< 2) || (>10 &&< 12)’ are not allowed because they use both && and
||. Nominal Attributes are always kept, regardless of the specified numeric condition.

include special attributes Special Attributes are Attributes with special roles. These are: id,
label, prediction, cluster,weightandbatch. Alsocustomroles canbeassigned toAttributes.
By default all special Attributes are delivered to the output port irrespective of the condi-
tions in the Select Attribute Operator. If this parameter is set to true, special Attributes
are also tested against conditions specified in the Select Attribute Operator and only those
Attributes are selected that match the conditions.

invert selection If this parameter is set to true the selection is reversed. In that case all At-
tributes matching the specified condition are removed and the other Attributes remain
in the output ExampleSet. Special Attributes are kept independent of the invert selection
parameter as along as the include special attributes parameter is not set to true. If so the
condition is also applied to the special Attributes and the selection is reversed if this pa-
rameter is checked.

default This parameter specifies how missing values are replaced by default. This default op-
tion is used for all Attributes which are not specified by the columns parameter.

• none Missing values are not replaced by default.
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• minimum Missing values are replaced by the minimum value of that Attribute.

• maximum Missing values are replaced by the maximum value of that Attribute.

• average Missing values are replaced by the average value of that Attribute.

• zero Missing values are replaced by zero.

• value Missing values are replaced by the value specified in the replenishment value
parameter.

columns Different Attributes can be provided with a different type of replacements through
this parameter. The default function selected by the default parameter is applied on At-
tributes that are not explicitly mentioned in the columns parameter.

replenishment value If thedefaultparameter is set tovalue, thisparameter specifies thevalue
which is used to replace missing values.

Tutorial Processes

Replacing missing values of the Labor Negotiations data set

Process

Labor-Negotiations

out

Replace Missing .. .

exa exa

ori

pre

inp res

res

Figure 3.12: Tutorial process ‘Replacing missing values of the Labor Negotiations data set’.

ThisProcess shows theusageof theReplaceMissingValuesOperatoron theLabor-Negotiations
data set from the Samples folder.
TheOperator is configured that it applies the replacement on all Attributeswhichhave at least

one missing value (attribute filter type is no_missing_values and invert selection is true). In the
columns parameter several Attributes are set to different replacement methods:
wage-inc-1st: minimum
wage-inc-2nd: maximum
wage-inc-3rd: zero
working-hours: value
The parameter replenishment value is set to 35, so that all missing values of the Attribute

working-hours are replaced by 35. The missing values of the remaining Attributes are replaced
by the average of the Attribute (parameter default).
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3.4 Duplicates
Remove Duplicates

Remove Duplicates

exa exa

ori

dup

This operator removes duplicate examples from an ExampleSet by
comparing all examples with each other on the basis of the spec-
ified attributes. Two examples are considered duplicate if the se-
lected attributes have the same values in them.

Description
TheRemoveDuplicates operator removes duplicate examples fromanExampleSet by comparing
all examples with each other on the basis of the specified attributes. This operator removes
duplicate examples such that only one of all the duplicate examples is kept. Two examples are
considered duplicate if the selected attributes have the same values in them. Attributes can be
selected from the attribute filter type parameter and other associated parameters. Suppose two
attributes ‘att1’ and ‘att2’ are selected and ‘att1’ and ‘att2’ have three and two possible values
respectively. Thus there are total 6 (i.e. 3 x 2) unique combinations of these two attribute. Thus
the resultant ExampleSet can have 6 examples at most. This operator works on all attribute
types.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports
example set output (exa) The duplicate examples are removed from the given ExampleSet

and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

duplicates (dup) The duplicated examples from the given ExampleSet are delivered through
this port.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.
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• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. Users should have a basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.

use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).
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value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

treat missing values as duplicates (boolean) Thisparameter specifies ifmissingvalues should
be treated as duplicates or not. If set to true, missing values are considered as duplicate
values.

Tutorial Processes

Removing duplicate values from the Golf data set on the basis of the Outlook and
Wind attributes

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that theOutlook attribute has three possible
values i.e. ‘sunny’, ‘rain’ and ‘overcast’. The Wind attribute has two possible values i.e. ‘true’
and ‘false’. The Remove Duplicates operator is applied on this ExampleSet to remove duplicate
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Figure 3.13: Tutorial process ‘Removing duplicate values from the Golf data set on the basis of
the Outlook and Wind attributes’.

examples on the basis of the Outlook andWind attributes. The attribute filter type parameter is
set to ‘value type’ and the value type parameter is set to ‘nominal’, thus two examples that have
same values in their Outlook and Wind attributes are considered as duplicate. Note that the
Play attribute is not selected although its value type is nominal because it is a special attribute
(because it has label role). To select attributes with special roles the include special attributes
parameter should be set to true. The Outlook and Wind attributes have 3 and 2 possible val-
ues respectively. Thus the resultant ExampleSet will have 6 examples at most i.e. one example
for each possible combination of attribute values. You can see the resultant ExampleSet in the
Results Workspace. You can see that it has 6 examples and all examples have a different combi-
nation of the Outlook and Wind attribute values.
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3.5 Outliers
Detect Outlier (COF)

Detect Outl ier (C.. .

exa exa

ori

This operator identifies outliers in the given ExampleSet based on
the Class Outlier Factors (COF).

Description
The main concept of an ECODB (Enhanced Class Outlier - Distance Based) algorithm is to rank
each instance in theExampleSet given theparametersN (topN class outliers), andK (thenumber
of nearest neighbors). The rank of each instance is found using the formula:
COF = PCL(T,K) - norm(deviation(T)) + norm(kDist(T))

• PCL(T,K) is the Probability of the Class Label of the instance T with respect to the class
labels of its K nearest neighbors.

• norm(Deviation(T))andnorm(KDist(T))are thenormalizedvaluesofDeviation(T)andKDist(T)
respectively and their values fall in the range [0 - 1].

• Deviation(T) is how much the instance T deviates from instances of the same class. It is
computed by summing the distances between the instance T and every instance belonging
to the same class.

• KDist(T) is the summation of the distance between the instance T and its K nearest neigh-
bors.

This operator adds a new boolean attribute named ‘outlier’ to the given ExampleSet. If the
value of this attribute is true, that example is an outlier and vice versa. Another special attribute
‘COF Factor’ is also added to the ExampleSet. This attribute measures the degree of being Class
Outlier for an example.
An outlier is an example that is numerically distant from the rest of the examples of the Ex-

ampleSet. An outlying example is one that appears to deviate markedly from other examples of
the ExampleSet. Outliers are often (not always) indicative of measurement error. In this case
such examples should be discarded.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Gen-

erate Data operator in the attached Example Process. The output of other operators can
also be used as input.

Output Ports
example set output (exa) A new boolean attribute ‘outlier’ and a real attribute ‘COF Factor’

is added to the givenExampleSet and theExampleSet is delivered through this output port.

378



3.5. Outliers

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
number of neighbors (integer) This parameter specifies the k value for the k nearest neigh-

bors to be the analyzed. The minimum and maximum values for this parameter are 1 and
1 million respectively.

number of class outliers (integer) This parameter specifies the number of top-n Class Out-
liers to be looked for. The resultant ExampleSet will have n number of examples that are
considered outliers. The minimum and maximum values for this parameter are 2 and 1
million respectively.

measure types (selection) This parameter is used for selecting the typeofmeasure tobeused
formeasuring thedistancebetweenpoints.The followingoptions are available: mixedmea-
sures, nominal measures, numerical measures and Bregman divergences.

mixed measure (selection) This parameter is available when the measure type parameter is
set to ‘mixed measures’. The only available option is the ‘Mixed Euclidean Distance’

nominal measure (selection) This parameter is available when the measure type parameter
is set to ‘nominal measures’. This option cannot be applied if the input ExampleSet has
numerical attributes. In this case the ‘numerical measure’ option should be selected.

numerical measure (selection) This parameter is available when the measure type parame-
ter is set to ‘numerical measures’. This option cannot be applied if the input ExampleSet
has nominal attributes. If the input ExampleSet has nominal attributes the ‘nominalmea-
sure’ option should be selected.

divergence (selection) This parameter is available when themeasure type parameter is set to
‘Bregman divergences’.

kernel type (selection) This parameter is only availablewhen the numericalmeasureparame-
ter is set to ‘Kernel EuclideanDistance’. The type of the kernel function is selected through
this parameter. Following kernel types are supported:

• dot The dot kernel is defined byk(x,y)=x*y i.e.it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2) where g is the gamma that is
specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in theperformanceof the kernel, and shouldbe carefully tuned to theprob-
lem at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of the polynomial and it is specified by the kernel degree parameter. The Polyno-
mial kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• sigmoid This is the sigmoid kernel. Please note that the sigmoid kernel is not valid
under some parameters.
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• anova This is the anova kernel. It has adjustable parameters gamma and degree.
• epachnenikov The Epanechnikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVMkernel parameter gamma. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the SVM kernel parameter sigma3. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

Tutorial Processes

Detecting outliers from an ExampleSet

The Generate Data operator is used for generating an ExampleSet. The target function parame-
ter is set to ‘gaussianmixture clusters’. The number examples and number of attributes param-
eters are set to 200 and 2 respectively. A breakpoint is inserted here so that you can view the
ExampleSet in the Results Workspace. A good plot of the ExampleSet can be seen by switching
to the ‘Plot View’ tab. Set Plotter to ‘Scatter’, x-Axis to ‘att1’ and y-Axis to ‘att2’ to view the
scatter plot of the ExampleSet.
The Detect Outlier (COF) operator is applied on the ExampleSet. The number of neighbors

and number of class outliers parameters are set to 7. The resultant ExampleSet can be viewed
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Figure 3.14: Tutorial process ‘Detecting outliers from an ExampleSet’.

in the ResultsWorkspace. For better understanding, switch to the ‘Plot View’ tab. Set Plotter to
‘Scatter’, x-Axis to ‘att1’, y-Axis to ‘att2’ and Color Column to ‘outlier’ to view the scatter plot
of the ExampleSet (the outliers are marked red).
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Detect Outlier (Densities)

Detect  Outl ier  (D. . .

exa exa

ori

This operator identifies outliers in the given ExampleSet based on
the data density. All objects that have at least p proportion of all
objects farther away than distance D are considered outliers.

Description
The Detect Outlier (Densities) operator is an outlier detection algorithm that calculates the
DB(p,D)-outliers for the given ExampleSet. ADB(p,D)-outlier is an object which is at leastD dis-
tance away from at least p proportion of all objects. The two real-valued parameters p andD can
be specified through the proportion and distance parameters respectively. The DB(p,D)-outliers
are distance-based outliers according to Knorr and Ng. This operator implements a global ho-
mogenous outlier search.
This operator adds a new boolean attribute named ‘outlier’ to the given ExampleSet. If the

value of this attribute is true, that example is an outlier and vice versa. Different distance func-
tions are supported by this operator. The desired distance function can be selected by the dis-
tance function parameter.
An outlier is an example that is numerically distant from the rest of the examples of the Ex-

ampleSet. An outlying example is one that appears to deviate markedly from other examples of
the ExampleSet. Outliers are often (not always) indicative of measurement error. In this case
such examples should be discarded.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Gen-

erate Data operator in the attached Example Process. The output of other operators can
also be used as input.

Output Ports
example set output (exa) A new boolean attribute ‘outlier’ is added to the given ExampleSet

and the ExampleSet is delivered through this output port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
distance (real) Thisparameter specifies thedistanceDparameter for calculationof theDB(p,D)-

outliers.

proportion (real) This parameter specifies the proportion p parameter for calculation of the
DB(p,D)-outliers.

distance function (selection) Thisparameter specifies thedistance function thatwill beused
for calculating the distance between two examples.
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Figure 3.15: Tutorial process ‘Detecting outliers from an ExampleSet’.

The Generate Data operator is used for generating an ExampleSet. The target function pa-
rameter is set to ‘gaussian mixture clusters’. The number examples and number of attributes
parameters are set to 200 and 2 respectively. A breakpoint is inserted here so that you can view
the ExampleSet in the ResultsWorkspace. A good plot of the ExampleSet can be seen by switch-
ing to the ‘Plot View’ tab. Set Plotter to ‘Scatter’, x-Axis to ‘att1’ and y-Axis to ‘att2’ to view the
scatter plot of the ExampleSet.
The Detect Outlier (Densities) operator is applied on the ExampleSet. The distance and pro-

portion parameters are set to 4.0 and 0.8 respectively. The resultant ExampleSet can be viewed
in the Results Workspace. For better understanding switch to the ‘Plot View’ tab. Set Plotter to
‘Scatter’, x-Axis to ‘att1’, y-Axis to ‘att2’ and Color Column to ‘outlier’ to view the scatter plot
of the ExampleSet (the outliers are marked red). The number of outliers may differ depending
on the randomization, if the random seed parameter of the process is set to 1997, you will see 5
outliers.
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Detect Outlier (Distances)

Detect  Outl ier  (D. . .

exa exa

ori

This operator identifies n outliers in the given ExampleSet based
on the distance to their k nearest neighbors. The variables n and k
can be specified through parameters.

Description
This operator performs outlier search according to the outlier detection approach recommended
by Ramaswamy, Rastogi and Shim in “Efficient Algorithms for Mining Outliers from Large Data
Sets”. In their paper, a formulation for distance-based outliers is proposed that is based on the
distanceof a point from its k-thnearest neighbor. Eachpoint is rankedon thebasis of its distance
to its k-th nearest neighbor and the top n points in this ranking are declared to be outliers. The
values of k and n can be specified by the number of neighbors and number of outliers parameters
respectively. This search is based on simple and intuitive distance-based definitions for outliers
by Knorr and Ng which in simple words is: ‘A point p in a data set is an outlier with respect two
parameters k and d if no more than k points in the data set are at a distance of d or less from p’.
This operator adds a new boolean attribute named ‘outlier’ to the given ExampleSet. If the

value of this attribute is true that example is an outlier and vice versa. n examples will have
the value true in the ‘outlier’ attribute (where n is the value specified in the number of outliers
parameter). Different distance functions are supported by this operator. The desired distance
function can be selected by the distance function parameter.
An outlier is an example that is numerically distant from the rest of the examples of the Ex-

ampleSet. An outlying example is one that appears to deviate markedly from other examples of
the ExampleSet. Outliers are often (not always) indicative of measurement error. In this case
such examples should be discarded.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Gen-

erate Data operator in the attached Example Process. The output of other operators can
also be used as input.

Output Ports
example set output (exa) A new boolean attribute ‘outlier’ is added to the given ExampleSet

and the ExampleSet is delivered through this output port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
number of neighbors (integer) Thisparameter specifies thekvalue for thek-thnearestneigh-

bors to be the analyzed. The minimum and maximum values for this parameter are 1 and
1 million respectively.
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number of outliers (integer) Thisparameter specifies thenumberof top-noutliers tobe looked
for. The resultant ExampleSetwill havennumber of examples that are considered outliers.
The minimum and maximum values for this parameter are 2 and 1 million respectively.

distance function (selection) Thisparameter specifies thedistance function thatwill beused
for calculating the distance between two examples.

Tutorial Processes

Detecting outliers from an ExampleSet
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Figure 3.16: Tutorial process ‘Detecting outliers from an ExampleSet’.

The Generate Data operator is used for generating an ExampleSet. The target function pa-
rameter is set to ‘gaussian mixture clusters’. The number examples and number of attributes
parameters are set to 200 and 2 respectively. A breakpoint is inserted here so that you can view
the ExampleSet in the ResultsWorkspace. A good plot of the ExampleSet can be seen by switch-
ing to the ‘Plot View’ tab. Set Plotter to ‘Scatter’, x-Axis to ‘att1’ and y-Axis to ‘att2’ to view the
scatter plot of the ExampleSet.
The Detect Outlier (Distances) operator is applied on this ExampleSet. The number of neigh-

bors and number of outliers parameters are set to 4 and 12 respectively. Thus 12 examples of
the resultant ExampleSet will have true value in the ‘outlier’ attribute. This can be verified by
viewing the ExampleSet in the Results Workspace. For better understanding switch to the ‘Plot
View’ tab. Set Plotter to ‘Scatter’, x-Axis to ‘att1’, y-Axis to ‘att2’ and Color Column to ‘outlier’
to view the scatter plot of the ExampleSet (the outliers are marked red).

385



3. Cleansing

Detect Outlier (LOF)

Detect Outl ier (L. . .

exa exa

ori

This operator identifies outliers in the given ExampleSet based on
local outlier factors (LOF). The LOF is based on a concept of a local
density, where locality is given by the k nearest neighbors, whose
distance is used to estimate the density. By comparing the local
density of an object to the local densities of its neighbors, one can
identify regions of similar density, and points that have a substan-
tially lower density than their neighbors. These are considered to
be outliers

Description

This operator performs a LOF outlier search. LOF outliers or outliers with a local outlier factor
per object are density based outliers according to Breunig, Kriegel, et al. As indicated by the
name, the local outlier factor is based on a concept of a local density, where locality is given
by k nearest neighbors, whose distance is used to estimate the density. By comparing the local
density of an object to the local densities of its neighbors, one can identify regions of similar
density, and points that have a substantially lower density than their neighbors. These are con-
sidered to be outliers. The local density is estimated by the typical distance at which a point
can be ‘reached’ from its neighbors. The definition of ‘reachability distance’ used in LOF is an
additional measure to produce more stable results within clusters.
The approach to find the outliers is based onmeasuring the density of objects and its relation

to each other (referred to as local reachability density). Based on the average ratio of the local
reachability density of an object and its k-nearest neighbors (i.e. the objects in its k-distance
neighborhood), a local outlier factor (LOF) is computed. The approach takes a parameterMinPts
(actually specifying the ‘k’) and it uses the maximum LOFs for objects in aMinPts range (lower
bound and upper bound toMinPts).
This operator supports cosine, inverted cosine, angle and squared distance in addition to the

usual euclidian distance which can be specified by the distance function parameter. In the first
step, the objects are grouped into containers. For each object, using a radius screening of all
other objects, all the available distances between that object and another object (or group of
objects) on the same radius given by the distance are associatedwith a container. That container
then has the distance information as well as the list of objects within that distance (usually only
a few) and the information about how many objects are in the container.
In the second step, three things are done:

1. The containers for each object are counted in ascending order according to the cardinality
of the object list within the container (= that distance) to find the k-distances for each
object and the objects in that k-distance (all objects in all the subsequent containers with
a smaller distance).

2. Using this information, the local reachability densities are computed by using the maxi-
mum of the actual distance and the k-distance for each object pair (object and objects in
k-distance) and averaging it by the cardinality of the k-neighborhood and then taking the
reciprocal value.

3. The LOF is computed for eachMinPts value in the range (actually for all up to upper bound)
by averaging the ratio between the MinPts-local reachability-density of all objects in the
k-neighborhood and the object itself. The maximum LOF in theMinPts range is passed as
final LOF to each object.
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Afterwards LOFs are added as values for a special real-valued outlier attribute in the Exam-
pleSet which the operator will return.
An outlier is an example that is numerically distant from the rest of the examples of the Ex-

ampleSet. An outlying example is one that appears to deviate markedly from other examples of
the ExampleSet. Outliers are often (not always) indicative of measurement error. In this case
such examples should be discarded.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Gen-

erate Data operator in the attached Example Process. The output of other operators can
also be used as input.

Output Ports
example set output (exa) A new attribute ‘outlier’ is added to the given ExampleSet which

is then delivered through this output port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
minimal points lower bound (integer) This parameter specifies the lower bound forMinPts

for the Outlier test.

minimal points upper bound (integer) Thisparameter specifies theupperbound forMinPts
for the Outlier test.

distance function (selection) Thisparameter specifies thedistance function thatwill beused
for calculating the distance between two objects.

Tutorial Processes
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Figure 3.17: Tutorial process ‘Detecting outliers from an ExampleSet’.

The Generate Data operator is used for generating an ExampleSet. The target function pa-
rameter is set to ‘gaussian mixture clusters’. The number examples and number of attributes
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parameters are set to 200 and 2 respectively. A breakpoint is inserted here so that you can view
the ExampleSet in the ResultsWorkspace. A good plot of the ExampleSet can be seen by switch-
ing to the ‘Plot View’ tab. Set Plotter to ‘Scatter’, x-Axis to ‘att1’ and y-Axis to ‘att2’ to view the
scatter plot of the ExampleSet.
The Detect Outlier (LOF) operator is applied on this ExampleSet with default values for all

parameters. The minimal points lower bound and minimal points upper bound parameters are
set to 10 and 20 respectively. The resultant ExampleSet can be seen in the Results Workspace.
For better understanding switch to the ‘Plot View’ tab. Set Plotter to ‘Scatter’, x-Axis to ‘att1’,
y-Axis to ‘att2’ and Color Column to ‘outlier’ to view the scatter plot of the ExampleSet.

388



3.6. Dimensionality Reduction

3.6 Dimensionality Reduction
Generalized Hebbian Algorithm

GHA

exa exa

ori

pre

Thisoperator is an implementationof theGeneralizedHebbianAl-
gorithm (GHA) which is an iterative method for computing princi-
pal components. The user can specifymanually the required num-
ber of principal components.

Description

The Generalized Hebbian Algorithm (GHA) is a linear feedforward neural networkmodel for un-
supervised learning with applications primarily in principal components analysis. From a com-
putational point of view, it can be advantageous to solve the eigenvalue problem by iterative
methods which do not need to compute the covariance matrix directly. This is useful when the
ExampleSet contains many attributes (hundreds or even thousands).
Principal Component Analysis (PCA) is an attribute reduction procedure. It is useful when

you have obtained data on a number of attributes (possibly a large number of attributes), and
believe that there is some redundancy in those attributes. In this case, redundancy means that
some of the attributes are correlated with one another, possibly because they are measuring the
same construct. Because of this redundancy, you believe that it should be possible to reduce the
observedattributes into a smaller numberof principal components (artificial attributes) thatwill
account for most of the variance in the observed attributes. Principal Component Analysis is a
mathematical procedure that uses an orthogonal transformation to convert a set of observations
of possibly correlated attributes into a set of values of uncorrelated attributes called principal
components. Thenumber of principal components is less thanor equal to thenumber of original
attributes. This transformation is defined in such a way that the first principal component’s
variance is as high as possible (accounts for as much of the variability in the data as possible),
and each succeeding component in turn has the highest variance possible under the constraint
that it should be orthogonal to (uncorrelated with) the preceding components.

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of the Retrieve oper-
ator in the attached Example Process. The output of other operators can also be used as
input. It is essential that meta data should be attached with the data for the input because
attributes are specified in theirmeta data. The Retrieve operator providesmeta data along
with the data. Please note that this operator cannot handle nominal attributes; it works
on numerical attributes.

Output Ports

example set (exa) The Generalized Hebbian Algorithm is performed on the input ExampleSet
and the resultant ExampleSet is delivered through this port.
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original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the GHA model.

Parameters
number of components (integer) Thenumberof components tokeep is specifiedby thenum-

ber of components parameter. If set to -1 the number of principal components in the re-
sultant ExampleSet is equal to the number of attributes in the original ExampleSet.

number of iterations (integer) This parameter specifies the number of iterations to apply
the update rule.

learning rate (real) This parameter specifies the learning rate of the GHA.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization.

local random seed (integer) This parameter specifies the local random seed. It is available
only if the use local random seed parameter is set to true.

Tutorial Processes

Dimensionality reduction of the Polynomial data set using the GHA operator
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Figure 3.18: Tutorial process ‘Dimensionality reduction of the Polynomial data set using the
GHA operator’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular
attributes. TheGeneralizedHebbianAlgorithmoperator is applied on the ‘Polynomial’ data set.
The number of components parameter is set to 3. Thus the resultant ExampleSet will be com-
posed of 3 principal components. All other parameters are used with default values. Run the
process, you will see that the ExampleSet that had 5 attributes has been reduced to an Exam-
pleSet with 3 principal components.
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Independent Component Analysis

ICA

exa exa

ori

pre

This operator performs the Independent Component Analysis
(ICA) of the given ExampleSet using the FastICA-algorithm of
Hyvärinen and Oja.

Description
Independent component analysis (ICA) is a very general-purpose statistical technique in which
observed random data are linearly transformed into components that are maximally indepen-
dent from each other, and simultaneously have “interesting” distributions. Such a representa-
tion seems to capture the essential structure of the data inmany applications, including feature
extraction. ICA is used for revealing hidden factors that underlie sets of random variables or
measurements. ICA is superficially related to principal component analysis (PCA) and factor
analysis. ICA is a much more powerful technique, however, capable of finding the underlying
factors or sources when these classic methods fail completely. This operator implements the
FastICA-algorithm of A. Hyvärinen and E. Oja. The FastICA-algorithm has most of the advan-
tages of neural algorithms: It is parallel, distributed, computationally simple, and requires little
memory space.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input. It is essential that meta data should be attached with the data for the
input because attributes are specified in their meta data. The Retrieve operator provides
meta data along with the data. Please note that this operator cannot handle nominal at-
tributes; it works on numerical attributes.

Output Ports
example set output (exa) The Independent Component Analysis is performed on the input

ExampleSet and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters
dimensionality reduction (selection) This parameter indicates which type of dimensional-

ity reduction (reduction in number of attributes) should be applied.

• none if this option is selected, dimensionality reduction is not performed.
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• fixed_number if this option is selected, only a fixed number of components are kept.
The number of components to keep is specified by the number of components param-
eter.

number of components (integer) This parameter is only available when the dimensionality
reduction parameter is set to ‘fixed number’. The number of components to keep is speci-
fied by the number of components parameter.

algorithm type (selection) This parameter specifies the type of algorithm to be used.

• parallel If parallel option is selected, the components are extracted simultaneously.

• deflation If deflation option is selected, the components are extracted one at a time.

function (selection) This parameter specifies the functional form of the G function to be used
in the approximation to neg-entropy.

alpha (real) This parameter specifies the alpha constant in range [1, 2] which is used in ap-
proximation to neg-entropy.

row norm (boolean) Thisparameter indicateswhether rowsof thedatamatrix shouldbe stan-
dardized beforehand.

max iteration (integer) This parameter specifies the maximum number of iterations to per-
form.

tolerance (real) This parameter specifies a positive scalar giving the tolerance at which the
un-mixing matrix is considered to have converged.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Dimensionality reduction of the Sonar data set using the Independent Component
Analysis operator

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the ExampleSet has 60 attributes. The
Independent Component Analysis operator is applied on the ‘Sonar’ data set. The dimensional-
ity reduction parameter is set to ‘fixednumber’ and the number_of_components parameter is set
to 10. Thus the resultant ExampleSet will be composed of 10 components (artificial attributes).
You can see the resultant ExampleSet in the Results Workspace and verify that it has only 10
attributes. Please note that these attributes are not original attributes of the ‘Sonar’ data set.
These attributes were created using the ICA procedure.
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Figure 3.19: Tutorial process ‘Dimensionality reduction of the Sonar data set using the Indepen-
dent Component Analysis operator’.

Principal Component Analysis

PCA

exa exa

ori

pre

This operator performs a Principal Component Analysis (PCA) us-
ing the covariancematrix. Theuser can specify the amount of vari-
ance to cover in the original data while retaining the best number
of principal components. The user can also specify manually the
number of principal components.

Description

Principal component analysis (PCA) is an attribute reduction procedure. It is useful when you
have obtained data on a number of attributes (possibly a large number of attributes), and believe
that there is some redundancy in those attributes. In this case, redundancy means that some of
the attributes are correlated with one another, possibly because they are measuring the same
construct. Because of this redundancy, you believe that it should be possible to reduce the ob-
served attributes into a smaller number of principal components (artificial attributes) that will
account for most of the variance in the observed attributes.
Principal Component Analysis is a mathematical procedure that uses an orthogonal transfor-

mation to convert a set of observations of possibly correlated attributes into a set of values of
uncorrelated attributes called principal components. The number of principal components is
less than or equal to the number of original attributes. This transformation is defined in such a
way that the first principal component’s variance is as high as possible (accounts for as much of
the variability in the data as possible), and each succeeding component in turn has the highest
variance possible under the constraint that it should be orthogonal to (uncorrelated with) the
preceding components.
Please note that PCA is sensitive to the relative scaling of the original attributes. This means

that whenever different attributes have different units (like temperature and mass); PCA is a
somewhat arbitrarymethod of analysis. Different results would be obtained if one used Fahren-
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heit rather than Celsius for example.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of the Retrieve oper-

ator in the attached Example Process. The output of other operators can also be used as
input. It is essential that meta data should be attached with the data for the input because
attributes are specified in theirmeta data. The Retrieve operator providesmeta data along
with the data. Please note that this operator cannot handle nominal attributes; it works
on numerical attributes.

Output Ports
example set (exa) The Principal Component Analysis is performed on the input ExampleSet

and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters
dimensionality reduction (selection) This parameter indicates which type of dimensional-

ity reduction (reduction in number of attributes) should be applied.

• none if this option is selected, no component is removed from the ExampleSet.

• keep_variance if this option is selected, all the components with a cumulative vari-
ance greater than the given threshold are removed from the ExampleSet. The thresh-
old is specified by the variance threshold parameter.

• fixed_number if this option is selected, only a fixed number of components are kept.
The number of components to keep is specified by the number of components param-
eter.

variance threshold (real) This parameter is available only when the dimensionality reduction
parameter is set to ‘keep variance’. All the components with a cumulative variance greater
than the variance threshold are removed from the ExampleSet.

number of components (integer) This parameter is only available when the dimensionality
reduction parameter is set to ‘fixed number’. The number of components to keep is speci-
fied by the number of components parameter.

Tutorial Processes

Dimensionality reduction of the Polynomial data set using the Principal Component
Analysis operator

The ‘Polynomial’ data set is loaded using the Retrieve operator. The CovarianceMatrix operator
is applied on it. A breakpoint is inserted here so that you can have a look at the ExampleSet and
its covariance matrix. For this purpose the Covariance Matrix operator is applied otherwise it is
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Process

Polynomial
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Figure 3.20: Tutorial process ‘Dimensionality reduction of the Polynomial data set using the
Principal Component Analysis operator’.

not required here. The Principal Component Analysis operator is applied on the ‘Polynomial’
data set. The dimensionality reduction parameter is set to ‘fixed number’ and the number of
components parameter is set to 4. Thus the resultant ExampleSetwill be composedof 4principal
components. As mentioned in the description, the principal components are uncorrelated with
each other thus their covariance should be zero. The Covariance Matrix operator is applied on
the output of the Principal Component Analysis operator. You can see the covariance matrix of
the resultant ExampleSet in the Results Workspace. As you can see that the covariance of the
components is zero.
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Principal Component Analysis (Kernel)

PCA (Kernel)

exa exa

ori

pre

This operator performs Kernel Principal Component Analysis
(PCA) which is a non-linear extension of PCA.

Description
Kernel principal component analysis (kernel PCA) is an extension of principal component anal-
ysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations
of PCA are done in a reproducing kernel Hilbert space with a non-linear mapping. By the use of
integral operator kernel functions, one can efficiently compute principal components in high-
dimensional feature spaces, related to input space by some nonlinear map. The result will be
the set of data points in a non-linearly transformed space. Please note that in contrast to the
usual linear PCA the kernel variant also works for large numbers of attributes but will become
slow for large number of examples.
RapidMinerprovides thePrincipalComponentAnalysisoperator for applying linearPCA.Prin-

cipal Component Analysis is a mathematical procedure that uses an orthogonal transformation
to convert a set of observations of possibly correlated attributes into a set of values of uncorre-
lated attributes called principal components. This transformation is defined in such a way that
the first principal component’s variance is as high as possible (accounts for as much of the vari-
ability in the data as possible), and each succeeding component in turn has the highest variance
possible under the constraint that it should be orthogonal to (uncorrelated with) the preceding
components.

Differentiation
• Principal Component Analysis Kernel principal component analysis (kernel PCA) is an
extension of principal component analysis (PCA) using techniques of kernel methods. In
contrast to the usual linear PCA the kernel variant also works for large numbers of at-
tributes but will become slow for large number of examples. See page 393 for details.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is output of the Retrieve

operator in the attached Example Process. The output of other operators can also be used
as input. It is essential that meta data should be attached with the data for the input be-
cause attributes are specified in theirmeta data. The Retrieve operator providesmeta data
along with the data. Please note that this operator cannot handle nominal attributes; it
works on numerical attributes.

Output Ports
example set output (exa) The kernel-based Principal Component Analysis is performed on

the input ExampleSet and the resultant ExampleSet is delivered through this port.
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original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has the infor-
mation regarding the parameters of this operator in the current process.

Parameters
kernel type (selection) The type of the kernel function is selected through this parameter.

Following kernel types are supported: dot, radial, polynomial, neural, anova, epachnenikov,
gaussian combination, multiquadric

• dot The dot kernel is defined byk(x,y)=x*y i.e. it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2)where g is the gamma, it is spec-
ified by the kernel gamma parameter. The adjustable parameter gamma plays a major
role in the performance of the kernel, and should be carefully tuned to the problem
at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of polynomial and it is specified by the kernel degree parameter. The polynomial
kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• anova The anova kernel is defined by raised to power d of summation of exp(-g (x-y))
where g is gamma and d is degree. gammaanddegree are adjusted by the kernel gamma
and kernel degree parameters respectively.

• epachnenikov The epachnenikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the kernel parameter gamma. This is only available when the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the kernel parameter sigma1. This is only available when the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the kernel parameter sigma2. This is only available when the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the kernel parameter sigma3. This is only available when the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the kernel parameter shift. This is only available when the kernel
type parameter is set to multiquadric.
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kernel degree (real) This is the kernel parameter degree. This is only available when the ker-
nel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the kernel parameter a. This is only available when the kernel type pa-
rameter is set to neural.

kernel b (real) This is the kernel parameter b. This is only available when the kernel type pa-
rameter is set to neural.

Related Documents
• Principal Component Analysis (page 393)

Tutorial Processes

Introduction to the Principal Component Analysis (Kernel) operator

Process

Polynomial

out

PCA (Kernel)

exa exa

ori

pre

inp res

res

Figure 3.21: Tutorial process ‘Introduction to the Principal Component Analysis (Kernel)
operator’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular
attributes. The Principal Component Analysis (Kernel) operator is applied on this ExampleSet
with default values of all parameters. The kernel type parameter is set to ‘radial’ and the kernel
gamma parameter is set to 1.0. The resultant ExampleSet can be seen in the ResultsWorkspace.
You can see that this ExampleSet has a different set of attributes.

398



3.6. Dimensionality Reduction

Self-Organizing Map

S O M

exa exa

ori

pre

This operator performs a dimensionality reduction of the given
ExampleSet based on a self-organizing map (SOM). The user can
specify the required number of dimensions.

Description
A self-organizing map (SOM) or self-organizing feature map (SOFM) is a type of artificial neu-
ral network that is trained using unsupervised learning to produce a low-dimensional (typically
two-dimensional), discretized representation of the input space of the training samples, called
a map. Self-organizing maps are different from other artificial neural networks in the sense
that they use a neighborhood function to preserve the topological properties of the input space.
This makes SOMs useful for visualizing low-dimensional views of high-dimensional data, akin
to multidimensional scaling. The model was first described as an artificial neural network by
Teuvo Kohonen, and is sometimes called a Kohonen map.
Likemostartificialneuralnetworks, SOMsoperate in twomodes: trainingandmapping. Train-

ing builds the map using input examples. Mapping automatically classifies a new input vector.
A self-organizing map consists of components called nodes or neurons. Associated with each
node is a weight vector of the same dimension as the input data vectors and a position in the
map space. The usual arrangement of nodes is a regular spacing in a hexagonal or rectangular
grid. The self-organizing map describes a mapping from a higher dimensional input space to a
lower dimensional map space. The procedure for placing a vector from data space onto the map
is to first find the node with the closest weight vector to the vector taken from data space. Once
the closest node is located it is assigned the values from the vector taken from the data space.
While it is typical to consider this type of network structure as related to feed-forward net-

works where the nodes are visualized as being attached, this type of architecture is fundamen-
tally different in arrangement and motivation.

Input Ports
example set input (exa) This input port expects an ExampleSet. It is the output of the Re-

trieve operator in the attached Example Process. The output of other operators can also
be used as input. It is essential that meta data should be attached with the data for the
input because attributes are specified in their meta data. The Retrieve operator provides
meta data along with the data. Please note that this operator cannot handle nominal at-
tributes; it works on numerical attributes.

Output Ports
example set output (exa) Thedimensionality reductionof thegivenExampleSet isperformed

based on a self-organizing map and the resultant ExampleSet is delivered through this
port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
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or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters
return preprocessing model (boolean) Thisparameter indicates if thepreprocessingmodel

should be returned.

number of dimensions (integer) This parameter specifies thenumberof dimensions to keep
i.e. the number of attributes of the resultant ExampleSet.

net size (integer) This parameter specifies the size of the SOM net, by setting the length of
every edge of the net. In total, there will be net size to the power of number of dimensions
nodes in the net.

training rounds (integer) This parameter specifies the number of training rounds.

learning rate start (real) This parameter specifies the strength of an adaption in the first
round. The strength will decrease every round until it reaches the learning rate end in the
last round.

learning rate end (real) Thisparameter specifies the strengthof anadaption in the last round.
The strength will decrease to this value in last round, beginning with learning rate start in
the first round.

adaption radius start (real) This parameter specifies the radius of the sphere around a stim-
ulus in the first round. This radius decreases every round, starting by adaption radius start
in the first round, to adaption radius end in the last round.

adaption radius end (real) This parameter specifies the radius of the sphere around a stim-
ulus in the last round. This radius decreases every round, starting by adaption radius start
in the first round, to adaption radius end in the last round.

Tutorial Processes

Dimensionality reduction of the Sonar data set using the Self-Organizing Map
operator

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the ExampleSet has 60 attributes. The
Self-Organizing Map operator is applied on the ‘Sonar’ data set. The number of dimensions
parameter is set to 2. Thus the resultant ExampleSetwill be composed of 2 dimensions (artificial
attributes). You can see the resultant ExampleSet in the ResultsWorkspace and verify that it has
only 2 attributes. Please note that these attributes are not original attributes of the ‘Sonar’ data
set. These attributes were created using the SOM procedure.
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Figure 3.22: Tutorial process ‘Dimensionality reduction of the Sonar data set using the Self-
Organizing Map operator’.

Singular Value Decomposition

SVD

exa exa

ori

pre

This operator performs a dimensionality reduction of the given
ExampleSet based on Singular Value Decomposition (SVD). The
user can specify the required number of dimensions or specify the
cumulative variance threshold. In the latter case all components
having cumulative variance above this threshold are discarded.

Description

Singular Value Decomposition (SVD) can be used to better understand an ExampleSet by show-
ing the number of important dimensions. It can also be used to simplify the ExampleSet by
reducing the number of attributes of the ExampleSet. This reduction removes unnecessary at-
tributes that are linearly dependent in the point of view of Linear Algebra. It is useful when you
have obtained data on a number of attributes (possibly a large number of attributes), and believe
that there is some redundancy in those attributes. In this case, redundancy means that some of
the attributes are correlated with one another, possibly because they are measuring the same
construct. Because of this redundancy, you believe that it should be possible to reduce the ob-
served attributes into a smaller number of components (artificial attributes) that will account
for most of the variance in the observed attributes. For example, imagine an ExampleSet which
contains an attribute that stores the water’s temperature on several samples and another that
stores its state (solid, liquid or gas). It is easy to see that the second attribute is dependent on the
first attribute and, therefore, SVD could easily show us that it is not important for the analysis.
RapidMiner provides various dimensionality reduction operators e.g. the Principal Compo-

nent Analysis operator. The Principal Component Analysis technique is a specific case of SVD.
It is a mathematical procedure that uses an orthogonal transformation to convert a set of ob-
servations of possibly correlated attributes into a set of values of uncorrelated attributes called
principal components. The number of principal components is less than or equal to the number
of original attributes. This transformation is defined in such a way that the first principal com-
ponent’s variance is as high as possible (accounts for as much of the variability in the data as
possible), and each succeeding component in turn has the highest variance possible under the
constraint that it should be orthogonal to (uncorrelated with) the preceding components.
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Differentiation

• Principal Component Analysis PCA is a dimensionality reduction procedure. PCA is a
specific case of SVD. See page 393 for details.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Re-
trieve operator in the attached Example Process. The output of other operators can also
be used as input. It is essential that meta data should be attached with the data for the
input because attributes are specified in their meta data. The Retrieve operator provides
meta data along with the data. Please note that this operator cannot handle nominal at-
tributes; it works on numerical attributes.

Output Ports

example set output (exa) The Singular Value Decomposition is performed on the input Ex-
ampleSet and the resultant ExampleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.

Parameters

dimensionality reduction (selection) This parameter indicates which type of dimensional-
ity reduction (reduction in number of attributes) should be applied.

• none if this option is selected, dimensionality reduction is not performed.

• keep_percentage if this option is selected, all the components with a cumulative
variance greater than the given threshold are removed from the ExampleSet. The
threshold is specified by the percentage threshold parameter.

• fixed_number if this option is selected, only a fixed number of components are kept.
The number of components to keep is specified by the dimensions parameter.

percentage threshold (real) This parameter is only available when the dimensionality reduc-
tion parameter is set to ‘keep percentage’. All the components with a cumulative variance
greater than the percentage threshold are removed from the ExampleSet.

dimensions (integer) This parameter is only available when the dimensionality reduction pa-
rameter is set to ‘fixed number’. The number of components to keep is specified by the
dimensions parameter.

Related Documents

• Principal Component Analysis (page 393)
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Tutorial Processes

Dimensionality reduction of the Sonar data set using the Singular Value
Decomposition operator

Process
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Figure 3.23: Tutorial process ‘Dimensionality reduction of the Sonar data set using the Singular
Value Decomposition operator’.

The ‘Sonar’ data set is loadedusing theRetrieve operator. A breakpoint is insertedhere so that
you can have a look at the ExampleSet. You can see that the ExampleSet has 60 attributes. The
Singular Value Decomposition operator is applied on the ‘Sonar’ data set. The dimensionality
reduction parameter is set to ‘fixed number’ and the dimensions parameter is set to 10. Thus the
resultant ExampleSet will be composed of 10 dimensions (artificial attributes). You can see the
resultant ExampleSet in the Results Workspace and verify that it has only 10 attributes. Please
note that these attributes are not original attributes of the ‘Sonar’ data set. These attributes
were created using the SVD procedure.
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4.1 Predictive
Create Formula

Create Formula

mod for

mod

This operator generates a formula from the given model. This op-
erator can generate formula only for models that are capable of
producing formula.

Description
TheCreate Formula operator extracts a prediction calculation formula from the givenmodel and
stores the formula in a formula result object which can then be written into a file, e.g. with the
Write operator. Please note that not all RapidMiner models provide a formula and this operator
is applicable on only those models that are capable of producing formula.

Input Ports
model (mod) This input port expects a model. The model should be capable of providing a

formula.

Output Ports
formula (for) The formula of the given model is passed to the output through this port.

model (mod) Themodel thatwasgivenas input ispassedwithout changing to theoutput through
this port. This is usually used to reuse the same model in further operators or to view the
model in the Results Workspace.

Tutorial Processes

Formula of the Logistic Regression model

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. The Logistic Regression operator
is applied on this ExampleSet with default values of all parameters. The regression model gen-
erated by the Logistic Regression operator is provided as input to the Create Formula operator
which returns a formula object. You can view this formula object in the Results Workspace. It is
important to note that most RapidMiner operators do not provide a formula, thus this operator
cannot be applied on them.
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Figure 4.1: Tutorial process ‘Formula of the Logistic Regression model’.

Group Models

Group Models

mod

mod

mod

mod This operator groups the given models into a single combined
model. When this combined model is applied, it is equivalent to
applying the original models in their respective order.

Description
TheGroupModels operator groups all inputmodels together into a single combinedmodel. This
combined model can be applied on ExampleSets (using the Apply Model operator) like other
models. When this combined model is applied, it is equivalent to applying the original models
in their respective order. This combined model can also be written into a file using the Write
Model operator. This operator is useful in cases where preprocessing and prediction models
should be applied together on new and unseen data. A grouped model can be ungrouped with
the UngroupModels operator. Please study the attached Example Process for more information
about the Group Models operator.

Input Ports

model in (mod) This input port expects a model. This operator can have multiple inputs but
it is mandatory to provide at least two models to this operator as input. When one input
is connected, another model in port becomes available which is ready to accept another
model(if any). The order of models remains the same i.e. the model supplied at the first
model in port of this operator will be the first model to be applied when the resultant com-
bined model is applied.

Output Ports

model out (mod) The given models are grouped into a single combined model and the resul-
tant grouped model is returned from this port.
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Tutorial Processes

Grouping models and applying the resultant grouped model
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Figure 4.2: Tutorial process ‘Grouping models and applying the resultant grouped model’.

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the ExampleSet has four regular at-
tributes. The Split Data operator is applied on it to split the ExampleSet into training and testing
data sets. The training data set (composed of 70% of examples) is passed to the SVD operator.
The dimensionality reduction and dimensions parameters of the SVD operator are set to ‘fixed
number’ and 2 respectively. Thus the given data set will be reduced to a data set with two di-
mensions (artificial attributes that represent the original attributes). The SVD model (model
that reduces the dimensionality of the given ExampleSet) is provided as the first model to the
Group Models operator. The Naive Bayes operator is applied on the resultant ExampleSet (i.e.
the training data set with reduced dimensions). The classificationmodel generated by theNaive
Bayes operator is provided as the second model to the Group Models operator. Thus the Group
Models operator combines two models SVD dimensionality reduction model Naive Bayes clas-
sification model. This combined model is applied on the testing data set (composed of 30% of
the ‘Iris’ data set) using the Apply Model operator. When the combined model is applied, the
SVD model is applied first on the testing data set. Then the Naive Bayes classification model is
applied on the resultant ExampleSet (i.e. the testing data set with reduced dimensions). The
combined model and the labeled ExampleSet can be seen in the Results Workspace after the
execution of the process.
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4.1.1 Lazy
Default Model

Defaul t  Model

t ra mod

exa

This operator generates amodel that provides the specifieddefault
value as prediction.

Description

The Default Model operator generates a model that predicts the specified default value for the
label in all examples. The method to use for generating a default value can be selected through
the method parameter. For a numeric label, the default value can be median or average of the
label values or a constant default value can be specified through the constant parameter. For
nominal values the mode of the labels can be used. Values of an attribute can be used as pre-
dictions; the attribute can be selected through the attribute parameter. This operator should
not be used for ‘actual’ prediction tasks, but it can be used for comparing the results of ‘actual’
learning schemes with guessing.

Input Ports

training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports

model (mod) The default model is delivered from this output port. This model can now be
applied on unseen data sets for the prediction of the label attribute. This model should
not be used for ‘actual’ prediction tasks, but it can be used for comparing the results of
‘actual’ learning schemes with guessing.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

method (selection) This parameter specifies the method for computing the default values.
For a numeric label, the default value can be median or average of the label values or a
constant default value can be specified through the constant parameter. For nominal val-
ues the mode of the labels can be used. Values of an attribute can be used as predictions;
the attribute can be selected through the attribute parameter.

constant (real) This parameter is only available when the method parameter is set to ‘con-
stant’. This parameter specifies a constant default value for a numeric label.
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attribute (string) This parameter is only available when the method parameter is set to ‘at-
tribute’. This parameter specifies the attribute to get the predicted values from. If applied
on a nominal label, it should be made sure that the selected attribute has the same set of
possible values as the label.

Tutorial Processes

Using the Default Model operator with ’mode’ method

Process

Sonar

out

Validat ion

t ra mod

t ra

ave

ave

inp res

res

res

Figure 4.3: Tutorial process ‘Using the Default Model operator with ’mode’ method’.

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so
that you can have a look at the ExampleSet. You can see that there are two possible label values
i.e. ‘Rock’ and ‘Mine’. The most frequently occurring label value is ‘Mine’. The Split Validation
operator is applied on this ExampleSet for training and testing a classification model. The De-
fault Model operator is applied in the training subprocess of the Split Validation operator. The
methodparameter of theDefaultModel operator is set to ‘mode’, thus themost frequently occur-
ring label value (i.e. ‘Mine’) will be used as prediction in all examples. TheApplyModel operator
is used in the testing subprocess for applying the model generated by the Default Model oper-
ator. A breakpoint is inserted here so that you can have a look at the labeled ExampleSet. You
can see that all examples have been predicted as ‘Mine’. This labeled ExampleSet is used by the
Performance operator for measuring the performance of the model. The default model and its
performance vector are connected to the output and they can be seen in the Results Workspace.
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k-NN

k - N N

t ra mod

exa

This Operator generates a k-Nearest Neighbor model, which is
used for classification or regression.

Description

The k-Nearest Neighbor algorithm is based on comparing an unknownExamplewith the k train-
ing Examples which are the nearest neighbors of the unknown Example.
The first step of the application of the k-Nearest Neighbor algorithm on a new Example is

to find the k closest training Examples. “Closeness” is defined in terms of a distance in the n-
dimensional space, defined by the n Attributes in the training ExampleSet.
Different metrices, such as the Euclidean distance, can be used to calculate the distance be-

tween the unknown Example and the training Examples. Due to the fact that distances often
depends on absolut values, it is recommended to normalize data before training and applying
the k-Nearest Neighbor algorithm. The metric used and its exact configuration are defined by
the parameters of the Operator.
In the second step, the k-Nearest Neighbor algorithm classify the unknown Example by ama-

jority vote of the found neighbors. In case of a regression, the predicted value is the average of
the values of the found neighbors.
It can be useful to weight the contributions of the neighbors, so that the nearer neighbors

contribute more to the average than the more distant ones.

Differentiation

• k-Means (Deprecated)

This Operator performs clustering on an unlabeled data set. It can be considered as the
equivalent of the k-NN algorithm for unsupervised learning. A cluster calculated by the
k-Means algorithm consists of similar Examples, where the similarity is calculated by a
given measure in the Attribute space.

See page ?? for details.

Input Ports

training set (tra) This input port expects an ExampleSet.

Output Ports

model (mod) The k-NearestNeighbormodel is delivered from this output port. Thismodel can
now be applied on unseen data sets for prediction of the label Attribute.

example set (exa) TheExampleSet thatwas given as input is passed throughwithout changes.
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Parameters
k Finding the k training Examples that are closest to the unknown Example is the first step of

the k-NN algorithm. If k = 1, the Example is simply assigned to the class of its nearest
neighbor. k is typically a small, positive and odd integer.

weighted vote If this parameter is set, the distance values between the Examples are also
taken into account for the prediction. It can be useful to weight the contributions of the
neighbors, so that nearer neighbors contribute more than more distant ones.

measure types This parameter is used for selecting the type of measure to be used for finding
the nearest neighbors. The following options are available:

• MixedMeasures MixedMeasures are used to calculate distances in case of bothnom-
inal and numerical Attributes.

• NominalMeasures In case of only nominal Attributes different distance metrices
can be used to calculate distances on this nominal Attributes.

• NumericalMeasures In case of onlynumericalAttributes different distancemetrices
can be used to calculate distances on this numerical Attributes.

• BregmannDivergences Bregmann divergences are more generic “closeness” mea-
sure types with does not satisfy the triangle inequality or symmetry. Formore details
see the parameter divergence.

mixed measure Theonly available option formixedmeasure is the ‘MixedEuclideanDistance’.
For numerical values the euclidean distance is calculated. For nomimal values, a distance
of 0 is taken if both values are the same and a distance of one is taken otherwise. This
parameter is available when the measure type parameter is set to ‘mixed measures’.

nominal measure This parameters defines how to calculate distances for only nominal At-
tributes in the input ExampleSet, in case the measure type is set to nominal measure. In
case of using a similarity as a distance measure, the actual distance is calculated as the
negative similarity. For the different similarities the following variables are defined:

e: number of Attribute for which both Examples have equal and non-zero values

u: number of Attribute for which both Examples have not equal values

z: number of Attribute for which both Examples have zero values

• NominalDistance Distance of two values is 0 if both values are the same and 1 oth-
erwise.

• DiceSimilarity With theabovementioneddefintions theDiceSimilarity is: 2*e/(2*e+u)

• JaccardSimilarity With theabovementioneddefintions the JaccardSimilarity is: e/(e+u)

• KulczynskiSimilarity With the abovementioned defintions theKulczynskiSimilarity
is: e/u

• RogersTanimotoSimilarity With the above mentioned defintions the RogersTani-
motoSimilarity is: (e+z)/(e+2*u+z)

• RussellRaoSimilarity With the abovementioneddefintions theRussellRaoSimilarity
is: e/(e+u+z)

• SimpleMatchingSimilarity With the abovementioned defintions the SimpleMatch-
ingSimilarity is: (e+z)/(e+u+z)
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numerical measure This parameters defines how to calculate distances for only numerical
Attributes in the input ExampleSet, in case the measure type is set to numerical measure.
For the different distance measures the following variable is defined:

y(i,j) : Value of the j.th Attribute of the i.th Example. Hence y(1,3) - y(2,3) is the difference
of the values of the third Attribute of the first and second Example.

In case of using a similarity as a distance measure, the actual distance is calculated as the
negative similarity.

• EuclideanDistance Square rootof the sumofquadraticdifferencesoverallAttributes.
Dist = Sqrt ( Sum_(j=1) [y(1,j)-y(2,j)]^2 )

• CanberraDistance Sumover allAttributes. The summand is the absolut of thediffer-
ence of the value, divided by the sum of the absolute values. Dist = Sum_(j=1) |y(1,j)-
y(2,j)| / (|y(1,j)|+|y(2,j)| ) The CanberraDistance is often used to compare ranked list
or for intrusion detection in computer security.

• ChebychevDistance Maximum of all differences of all Attributes. Dist = max_(j=1)
(|y(1,j)-y(2,j)| )

• CorrelationSimilarity The similarity is calculated as the correlation between the
Attribute vectors of the two Examples.

• CosineSimilarity Similaritymeasuremeasuring the cosine of the angle between the
Attribute vectors of the two Examples.

• DiceSimilarity TheDiceSimilarity fornumericalAttributes is calculatedas2*Y1Y2/(Y1+Y2).
Y1Y2 = Sum over product of values = Sum_(j=1) y(1,j)*y(2,j). Y1 = Sum over values of
first Example = Sum_(j=1) y(1,j) Y2 = Sum over values of second Example = Sum_(j=1)
y(2,j)

• DynamicTimeWarpingDistance Dynamic TimeWarping is often use in Time Series
analysis for measuring the distance between two temporal sequences. Here the dis-
tance on an optimal “warping” path from the Attribute vector of the first Example to
the second Example is calculated.

• InnerProductSimilarity The similarity is calculated as the sumof the product of the
Attribute vectors of the two Examples. Dist = -Similarity = -Sum_(j=1) y(1,j)*y(2,j)

• JaccardSimilarity The JaccardSimilarity is calculated as Y1Y2/(Y1+Y2-Y1Y2). See
DiceSimilarity for the definition of Y1Y2, Y1 and Y2.

• KernelEuclideanDistance Thedistance is calculatedby theeuclideandistanceof the
two Examples, in a transformed space. The transformation is defined by the chosen
kernel and configured by the parameters kernel type, gamma, sigma1, sigma2, sigma
3, shift, degree, a, b.

• ManhattanDistance Sum of the absolute distances of the Attribute values. Dist =
Sum_(j=1) |y(1,j)-y(2,j)|

• MaxProductSimilarity The similarity is themaximumof all products of all Attribute
values. If the maximum is less or equal to zero the similarity is not defined. Dist =
-Similarity = -max_(j=1) (y(1,j)*y(2,j))

• OverlapSimilarity The similarity is a variant of simple matching for numerical At-
tributes and is calculated as minY1Y2 / min(Y1,Y2). See DiceSimilarity for the defini-
tionofY1, Y2. minY1Y2=Sumover theminimumofvalues=Sum_(j=1)min [y(1,j),y(2,j)]
.
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divergence This parameter defines which type of Bregmann divergence is used when themea-
sure type parameter is set to ‘bregman divergences’. For the different distance measures
the following variable is defined:
y(i,j) : Value of the j.th Attribute of the i.th Example. Hence y(1,3) - y(2,3) is the difference
of the values of the third Attribute of the first and second Example.

• GeneralizedIDivergence The distance is caluclated as Sum1 Sum2. It is not applica-
ble if any Attribute value is less or equal to 0. Sum1 = Sum_(j=1) y(1,j)*ln[y(1,j)/y(2,j)]
Sum2 = Sum_(j=1) [y(1,j)-y(2,j)]

• ItakuraSaitoDistance The ItakuraSaitoDistance can only be calculated for Exam-
pleSets with 1 Attribute and values larger 0. Dist = y(1,1)/y(2,1)-ln[y(1,1)/y(2,1)]-1

• KLDivergence The Kullback-Leibler divergence is a measure of how one probability
distribution diverges from a second expected probability distribution. Dist = Sum-
_(j=1) [y(1,j)*log_2(y(1,j)/y(2,j))]

• LogarithmicLoss The LogarithmicLoss can only be calculated for ExampleSets with
1 Attribute and values larger 0. Dist = y(1,1)*ln[y(1,1)/y(2,1)]-(y(1,1)-y(2,1))

• LogisticLoss The LogisticLoss can only be calculated for ExampleSets with 1 At-
tribute and values larger 0. Dist = y(1,1)*ln[y(1,1)/y(2,1)]+(1-y(1,1))*ln[(1-y(1,1))/(1-
y(2,1))]

• MahalanobisDistance The Mahalanobis distance measures the distance between
the two Examples under the assumption they are both random vectors of the same
distribution. Therefore thecovariancematrixS is calculatedon thewholeExampleSet
and the Distance is calculated as: Dist = Sqrt [ (vecY1-vecY2) S (vecY1-vecY2) ] vecY1
= Attribute vector of Example 1 vecY2 = Attribute vector of Example 2

• SquaredEuclideanDistance Sum of quadratic differences over all Attributes. Dist =
Sum_(j=1) [y(1,j)-y(2,j)]^2

• SquaredLoss The SquaredLoss can only be calculated for ExampleSets with 1 At-
tribute. Dist = [y(1,1)-y(2,1)]^2

kernel type This parameter is available only when the numerical measure parameter is set to
‘Kernel Euclidean Distance’. The type of the kernel function is selected through this pa-
rameter. Following kernel types are supported:

• dot The dot kernel is defined by k(x,y) = x*y i.e. it is the inner product of x and y.
• radial The radial kernel is defined by k(x,y) = exp(-g*||x-y||^2) where g is gamma,
specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in theperformanceof the kernel, and shouldbe carefully tuned to theprob-
lem at hand.

• polynomial The polynomial kernel is defined by k(x,y) = (x*y+1)^dwhere d is the de-
gree of the polynomial and is specified by the _kernel degree_ parameter. Polynomial
kernels are well suited for problems where all the training data is normalized.

• sigmoid This is a hyperbolic tangent sigmoid kernel. The distance is calculated as
tanh[a*Y1Y2+b] where Y1Y2 is the inner product of the Attribute vector of the two
Examples. a and b can be adjusted using the kernel a and kernel b parameters. A com-
mon value for a is 1/N, where N is the data dimension. Note that not all choices of a
and b lead to a valid kernel function.

• anova The anova kernel is defined by the raised to the power d of summation of exp(-
g(x-y)) where g is gamma and d is degree. The two are adjusted by the kernel gamma
and kernel degree parameters respectively.
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• epachnenikov The Epanechnikov kernel is this function (3/4)(1-u2) for u between -1
and 1 and zero for u outside that range. It has the two adjustable parameters kernel
sigma1 and kernel degree.

• gaussian_combination This is thegaussiancombinationkernel. Ithas theadjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2+c^2.
It has the adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma This is the SVM kernel parameter gamma. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to radial or anova.

kernel sigma1 This is the SVM kernel parameter sigma1. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 This is the SVM kernel parameter sigma2. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to gaussian combination.

kernel sigma3 This is the SVM kernel parameter sigma3. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to gaussian combination.

kernel shift This is the SVM kernel parameter shift. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to multiquadric.

kernel degree This is theSVMkernel parameter degree. This parameter is only availablewhen
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to polynomial, anova or epachnenikov.

kernel a This is the SVMkernel parameter a. This parameter is only available when the numer-
ical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type parameter
is set to neural.

kernel b This is the SVMkernel parameter b. This parameter is only availablewhen the numer-
ical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type parameter
is set to neural.

Tutorial Processes

Classification of the Golf-Testset data set using the K-NN Operator

This tutorial process demonstrate the usage of the k-NN Operator to classify the Golf-Testset
from the Samples folder. The k-NN is trained on theGolf data set and applied to the independent
Golf-Testset. Both data sets are retrieved from the Samples folder.
k is set to 3, so each Example in the Golf-Testset is classified as the majority class of its 3

nearest neighbors in the training set. For the distance measure the MixedEuclideanDistance
(which is the default setting) is used.
For more details, see the comments in the process.

414



4.1. Predictive

Process
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values) is used.
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Figure 4.4: Tutorial process ‘Classification of theGolf-Testset data set using theK-NNOperator’.

Performance difference between normalized and not normalized data

This tutorial process demonstrate the enhancement of the performance of the k-NN in case the
data is normalized before the k-NN is trained.
TheSonar data set is retrieved from theSamples folder and fed into twoCrossValidationOper-

ators. In both Cross Validations a k-NNmodel with k=3 is trained. But in the second the training
data is normalized before the training of the k-NN. A Group Models Operator ensures that the
test data is normalized in the same way, before the k-NN is applied on the test data.
Note that the accuracy of this k-NN is higher for the normalized values (84.24 % > 81.69 %).

Optimizing k of a k-NN model and logging all results

In this tutorial process the parameter k of a k-NN model is optimized and results are logged to
investigate the dependency of the performance on the parameter.
The Sonar data set is retrieved from the Samples folder. An Optimized Parameters (Grid) Op-

erator is used to iterate over k (from 1 to 30) and calculate the best performing k-NN model. A
Log Operator is used within the Cross Validation Operator in the Optimize Parameters (Grid)
Operator to log the parameter k and the corresponding performance. The Log to Data Operator
and the Aggregate Operator are used to convert this log entries into an ExampleSet, which can
be investigated in the results view.
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Figure 4.5: Tutorial process ‘Performance difference between normalized and not normalized
data’.

4.1.2 Bayesian
Naive Bayes

Naive Bayes

t ra mod

exa

This Operator generates a Naive Bayes classification model.

Description

Naive Bayes is a high-bias, low-variance classifier, and it can build a good model even with a
small data set. It is simple to use and computationally inexpensive. Typical use cases involve
text categorization, including spam detection, sentiment analysis, and recommender systems.
The fundamental assumption of Naive Bayes is that, given the value of the label (the class),

the value of any Attribute is independent of the value of any other Attribute. Strictly speaking,
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Figure 4.6: Tutorial process ‘Optimizing k of a k-NN model and logging all results’.

this assumption is rarely true (it’s “naive”!), but experience shows that theNaive Bayes classifier
often works well. The independence assumption vastly simplifies the calculations needed to
build the Naive Bayes probability model.
To complete the probability model, it is necessary tomake some assumption about the condi-

tional probability distributions for the individual Attributes, given the class. This Operator uses
Gaussian probability densities to model the Attribute data.

Differentiation

• Naive Bayes (Kernel)

The alternative Operator Naive Bayes (Kernel) is a variant of Naive Bayes where multiple
Gaussians are combined, to create a kernel density.

See page 419 for details.

Input Ports

training set (tra) The input port expects an ExampleSet.

Output Ports

model (mod) The Naive Bayes classification model is delivered from this output port. The
model can now be applied to unlabelled data to generate predictions.

example set (exa) TheExampleSet thatwas given as input is passed throughwithout changes.
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4. Modeling

Parameters
laplace correction The simplicity of Naive Bayes includes a weakness: if within the training

data a given Attribute value never occurs in the context of a given class, then the condi-
tional probability is set to zero. When this zero value is multiplied together with other
probabilities, those values are also set to zero, and the results will be misleading. Laplace
correction is a simple trick to avoid this problem, adding one to each count to avoid the
occurrence of zero values. For most training sets, adding one to each count has only a
negligible effect on the estimated probabilities.

Tutorial Processes

Apply Naive Bayes to the Iris Data Set

Process
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out
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exa par
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par
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Figure 4.7: Tutorial process ‘Apply Naive Bayes to the Iris Data Set’.

The Iris data set contains 150 Examples, corresponding to three different classes of Iris plant:
Iris Setosa, Iris Versicolor, and Iris Virginica. There are 50 Examples for each class of Iris, and
each Example includes 6 Attributes: the label, the id, and 4 real Attributes corresponding to
physical characteristics of the plant.
a1 = sepal length in cm
a2 = sepal width in cm
a3 = petal length in cm
a4 = petal width in cm
In the Tutorial Process, a predictive model for the Iris class is created, based on the plant’s

physical characteristics. When you run the Process, the output is displayed in three steps:
1. The whole Iris data set is displayed.
2. A subset of the Iris data set is displayed, togetherwith thepredictions basedonNaiveBayes.
3. A confusion matrix is displayed, showing that the predictions are highly consistent with

the data set (accuracy: 98.33%).
The Operator Split Data divides the original data set into two parts: one is used to train Naive

Bayes, and theother to evaluate themodel. The result shows that this simplemodel cangenerate
a good fit to the Iris data set.
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4.1. Predictive

Naive Bayes (Kernel)

Naive Bayes (Ker. . .

t ra mod

exa

This operator generates a Kernel Naive Bayes classification model
using estimated kernel densities.

Description
A Naive Bayes classifier is a simple probabilistic classifier based on applying Bayes’ theorem
(from Bayesian statistics) with strong (naive) independence assumptions. A more descriptive
term for the underlying probability model would be the ‘independent feature model’. In simple
terms, a Naive Bayes classifier assumes that the presence (or absence) of a particular feature of a
class (i.e. attribute) is unrelated to the presence (or absence) of any other feature. For example,
a fruitmay be considered to be an apple if it is red, round, and about 4 inches in diameter. Even if
these features depend on each other or upon the existence of the other features, a Naive Bayes
classifier considers all of these properties to independently contribute to the probability that
this fruit is an apple. The Naive Bayes classifier performs reasonably well even if the underlying
assumption is not true
The advantage of the Naive Bayes classifier is that it only requires a small amount of training

data to estimate the means and variances of the variables necessary for classification. Because
independent variables are assumed, only the variances of the variables for each label need to be
determined and not the entire covariance matrix. In contrast to the Naive Bayes operator, the
Naive Bayes (Kernel) operator can be applied on numerical attributes.
A kernel is a weighting function used in non-parametric estimation techniques. Kernels are

used in kernel density estimation to estimate random variables’ density functions, or in kernel
regression to estimate the conditional expectation of a random variable.
Kernel density estimators belong to a class of estimators called non-parametric density es-

timators. In comparison to parametric estimators where the estimator has a fixed functional
form (structure) and the parameters of this function are the only information we need to store,
Non-parametric estimators have no fixed structure and depend upon all the data points to reach
an estimate.

Input Ports
training set (tra) The input port expects an ExampleSet. It is the output of the Retrieve oper-

ator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The Kernel Naive Bayes classification model is delivered from this output port.

This classificationmodel can now be applied on unseen data sets for prediction of the label
attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.
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4. Modeling

Parameters
laplace correction (boolean) This parameter indicates if Laplace correction should be used

to prevent high influence of zero probabilities. There is a simple trick to avoid zero proba-
bilities. We can assume that our training set is so large that adding one to each count that
we need would only make a negligible difference in the estimated probabilities, yet would
avoid the case of zero probability values. This technique is known as Laplace correction.

estimation mode (selection) This parameter specifies the kernel density estimation mode.
Two options are available.

• full If this option is selected, you can select a bandwidth through heuristic or a fix
bandwidth can be specified.

• greedy If this option is selected, you have to specify theminimumbandwidth and the
number of kernels.

bandwidth selection (selection) This parameter is only available when the estimation mode
parameter is set to ‘full’. This parameter specifies themethod to set the kernel bandwidth.
Thebandwidthcanbe selected throughheuristic or afixbandwidthcanbe specified. Please
note that the bandwidth of the kernel is a free parameter which exhibits a strong influence
on the resulting estimate. It is important to choose the most appropriate bandwidth as a
value that is too small or too large is not useful.

bandwidth (real) This parameter is only available when the estimation mode parameter is set
to ‘full’ and the bandwidth selection parameter is set to ‘fix’. This parameter specifies the
kernel bandwidth.

minimum bandwidth (real) This parameter is only available when the estimation mode pa-
rameter is set to ‘greedy’. This parameter specifies the minimum kernel bandwidth.

number of kernels (integer) This parameter is only available when the estimation mode pa-
rameter is set to ‘greedy’. This parameter specifies the number of kernels.

use application grid (boolean) This parameter indicates if the kernel density function grid
should be used in the model application. It speeds up model application at the expense of
the density function precision.

application grid size (integer) This parameter is only available when the use application grid
parameter is set to true. This parameter specifies the size of the application grid.

Tutorial Processes

Introduction to the Naive Bayes (Kernel) operator

The ‘Golf’ data set is loaded using the Retrieve operator. The Naive Bayes (Kernel) operator is
applied on it. All parameters of the Naive Bayes (Kernel) operator are used with default val-
ues. The model generated by the Naive Bayes (Kernel) operator is applied on the ‘Golf-Testset’
data set using the Apply Model operator. The results of the process can be seen in the Results
Workspace. Please note that parameters should be carefully chosen for this operator to obtain
better performance. Specially the bandwidth should be selected carefully.
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Figure 4.8: Tutorial process ‘Introduction to the Naive Bayes (Kernel) operator’.

4.1.3 Trees
CHAID

CHAID

t ra mod

exa

This operator generates a pruned decision tree based on the chi-
squared attribute relevance test. This operator can be applied only
on ExampleSets with nominal data.

Description
The CHAID decision tree operator works exactly like the Decision Tree operator with one excep-
tion: it uses a chi-squared based criterion instead of the information gain or gain ratio criteria.
Moreover this operator cannotbeappliedonExampleSetswithnumerical attributes. It is recom-
mended that you study the documentationof theDecisionTree operator for basic understanding
of decision trees.
CHAID stands for CHi-squared Automatic Interaction Detection. The chi-square statistic is a

nonparametric statistical technique used to determine if a distribution of observed frequencies
differs from the theoretical expected frequencies. Chi-square statistics use nominal data, thus
instead of using means and variances, this test uses frequencies. CHAID’s advantages are that
its output is highly visual and easy to interpret. Because it uses multiway splits by default, it
needs rather large sample sizes towork effectively, sincewith small sample sizes the respondent
groups can quickly become too small for reliable analysis.
This representation of the data has the advantage compared with other approaches of being

meaningful and easy to interpret. The goal is to create a classification model that predicts the
value of the label based on several input attributes of the ExampleSet. Each interior node of the
tree corresponds to one of the input attributes. The number of edges of an interior node is equal
to the number of possible values of the corresponding input attribute. Each leaf node represents
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a value of the label given the values of the input attributes represented by the path from the root
to the leaf. This description can be easily understood by studying the Example Process of the
Decision Tree operator.
Pruning is a technique in which leaf nodes that do not add to the discriminative power of the

decision tree are removed. This is done to convert an over-specific or over-fitted tree to a more
general form in order to enhance its predictive power on unseen datasets. Pre-pruning is a type
of pruning performed parallel to the tree creation process. Post-pruning, on the other hand, is
done after the tree creation process is complete.

Differentiation
• The CHAID operator works exactly like the Decision Tree operator with one exception: it
uses a chi-squared based criterion instead of the information gain or gain ratio criteria.
Moreover this operator cannot be applied on ExampleSets with numerical attributes. See
page ?? for details.

• Decision Tree (Weight-Based) If theWeight by Chi Squared Statistic operator is applied
for attribute weighting in the subprocess of the Decision Tree (Weight-Based) operator, it
works exactly like the CHAID operator. See page 433 for details.

Input Ports
training set (tra) This inputport expects anExampleSet. It is theoutputof theGenerateNom-

inalData operator in the attachedExample Process. The output of other operators can also
be used as input. This operator cannot handle numerical data, therefore the ExampleSet
should not have numerical attributes.

Output Ports
model (mod) The CHAID Decision Tree is delivered from this output port. This classification

model can now be applied on unseen data sets for the prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
minimal size for split (integer) The size of a node is the number of examples in its subset.

The size of the root node is equal to the total number of examples in the ExampleSet. Only
those nodes are split whose size is greater than or equal to theminimal size for split param-
eter.

minimal leaf size (integer) The size of a leaf node is the number of examples in its subset.
The tree is generated in such a way that every leaf node subset has at least theminimal leaf
size number of instances.

minimal gain (real) The gain of a node is calculated before splitting it. The node is split if its
gain is greater than theminimal gain. Higher values of minimal gain results in fewer splits
and thus a smaller tree. A too high value will completely prevent splitting and a tree with
a single node is generated.
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4.1. Predictive

maximal depth (integer) The depth of a tree varies depending upon size and nature of the
ExampleSet. This parameter is used to restrict the size of the Decision Tree. The tree gen-
eration process is not continued when the tree depth is equal to the maximal depth. If its
value is set to ‘-1’, themaximal depth parameter puts no bound on the depth of the tree, a
tree of maximum depth is generated. If its value is set to ‘1’, a Tree with a single node is
generated.

confidence (real) This parameter specifies the confidence level used for the pessimistic error
calculation of pruning.

number of prepruning alternatives (integer) As prepruning runs parallel to the tree gen-
eration process, it may prevent splitting at certain nodes when splitting at that node does
not add to the discriminative power of the entire tree. In such a case alternative nodes
are tried for splitting. This parameter adjusts the number of alternative nodes tried for
splitting when it is prevented by prepruning at a certain node.

no prepruning (boolean) By default the Decision Tree is generated with prepruning. Setting
this parameter to true disables the prepruning and delivers a tree without any prepruning.

no pruning (boolean) By default the Decision Tree is generated with pruning. Setting this
parameter to true disables the pruning and delivers an unpruned Tree.

Related Documents

• (page ??)

• Decision Tree (Weight-Based) (page 433)

Tutorial Processes

Introduction to the CHAID operator

Process

Generate Nomina. . .

out

CHAID

t ra mod

exa

inp res

res

Figure 4.9: Tutorial process ‘Introduction to the CHAID operator’.

The Generate Nominal Data operator is used for generating an ExampleSet with 100 exam-
ples. There are three nominal attributes in the ExampleSet and every attribute has three pos-
sible values. A breakpoint is inserted here so that you can have a look at the ExampleSet. The
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CHAID operator is applied on this ExampleSet with default values of all parameters. The re-
sultant model is connected to the result port of the process and it can be seen in the Results
Workspace.
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Decision Stump

Decision Stump

t ra mod

exa

This operator learns a Decision Tree with only one single split.
This operator can be applied on both nominal and numerical data
sets.

Description
TheDecisionStumpoperator isused for generatingadecision treewithonlyone single split. The
resulting tree can be used for classifying unseen examples. This operator can be very efficient
when boostedwith operators like theAdaBoost operator. The examples of the given ExampleSet
have several attributes and every example belongs to a class (like yes or no). The leaf nodes of a
decision tree contain the class name whereas a non-leaf node is a decision node. The decision
node is an attribute test with each branch (to another decision tree) being a possible value of the
attribute. For more information about decision trees, please study the Decision Tree operator.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The Decision Tree with just a single split is delivered from this output port. This

classification model can now be applied on unseen data sets for the prediction of the label
attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
criterion (selection) Thisparameter specifies thecriteriononwhichattributeswill be selected

for splitting. It can have one of the following values:

• information_gain The entropy of all the attributes is calculated. The attribute with
minimum entropy is selected for split. This method has a bias towards selecting at-
tributes with a large number of values.

• gain_ratio It is a variant of information gain. It adjusts the information gain for each
attribute to allow the breadth and uniformity of the attribute values.

• gini_index This is a measure of impurity of an ExampleSet. Splitting on a chosen
attribute gives a reduction in the average gini index of the resulting subsets.

• accuracy Such an attribute is selected for split that maximizes the accuracy of the
whole Tree.
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minimal leaf size (integer) The size of a leaf node is the number of examples in its subset.
The tree is generated in such a way that every leaf node subset has at least theminimal leaf
size number of instances.

Tutorial Processes

Introduction to the Decision Stump operator

Process

Golf

out

Decision Stump

t ra mod

exa

inp res

res

Figure 4.10: Tutorial process ‘Introduction to the Decision Stump operator’.

To understand the basic terminology of trees, please study the Example Process of the Deci-
sion Tree operator.
The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that

you can have a look at the ExampleSet. The Decision Stump operator is applied on this Exam-
pleSet. The criterion parameter is set to ‘information gain’ and the minimal leaf size parameter
is set to 1. The resultant decision treemodel is connected to the result port of the process and it
can be seen in the Results Workspace. You can see that this decision tree has just a single split.
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Decision Tree

Decision Tree

t ra mod

exa

wei

This Operator generates a decision tree model, which can be used
for classification and regression.

Description

Adecision tree is a tree like collection of nodes intended to create a decision on values affiliation
to a class or an estimate of a numerical target value. Each node represents a splitting rule for
one specificAttribute. For classification this rule separates values belonging to different classes,
for regression it separates them in order to reduce the error in an optimal way for the selected
parameter criterion.
The building of new nodes is repeated until the stopping criteria are met. A prediction for the

class label Attribute is determined depending on the majority of Examples which reached this
leaf during generation, while an estimation for a numerical value is obtained by averaging the
values in a leaf.
This Operator can process ExampleSets containing both nominal and numerical Attributes.

The label Attribute must be nominal for classification and numerical for regression.
After generation, the decision tree model can be applied to new Examples using the Apply

Model Operator. Each Example follows the branches of the tree in accordance to the splitting
rule until a leaf is reached.
To configure the decision tree, please read the documentation on parameters as explained

below.

Differentiation

• CHAID

The CHAID Operator provides a pruned decision tree that uses chi-squared based crite-
rion instead of information gain or gain ratio criteria. This Operator cannot be applied on
ExampleSets with numerical Attributes but only nominal Attributes.

See page 421 for details.

• ID3

The ID3Operatorprovidesabasic implementationofunpruneddecision tree. It onlyworks
with ExampleSets with nominal Attributes.

See page 442 for details.

• Random Forest

The Random Forest Operator creates several random trees on different Example subsets.
The resulting model is based on voting of all these trees. Due to this difference, it is less
prone to overtraining.

See page 444 for details.
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• Bagging
Bootstrap aggregating (bagging) is a machine learning ensemble meta-algorithm to im-
prove classification and regressionmodels in terms of stability and classification accuracy.
It also reduces variance and helps to avoid ‘overfitting’. Although it is usually applied to
decision tree models, it can be used with any type of model.

See page 537 for details.

Input Ports
training set (tra) The input data which is used to generate the decision tree model.

Output Ports
model (mod) The decision tree model is delivered from this output port.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port.

weights (wei) AnExampleSet containingAttributes andweight values, where eachweight rep-
resents the feature importance for the given Attribute. A weight is given by the sum of
improvements the selection of a given Attribute provided at a node. The amount of im-
provement is dependent on the chosen criterion.

Parameters
criterion Selects the criterion on which Attributes will be selected for splitting. For each of

these criteria the split value is optimized with regards to the chosen criterion. It can have
one of the following values:

• information_gain The entropies of all theAttributes are calculated and the onewith
least entropy is selected for split. Thismethod has a bias towards selecting Attributes
with a large number of values.

• gain_ratio A variant of information gain that adjusts the information gain for each
Attribute to allow the breadth and uniformity of the Attribute values.

• gini_index Ameasureof inequality between thedistributionsof label characteristics.
Splitting on a chosen Attribute results in a reduction in the average gini index of the
resulting subsets.

• accuracy An Attribute is selected for splitting, which maximizes the accuracy of the
whole tree.

• least_square An Attribute is selected for splitting, that minimizes the squared dis-
tance between the average of values in the node with regards to the true value.

maximal depth The depth of a tree varies depending upon the size and characteristics of the
ExampleSet. This parameter is used to restrict the depth of the decision tree. If its value
is set to ‘-1’, the maximal depth parameter puts no bound on the depth of the tree. In this
case the tree is built until other stopping criteria are met. If its value is set to ‘1’, a tree
with a single node is generated.

apply pruning Thedecision treemodel canbeprunedaftergeneration. If checked, somebranches
are replaced by leaves according to the confidence parameter.
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confidence This parameter specifies the confidence level used for the pessimistic error calcu-
lation of pruning.

apply prepruning This parameter specifies if more stopping criteria than the maximal depth
should be used during generation of the decision tree model. If checked, the parameters
minimal gain, minimal leaf size, minimal size for split and number of prepruning alternatives
are used as stopping criteria.

minimal gain The gain of a node is calculated before splitting it. The node is split if its gain is
greater than the minimal gain. A higher value of minimal gain results in fewer splits and
thus a smaller tree. A value that is too high will completely prevent splitting and a tree
with a single node is generated.

minimal leaf size The size of a leaf is the number of Examples in its subset. The tree is gen-
erated in such a way that every leaf has at least theminimal leaf size number of Examples.

minimal size for split The size of a node is the number of Examples in its subset. Only those
nodes are split whose size is greater than or equal to the minimal size for split parameter.

number of prepruning alternatives When split is preventedbyprepruning at a certainnode
this parameter will adjust the number of alternative nodes tested for splitting. Occurs as
prepruning runs parallel to the tree generation process. This may prevent splitting at cer-
tain nodes, when splitting at that node does not add to the discriminative power of the
entire tree. In such a case, alternative nodes are tried for splitting.

Tutorial Processes

Train a Decision Tree model

Goal: RapidMiner Studio comes with a sample dataset called ‘Golf’. This contains Attributes
regarding the weather namely ‘Outlook’, ‘Temperature’, ‘Humidity’ and ‘Wind’. These are im-
portant features todecidewhether thegamecouldbeplayedornot. Ourgoal is to train adecision
tree for predicting the ‘Play’ Attribute.
The ‘Golf’ dataset is retrieved using the Retrieve Operator. This data is fed to the Decision

Tree Operator by connecting the output port of Retrieve to the input port of the Decision Tree
Operator. Click on the Run button. This trains the decision tree model and takes you to the
Results View, where you can examine it graphically as well as in textual description.
The tree shows that whenever the Attribute ‘Outlook’ has the value ‘overcast’, the Attribute

‘Play’ will have the value ‘yes’. If the Attribute ‘Outlook’ has the value ‘rain’, then two outcomes
are possible:
a) if the Attribute ‘Wind’ has the value ‘false’, the ‘Play’ Attribute has the value ‘yes’
b) if the ‘Wind’ Attribute has the value ‘true’, the Attribute ‘Play’ is ‘no’.
Finally, if the Attribute ‘Outlook’ has the value ‘sunny’, there are again two possibilities.
The Attribute ‘Play’ is ‘yes’ if the value of Attribute ‘Humidity’ is less than or equal to 77.5 and

it is ‘no’ if ‘Humidity’ is greater than 77.5.
In this example, the leaf node led only to either of the two possible values for the label At-

tribute. The ‘Play’ Attribute is either ‘yes’ or ‘no’, which shows that the tree model fits the data
very well.

Train a Decision Tree model and apply it to predict the outcome

Goal: In this tutorial a predictive analytics process using a decision tree is shown. It is slightly
advanced than the first tutorial. It also introduces basic but important concepts such as splitting
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it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.

 
 
 
 
 
 
 
 
 
Retrieves the Golf dataset from the Samples repository 
and passes it to the Decision Tree Operator. 
 

 
 
 
 
 
 
 
 
 
The Decision Tree Operator receives the Golf dataset from the Retrieve 
operator. Try changing the parameter values used in this example 
process and examine in Results view if the tree structure changes. 
 

Influence of parameter values on tree model: 
 
This example uses 'Gain ratio' as the selection criterion for tree generation. If you now disable Prepruning by unchecking the 'apply 
prepruning' parameter, the resultant tree is much more complex than the previous one. The previous tree was much concise and 
understandable than this one. This demonstrates how prepruning helps optimize your tree model. 
 
The 'minimal size for split' parameter is set to 4. Change this to 6 and run the Process again. You will see that you get a tree with just 
three leaf nodes and these are not exclusively of one label value. This is because the nodes having less than 6 Examples cannot be 
split. 
 
The minimal gain parameter is set to 0.1. If you want to reduce the size of tree, you can increase the 'minimal gain'. Similarly, if you 
increase the 'minimal leaf size' to 5, you just get a single node tree because not enough Examples are available for different leaf 
nodes. The 'maximal depth parameter' is set here to 20. The actual depth of the tree is 3 because other stopping criteria already cuts 
it short.
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Figure 4.11: Tutorial process ‘Train a Decision Tree model’.

the dataset into two partitions. The larger half is used for training the decision tree model and
the smaller half is used for testing it. Our goal is to see how good the tree model would be able
to predict the fate of passengers in the test data set.

Regression

ln this tutorial process a Decision Tree is used for regression. The ‘Polynominal’ data set with a
numerical target Attribute is used as a label. Before training the model the data set is split into
a training and a test set. Afterwards the regressed values are compared with the label values to
obtain a performance measure using the Performance (Regression) Operator.
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4.1. Predictive

Process
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of label in both training and test datasets.

 
 
 
 
 
 
 
The subset of data for training is 
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and a tree model is generated 
using it.

 
 
 
 
 
 
 
 
The model is applied on the test 
data set to predict the label. The 
model is output to the Results 
view.
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is measured e.g., to examine its accuracy. 
The performance and labelled data is 
output to the Results view.
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Figure 4.12: Tutorial process ‘Train a Decision Tree model and apply it to predict the outcome’.

Decision Tree (Multiway)

Decision Tree (M.. .

t ra mod

exa
This operator generates a multiway decision tree.

Description
The Decision Tree (Multiway) operator is a nested operator i.e. it has a subprocess. The sub-
process must have a Tree learner i.e. an operator that expects an ExampleSet and generates a
Tree model. You need to have basic understanding of subprocesses in order to apply this op-
erator. Please study the documentation of the Subprocess operator for basic understanding of
subprocesses.
If we have only categorical attributes, we can use any C4.5-like algorithm in order to obtain

a multi-way decision tree, although we will usually obtain a binary tree if our dataset includes
continuous attributes. Using binary splits on numerical attributes implies that the attributes in-
volved should be able to appear several times in the paths from the root of the tree to its leaves.
Although these repetitions can be simplfiedwhen converting the decision tree into a set of rules,
they make the constructed tree more leafy, unnecessarily deeper, and harder to understand for
human experts. The non-binary splits on continuous attributes make the trees easier to under-
stand and also seem to lead to more accurate trees in some domains.
The representation of the data as Tree has the advantage compared with other approaches of

beingmeaningful and easy to interpret. The goal is to create a classificationmodel that predicts
the value of the label based on several input attributes of the ExampleSet. Each interior node of
tree corresponds to one of the input attributes. The number of edges of an interior node is equal
to the number of possible values of the corresponding input attribute. Each leaf node represents
a value of the label given the values of the input attributes represented by the path from the root
to the leaf. This description can be easily understood by studying the Example Process of the
Decision Tree operator.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
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Figure 4.13: Tutorial process ‘Regression’.

input.

Output Ports
model (mod) The Decision Tree is delivered from this output port. This classification model

can now be applied on unseen data sets for the prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Tutorial Processes

Introduction to the Decision Tree (Multiway) operator

The Golf data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. The Decision Tree (Multiway) operator is applied on
this ExampleSet. The Decision Tree operator is applied in the subprocess of the Decision Tree
(Multiway) operator. The resultant Tree is connected to the result port of the process and it can
be seen in the Results Workspace.
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Process
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Figure 4.14: Tutorial process ‘Introduction to the Decision Tree (Multiway) operator’.

Decision Tree (Weight-Based)

Decision Tree (W.. .

t ra mod

This operator generates a pruned decision tree based on an ar-
bitrary attribute relevance test. The attribute weighting scheme
should be provided as inner operator. This operator can be applied
only on ExampleSets with nominal data.

Description

The Decision Tree (Weight-Based) operator is a nested operator i.e. it has a subprocess. The
subprocessmusthaveanattributeweighting scheme i.e. anoperator that expects anExampleSet
and generates attribute weights. You need to have basic understanding of subprocesses in order
to apply this operator. Please study the documentation of the Subprocess operator for basic
understanding of subprocesses.
TheDecision Tree (Weight-Based) operator works exactly like theDecision Tree operator with

one exception: it uses an arbitrary attribute relevance test criterion instead of the information
gain or gain ratio criteria. Moreover this operator cannot be applied on ExampleSets with nu-
merical attributes. It is recommended that you study the documentation of the Decision Tree
operator for basic understanding of decision trees.
If theWeight by Chi Squared Statistic operator is supplied for attribute weighting, this opera-

tor acts as theCHAIDoperator. CHAIDstands forCHi-squaredAutomatic InteractionDetection.
The chi-square statistic is a nonparametric statistical technique used to determine if a distri-
bution of observed frequencies differs from the theoretical expected frequencies. Chi-square
statistics use nominal data, thus instead of using means and variances, this test uses frequen-
cies. CHAID’s advantages are that its output is highly visual and easy to interpret. Because it
uses multiway splits by default, it needs rather large sample sizes to work effectively, since with
small sample sizes the respondent groups can quickly become too small for reliable analysis.
The representation of the data as Tree has the advantage compared with other approaches of

beingmeaningful and easy to interpret. The goal is to create a classificationmodel that predicts
the value of the label based on several input attributes of the ExampleSet. Each interior node
of the tree corresponds to one of the input attributes. The number of edges of an interior node
is equal to the number of possible values of the corresponding input attribute. Each leaf node
represents a value of the label given the values of the input attributes represented by the path
from the root to the leaf. This description can be easily understood by studying the Example
Process of the Decision Tree operator.
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Pruning is a technique in which leaf nodes that do not add to the discriminative power of the
decision tree are removed. This is done to convert an over-specific or over-fitted tree to a more
general form in order to enhance its predictive power on unseen datasets. Pre-pruning is a type
of pruning performed parallel to the tree creation process. Post-pruning, on the other hand, is
done after the tree creation process is complete.

Differentiation
• CHAID If the Weight by Chi Squared Statistic operator is applied for attribute weighting
in the subprocess of the Decision Tree (Weight-Based) operator, it works exactly like the
CHAID operator. See page 421 for details.

Input Ports
training set (tra) This inputport expects anExampleSet. It is theoutputof theGenerateNom-

inalData operator in the attachedExample Process. The output of other operators can also
be used as input. This operator cannot handle numerical data, therefore the ExampleSet
should not have numerical attributes.

Output Ports
model (mod) The Decision Tree is delivered from this output port. This classification model

can now be applied on unseen data sets for the prediction of the label attribute.

Parameters
minimal size for split (integer) The size of a node in a Tree is the number of examples in its

subset. The size of the root node is equal to the total number of examples in the Example-
Set. Only those nodes are split whose size is greater than or equal to the minimal size for
split parameter.

minimal leaf size (integer) The size of a leaf node in a Tree is the number of examples in its
subset. The tree is generated in such a way that every leaf node subset has at least the
minimal leaf size number of instances.

maximal depth (integer) The depth of a tree varies depending upon size and nature of the
ExampleSet. This parameter is used to restrict the size of the Decision Tree. The tree gen-
eration process is not continued when the tree depth is equal to the maximal depth. If its
value is set to ‘-1’, themaximal depth parameter puts no bound on the depth of the tree, a
tree of maximum depth is generated. If its value is set to ‘1’, a Tree with a single node is
generated.

confidence (real) This parameter specifies the confidence level used for the pessimistic error
calculation of pruning.

no pruning (boolean) By default the Decision Tree is generated with pruning. Setting this
parameter to true disables the pruning and delivers an unpruned Tree.

number of prepruning alternatives (integer) As prepruning runs parallel to the tree gen-
eration process, it may prevent splitting at certain nodes when splitting at that node does
not add to the discriminative power of the entire tree. In such a case alternative nodes
are tried for splitting. This parameter adjusts the number of alternative nodes tried for
splitting when the split is prevented by prepruning at a certain node.
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Related Documents
• CHAID (page 421)

Tutorial Processes

Introduction to the Decision Tree (Weight-Based) operator

Process

Generate Nomina. . .

out

Decision Tree (. . .

t ra modinp res

res

Figure 4.15: Tutorial process ‘Introduction to the Decision Tree (Weight-Based) operator’.

TheGenerateNominalData operator is used for generating anExampleSetwith 100 examples.
There are three nominal attributes in the ExampleSet and every attribute has three possible val-
ues. A breakpoint is inserted here so that you can have a look at the ExampleSet. The Decision
Tree (Weight-Based) operator is applied on this ExampleSet with default values of all parame-
ters. The resultant model is connected to the result port of the process and it can be seen in the
Results Workspace.
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Gradient Boosted Trees

Gradient Booste.. .

t ra mod

exa

wei

Executes GBT algorithm using H2O 3.8.2.6.

Description

Please note that the result of this algorithm may depend on the number of threads used. Different
settings may lead to slightly different outputs.
A gradient boosted model is an ensemble of either regression or classification tree models.

Both are forward-learning ensemble methods that obtain predictive results through gradually
improved estimations. Boosting is a flexible nonlinear regression procedure that helps improv-
ing the accuracy of trees. By sequentially applying weak classification algorithms to the incre-
mentally changed data, a series of decision trees are created that produce an ensemble of weak
prediction models. While boosting trees increases their accuracy, it also decreases speed and
human interpretability. The gradient boosting method generalizes tree boosting to minimize
these issues.
The operator starts a 1-node local H2O cluster and runs the algorithm on it. Although it

uses one node, the execution is parallel. You can set the level of parallelism by changing the
Settings/Preferences/General/Number of threads setting. By default it uses the recommended
number of threads for the system. Only one instance of the cluster is started and it remains
running until you close RapidMiner Studio.

Input Ports

training set (tra) The input port expects a labeled ExampleSet.

Output Ports

model (mod) The Gradient Boosted classification or regression model is delivered from this
output port. This classification or regressionmodel can be applied on unseen data sets for
prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

Parameters

number of trees (integer) A non-negative integer that defines the number of trees. The de-
fault is 20.
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reproducible (boolean) Makes model building reproducible. If set then maximum_number-
_of_threads parameter controls parallelism level of model building. If this is not set then
parallelism level is defined by number of threads in General Preferences.

maximum number of threads (integer) Controls parallelism level of model building.

use local random seed (boolean) Available only if reproducible is set to true. Indicates if a
local random seed should be used for randomization.

local random seed (integer) This parameter specifies the local randomseed. This parameter
is only available if the use local random seed parameter is set to true.

maximal depth (integer) The user-defined tree depth. The default is 5.

min rows (real) The minimum number of rows to assign to the terminal nodes. The default
is 10.0. If a weight column is specified, the number of rows are also weighted. E.g. if a
terminal node contains two rows with the weights 0.3 and 0.4, it is counted as 0.7 in the
minimum number of rows.

min split improvement (real) Minimumrelative improvement in squarederror reduction for
a split to happen.

number of bins (integer) For numerical columns (real/integer), build a histogram of at least
the specified number of bins, then split at the best point The default is 20.

learning rate (real) The learning rate. Smaller learning rates lead to better models, however,
it comes at the price of increasing computational time both during training and scoring:
lower learning rate requires more iterations. The default is 0.1 and the range is 0.0 to 1.0.

sample rate (real) Row sample rate per tree (from 0.0 to 1.0).

distribution (selection) The distribution function for the training data. For some function
(e.g. tweedie) further tuning can be achieved via the expert parameters

• AUTO Automatic selection. Usesmultinomial for nominal and gaussian for numeric
labels.

• bernoulli Bernoulli distribution. Can be used for binominal or 2-class polynominal
labels.

• gaussian, possion, gamma, tweedie, quantile Distribution functions for regres-
sion.

early stopping (boolean) If true, parameters for early stopping needs to be specified.

stopping rounds (integer) Early stopping based on convergence of stopping_metric. Stop if
simplemovingaverageof lengthkof the stopping_metricdoesnot improve fork:=stopping-
_rounds scoring events. This parameter is visible only if early_stopping is set.

stopping metric (selection) Metric to use for early stopping. Set stopping_tolerance to tune
it. This parameter is visible only if early_stopping is set.

• AUTO Automatic selection. Uses logloss for classification, deviance for regression.
• deviance, logloss, MSE, AUC, lift_top_group, r2, misclassification The metric to
use to decide if the algorithm should be stopped.

stopping tolerance (real) Relative tolerance formetric-based stopping criterion (stop if rela-
tive improvement is not at least thismuch). This parameter is visible only if early_stopping
is set.
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max runtime seconds (integer) Maximum allowed runtime in seconds for model training.
Use 0 to disable.

expert parameters (enumeration) Theseparameters are for fine tuning the algorithm. Usu-
ally the default values provide a decentmodel, but in some cases itmay be useful to change
them. Please use true/false values for boolean parameters and the exact attribute name
for columns. Arrays can be provided by splitting the values with the comma (,) character.
More information on the parameters can be found in the H2O documentation.

• score_each_iteration Whether to scoreduringeach iterationofmodel training. Type:
boolean, Default: false

• score_tree_interval Score the model after every so many trees. Disabled if set to 0.
Type: integer, Default: 0

• fold_assignment Cross-validation fold assignment scheme, if fold_column is not
specified. Options: AUTO,Random,Modulo, Stratified. Type: enumeration, Default:
AUTO

• fold_column Column name with cross-validation fold index assignment per obser-
vation. Type: column, Default: no fold column

• offset_column Offset column name. Type: Column, Default: no offset column
• balance_classes Balance training data class counts via over/under-sampling (for im-
balanced data). Type: boolean, Default: false

• max_after_balance_size Maximum relative size of the training data after balancing
class counts (can be less than 1.0). Requires balance_classes. Type: real, Default: 5.0

• max_confusion_matrix_size Maximum size (# classes) for confusion matrices to be
printed in the Logs. Type: integer, Default: 20

• nbins_top_level For numerical columns (real/int), build a histogramof (atmost) this
many bins at the root level, then decrease by factor of two per level. Type: integer,
Default: 1024

• nbins_cats For categorical columns (factors), build a histogram of this many bins,
then split at the best point. Higher values can lead tomore overfitting. Type: integer,
Default: 1024

• r2_stopping Stop making trees when the R^2 metric equals or exceeds this. type:
double, Default: 0.999999

• quantile_alpha Desiredquantile forquantile regression (from0.0 to1.0). Type: dou-
ble, Default: 0.5

• tweedie_power Tweedie Power (between 1 and 2). Type: double, Default: 1.5
• col_sample_rate Column sample rate (from 0.0 to 1.0). Type: double, Default: 1.0
• col_sample_rate_per_tree Column sample rate per tree (from0.0 to 1.0). Type: dou-
ble, Default: 1.0

• keep_cross_validation_predictions Keepcross-validationmodelpredictions. Type:
boolean, Default: false

• keep_cross_validation_fold_assignment Keepcross-validation foldassignment. Type:
boolean, Default: false

• class_sampling_factors Desiredover/under-sampling ratiosper class (in lexicographic
order). If not specified, sampling factors will be automatically computed to obtain
class balance during training. Requires balance_classes=true. Type: float array, De-
fault: empty
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• learn_rate_annealing Scale down the learning rate by this factor after each tree.
Type: double, Default: 1.0

• sample_rate_per_class Row sample rate per tree per class (from 0.0 to 1.0) Type:
double arary, Default: empty

• col_sample_rate_change_per_level Relative change of the column sampling rate for
every level (from 0.0 to 2.0). Type: double, Default: 1.0

• max_abs_leafnode_pred Maximum absolute value of a leaf node prediction. Type:
double, Default: Infinity

• nfoldsNumber of folds for cross-validation. Use 0 to turn off cross-validation. Type:
integer, Default: 0

Tutorial Processes

Classification using GBT
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Figure 4.16: Tutorial process ‘Classification using GBT’.

The H2O GBT operator is used to predict the future_customer attribute of the Deals sample
dataset. Since the label is nominal, classification will be performed. The GBT parameters are
slightly changed. The number of trees is decreased to 10 to lower the execution time and to pre-
vent overfitting. The learning rate is increased to 0.3 for similar reasons. The resultingmodel is
connected to an Apply Model operator that applies the GBTmodel on the Deals_Testset sample
data. The labeled ExampleSet is connected to a Performance (Binominal Classification) opera-
tor, that calculates the Accuracy metric. On the process output the Performance Vector and the
Gradient Boosted Model is shown. The trees of the Gradient Boosted model can be checked on
the Results view.
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Classification with Split Validation using GBT
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Figure 4.17: Tutorial process ‘Classification with Split Validation using GBT’.

The H2O GBT operator is used to predict the label attribute of the Iris sample dataset. Since
the label is polynominal, classification will be performed. The learner operator is inside a Split
Validation for being able to check the performance of the classification. The number of trees is
set to 10, all other parameters are kept at the default value. The Performance (Classification)
operator delivers the accuracy and the classification error. Themodel contains 30 trees, because
H2O creates 10 trees for every unique label value.

Regression using GBT
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Figure 4.18: Tutorial process ‘Regression using GBT’.

The H2OGBT operator is used to predict the label attribute of the Polynomial sample dataset.
Since the label is real, regression is performed. The sample data is retrieved, then splitted into
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two parts with the Split Data operator. The first output is used as the training, the second as
the scoring data set. The GBT operator’s distribution parameter is changed to “gamma”. After
applying on the scoring ExampleSet, the output contains the GradientBoostedModel and the
labeled data. If you select Charts/Series Chart style for the labeled data and choose label and
prediction label in the Plot Series field, you can check the accuracy of the prediction visually.
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ID3

I D 3

t ra mod

exa

This operator learns anunprunedDecisionTree fromnominal data
for classification. This decision tree learner works similar toQuin-
lan’s ID3.

Description
ID3 (Iterative Dichotomiser 3) is an algorithm used to generate a decision tree invented by Ross
Quinlan. ID3 is the precursor to the C4.5 algorithm. Very simply, ID3 builds a decision tree
from a fixed set of examples. The resulting tree is used to classify future samples. The examples
of the given ExampleSet have several attributes and every example belongs to a class (like yes
or no). The leaf nodes of the decision tree contain the class name whereas a non-leaf node is
a decision node. The decision node is an attribute test with each branch (to another decision
tree) being a possible value of the attribute. ID3 uses feature selection heuristic to help it decide
which attribute goes into a decision node. The required heuristic can be selected by the criterion
parameter.
The ID3 algorithm can be summarized as follows:

1. Take all unused attributes and calculate their selection criterion (e.g. information gain)

2. Choose the attribute for which the selection criterion has the best value (e.g. minimum
entropy or maximum information gain)

3. Make node containing that attribute

ID3 searches through the attributes of the training instances and extracts the attribute that
best separates the given examples. If the attribute perfectly classifies the training sets then ID3
stops; otherwise it recursively operates on the n (where n = number of possible values of an
attribute) partitioned subsets to get their best attribute. The algorithm uses a greedy search,
meaning it picks the best attribute and never looks back to reconsider earlier choices.
Some major benefits of ID3 are:

• Understandable prediction rules are created from the training data.

• Builds a short tree in relatively small time.

• It only needs to test enough attributes until all data is classified.

• Finding leaf nodes enables test data to be pruned, reducing the number of tests.

ID3 may have some disadvantages in some cases e.g.

• Data may be over-fitted or over-classified, if a small sample is tested.

• Only one attribute at a time is tested for making a decision.

Input Ports
training set (tra) This inputport expects anExampleSet. It is theoutputof theGenerateNom-

inal Data operator in the attached Example Process. This operator cannot handle numer-
ical attributes. The output of other operators can also be used as input.

442



4.1. Predictive

Output Ports
model (mod) The Decision Tree is delivered from this output port. This classification model

can now be applied on unseen data sets for the prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
criterion (selection) Thisparameter specifies thecriteriononwhichattributeswill be selected

for splitting. It can have one of the following values:

• information_gain The entropy of all the attributes is calculated. The attribute with
minimum entropy is selected for split. This method has a bias towards selecting at-
tributes with a large number of values.

• gain_ratio It is a variant of information gain. It adjusts the information gain for each
attribute to allow the breadth and uniformity of the attribute values.

• gini_index This is a measure of impurity of an ExampleSet. Splitting on a chosen
attribute gives a reduction in the average gini index of the resulting subsets.

• accuracy Such an attribute is selected for a split that maximizes the accuracy of the
whole Tree.

minimal size for split (integer) The size of a node is the number of examples in its subset.
The size of the root node is equal to the total number of examples in the ExampleSet. Only
those nodes are split whose size is greater than or equal to theminimal size for split param-
eter.

minimal leaf size (integer) The size of a leaf node is the number of examples in its subset.
The tree is generated in such a way that every leaf node subset has at least theminimal leaf
size number of instances.

minimal gain (real) The gain of a node is calculated before splitting it. The node is split if its
Gain is greater than theminimal gain. Higher value of minimal gain results in fewer splits
and thus a smaller tree. A too high value will completely prevent splitting and a tree with
a single node is generated.

Tutorial Processes

Getting started with ID3

To understand the basic terminology of trees, please study the Example Process of the Decision
Tree operator.
The Generate Nominal Data operator is used for generating an ExampleSet with nominal at-

tributes. It should be kept in mind that the ID3 operator cannot handle numerical attributes. A
breakpoint is inserted here so that you can have a look at the ExampleSet. You can see that the
ExampleSet has three attributes and each attribute has three possible values. The ID3 operator
is applied on this ExampleSet with default values of all parameters. The resultant Decision Tree
model is delivered to the result port of the process and it can be seen in the Results Workspace.
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Figure 4.19: Tutorial process ‘Getting started with ID3’.

Random Forest

Random Forest

t ra mod
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wei

ThisOperator generates a random forestmodel, which can be used
for classification and regression.

Description

A random forest is an ensemble of a certain number of random trees, specified by the number
of trees parameter. These trees are created/trained on bootstrapped sub-sets of the Example-
Set provided at the Input Port. Each node of a tree represents a splitting rule for one specific
Attribute. Only a sub-set of Attributes, specified with the subset ratio criterion, is considered
for the splitting rule selection. This rule separates values in an optimal way for the selected pa-
rameter criterion. For classification the rule is separating values belonging to different classes,
while for regression it separates them in order to reduce the error made by the estimation. The
building of new nodes is repeated until the stopping criteria are met.
After generation, the random forest model can be applied to new Examples using the Apply

Model Operator. Each random tree generates a prediction for each Example by following the
branches of the tree in accordance to the splitting rules andevaluating the leaf. Class predictions
are based on the majority of Examples, while estimations are obtained through the average of
values reaching a leaf. The resulting model is a voting model of all created random trees. Since
all single predictions are considered equally important, and are based on sub-sets of Examples
the resulting prediction tends to vary less than the single predictions.
A concept called pruning can be leveraged to reduce complexity of themodel by replacing sub-

trees, that only provide little predictive power with leaves. For different types of pruning refer
to the parameter descriptions.
Extremely randomized trees are a method similar to random forest, which can be obtained

by checking the split random parameter and disabling pruning. Important parameters to tune
for this method are the minimal leaf size and split ratio, which can be changed after disabling
guess split ratio. Good default choices for the minimal leaf size are 2 for classification and 5 for
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regression problems.

Differentiation
• Decision Tree
The Decision Tree Operator creates one tree, where all Attributes are available at each
node for selecting the optimal one with regards to the chosen criterion. Since only one
tree is generated the prediction is more comprehensible for humans, but might lead to
overtraining.
See page 427 for details.

• Bagging
Bootstrap aggregating (bagging) is a machine learning ensemble meta-algorithm to im-
prove classification and regressionmodels in terms of stability and classification accuracy.
It also reduces variance and helps to avoid ‘overfitting’. Although it is usually applied to
decision tree models, it can be used with any type of model. The random forest uses bag-
ging with random trees.
See page 537 for details.

• Gradient Boosted Trees
The Gradient Boosted Trees Operator trains a model by iteratively improving a single tree
model. After each iteration step the Examples are reweighted based on their previous pre-
diction. The final model is a weighted sum of all created models. Training parameters are
optimized based on the gradient of the function described by the errors made.
See page 436 for details.

Input Ports
training set (tra) The input data which is used to generate the random forest model.

Output Ports
model (mod) The random forest model is delivered from this output port.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port.

weights (wei) AnExampleSet containingAttributes andweight values, where eachweight rep-
resents the feature importance for the given Attribute. A weight is given by the sum of
improvements the selection of a given Attribute provided at a node. The amount of im-
provement is dependent on the chosen criterion.

Parameters
number of trees This parameter specifies the number of random trees to generate. For each

tree a sub-set of Examples is selected via bootstrapping. If the parameter enable parallel
execution is checked, the trees are trained in parallel across available processor threads.

criterion Selects the criterion on which Attributes will be selected for splitting. For each of
these criteria the split value is optimized with regards to the chosen criterion. It can have
one of the following values:
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• information_gain The entropies of all theAttributes are calculated and the onewith
least entropy is selected for split. Thismethod has a bias towards selecting Attributes
with a large number of values.

• gain_ratio A variant of information gain that adjusts the information gain for each
Attribute to allow the breadth and uniformity of the Attribute values.

• gini_index Ameasureof inequality between thedistributionsof label characteristics.
Splitting on a chosen Attribute results in a reduction in the average gini index of the
resulting subsets.

• accuracy An Attribute is selected for splitting, which maximizes the accuracy of the
whole tree.

• least_square An Attribute is selected for splitting, that minimizes the squared dis-
tance between the average of values in the node with regards to the true value.

maximal depth The depth of a tree varies depending upon the size and characteristics of the
ExampleSet. This parameter is used to restrict the depth for each random tree. If its value
is set to ‘-1’, themaximal depth parameter puts no bound on the depth of the trees. In this
case all trees are built until other stopping criteria are met. If its value is set to ‘1’, only
trees with a single node are generated.

apply prepruning This parameter specifies if more stopping criteria than the maximal depth
should be used during generation of the decision trees. If checked, the parametersminimal
gain,minimal leaf size,minimal size for split and number of prepruning alternatives are used
as stopping criteria.

minimal gain The gain of a node is calculated before splitting it. The node is split if its gain is
greater than the minimal gain. A higher value of minimal gain results in fewer splits and
thus smaller trees. A value that is too highwill completely prevent splitting and trees with
single nodes are generated.

minimal leaf size The size of a leaf is the number of Examples in its subset. The trees of the
random forest are generated in such a way that every leaf has at least theminimal leaf size
number of Examples.

minimal size for split The size of a node is the number of Examples in its subset. Only those
nodes are split whose size is greater than or equal to the minimal size for split parameter.

number of prepruning alternatives When split is preventedbyprepruning at a certainnode
this parameter will adjust the number of alternative nodes tested for splitting. Occurs as
prepruning runs parallel to the tree generation process. This may prevent splitting at cer-
tain nodes, when splitting at that node does not add to the discriminative power of the
entire tree. In such a case, alternative nodes are tried for splitting.

apply pruning The random trees of the random forest model can be pruned after generation.
If checked, some branches are replaced by leaves according to the confidence parameter.
This parameter is not available for the ‘least_square’ criterion.

confidence This parameter specifies the confidence level used for the pessimistic error calcu-
lation of pruning.

random splits If checked, this parameter causes the splits of numerical Attributes to be cho-
sen randomly instead of being optimized. For the random selection a uniform sampling
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between the minimal and maximal value for the current Attribute is performed. Activat-
ing this parameter while disabling pruning configures the random forest to become an ex-
tremely randomized tree (also known as Extra-Tree). This also speeds up themodel build-
ing process.

guess subset ratio If this parameter is set to true then *int(log(m) + 1)Attributes are used, oth-
erwise a ratio should be specified by the subset ratio* parameter.

subset ratio This parameter specifies the ratio of randomly chosen Attributes to test.

voting strategy Specifies the prediction strategy in case of dissenting treemodel predictions:

This parameter is not available for the ‘least_square’ criterion.

• confidence_vote Selects the class that has the highest accumulated confidence.

• majority_vote Selects the class that was predicted by the majority of tree models.

use local random seed This parameter indicates if a local random seed should be used for ran-
domization.

local random seed If the use local random seed parameter is checked this parameter deter-
mines the local random seed.

enable parallel execution This parameter enables the parallel execution of themodel build-
ing process by distributing theRandomTree generation between all available CPU threads.
Please disable the parallel execution if you run into memory problems.

Tutorial Processes

Generating a set of random trees using the random forest Operator
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value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 
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trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 
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trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 
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trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.

Applying a trained model to test data.

Training a random forest model 
with 10 random trees. 

 
 
 
 
 
 
 
 

The upper port provides the 
trained model and the lowest 
port provides a list of all used 
Attributes and an importance 
value regarding its predictive 

power for this model.
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Figure 4.20: Tutorial process ‘Generating a set of random trees using the random forest
Operator’.
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4. Modeling

In this tutorial process the ‘Golf’ data set is retrieved and used to train a random forest for
classification with 10 random trees. The generated model is afterwards applied to a test data
set. Resulting predictions, the generated model and feature importance values provided by the
Operators are viewed.
Checking the output of the Apply Model Operators ‘lab’ port reveals the labeled data set with

predictionsobtained fromapplying themodel to anunseendata set. Inspecting themodel shows
a Collection of 10 random trees that build up the random forest and contribute to the predictive
process. Looking at the output of the ‘wei’ port from the Random Forest Operator provides in-
formation about the Attribute weights. These weights contain importance values regarding the
predictive power of an Attribute to the overall decision of the random forest.
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Figure 4.21: Tutorial process ‘Random forest for regression’.

ln this tutorial process a random forest is used for regression. The ‘Polynominal’ data set with
a numerical target Attribute is used as a label. Before training themodel the data set is split into
a training and a test set. Afterwards the regressed values are compared with the label values to
obtain a performance measure using the Performance (Regression) Operator.

Comparison between decision tree and random forest

In this tutorial process a comparisonhighlighting the difference betweendecision trees and ran-
dom forest is shown. The ‘Polynominal’ sample data set is split into a training and a test set.
Afterwards each training data set is used to generate a decision tree and a random forest model
for regression. Applying the models to the test data sets and evaluating the performance shows
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4.1. Predictive

Process
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Figure 4.22: Tutorial process ‘Comparison between decision tree and random forest’.

that both methods provide similar results with a difference in deviation of the result when ap-
plied to test data.
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Random Tree

Random Tree

t ra mod

exa

This operator learns a decision tree. This operator uses only a ran-
dom subset of attributes for each split.

Description
The Random Tree operator works exactly like the Decision Tree operator with one exception:
for each split only a random subset of attributes is available. It is recommended that you study
the documentation of the Decision Tree operator for basic understanding of decision trees.
This operator learns decision trees from both nominal and numerical data. Decision trees are

powerful classification methods which can be easily understood. The Random Tree operator
works similar to Quinlan’s C4.5 or CART but it selects a random subset of attributes before it is
applied. The size of the subset is specified by the subset ratio parameter.
Representationof thedata asTreehas theadvantage comparedwithother approachesof being

meaningful and easy to interpret. The goal is to create a classification model that predicts the
value of the label based on several input attributes of the ExampleSet. Each interior node of tree
corresponds to one of the input attributes. The number of edges of an interior node is equal to
the number of possible values of the corresponding input attribute. Each leaf node represents a
value of the label given the values of the input attributes represented by the path from the root
to the leaf. This description can be easily understood by studying the Example Process of the
Decision Tree operator.
Pruning is a technique in which leaf nodes that do not add to the discriminative power of the

decision tree are removed. This is done to convert an over-specific or over-fitted tree to a more
general form in order to enhance its predictive power on unseen datasets. Pre-pruning is a type
of pruning performed parallel to the tree creation process. Post-pruning, on the other hand, is
done after the tree creation process is complete.

Differentiation
• The Random Tree operator works exactly like the Decision Tree operator with one excep-
tion: for each split only a random subset of attributes is available. See page ?? for details.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The Random Tree is delivered from this output port. This classification model

can now be applied on unseen data sets for the prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.
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4.1. Predictive

Parameters
criterion (selection) This parameter selects the criterion on which attributes will be selected

for splitting. It can have one of the following values:
• information_gain The entropy of all the attributes is calculated. The attribute with
minimum entropy is selected for split. This method has a bias towards selecting at-
tributes with a large number of values.

• gain_ratio It is a variant of information gain. It adjusts the information gain for each
attribute to allow the breadth and uniformity of the attribute values.

• gini_index This is a measure of impurity of an ExampleSet. Splitting on a chosen
attribute gives a reduction in the average gini index of the resulting subsets.

• accuracy Such an attribute is selected for split that maximizes the accuracy of the
whole Tree.

minimal size for split (integer) The size of a node in a Tree is the number of examples in its
subset. The size of the root node is equal to the total number of examples in the Example-
Set. Only those nodes are split whose size is greater than or equal to the minimal size for
split parameter.

minimal leaf size (integer) The size of a leaf node in a Tree is the number of examples in its
subset. The tree is generated in such a way that every leaf node subset has at least the
minimal leaf size number of instances.

minimal gain (real) The gain of a node is calculated before splitting it. The node is split if its
Gain is greater than theminimal gain. Higher value of minimal gain results in fewer splits
and thus a smaller tree. A too high value will completely prevent splitting and a tree with
a single node is generated.

maximal depth (integer) The depth of a tree varies depending upon size and nature of the
ExampleSet. This parameter is used to restrict the size of the Tree. The tree generation
process is not continued when the tree depth is equal to the maximal depth. If its value is
set to ‘-1’, the maximal depth parameter puts no bound on the depth of the tree, a tree of
maximumdepth is generated. If its value is set to ‘1’, a Treewith a single node is generated.

confidence (real) This parameter specifies the confidence level used for the pessimistic error
calculation of pruning.

number of prepruning alternatives (integer) As prepruning runs parallel to the tree gen-
eration process, it may prevent splitting at certain nodes when splitting at that node does
not add to the discriminative power of the entire tree. In such a case alternative nodes
are tried for splitting. This parameter adjusts the number of alternative nodes tried for
splitting when split is prevented by prepruning at a certain node.

no prepruning (boolean) By default the Tree is generated with prepruning. Setting this pa-
rameter to true disables the prepruning and delivers a tree without any prepruning.

no pruning (boolean) By default the Tree is generated with pruning. Setting this parameter
to true disables the pruning and delivers an unpruned Tree.

guess subset ratio (boolean) This parameter specifies if the subset ratio should be guessed
or not. If set to true, log(m) + 1 features are used as subset, otherwise a ratio has to be
specified through the subset ratio parameter.

subset ratio (real) This parameter specifies the subset ratio of randomly chosen attributes.
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4. Modeling

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of the local random seed will produce the
same randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Related Documents
• (page ??)

Tutorial Processes

Introduction to the Random Tree operator

Process

I r is

out

Random Tree

t ra mod

exa

inp res

res

Figure 4.23: Tutorial process ‘Introduction to the Random Tree operator’.

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. The RandomTree operator is applied on this ExampleSet
with default values of all parameters. The resultant tree is connected to the result port of the
process and it can be seen in the Results Workspace.
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4.1.4 Rules
Rule Induction

Rule Induction

t ra mod

exa

This operator learns a pruned set of rules with respect to the in-
formation gain from the given ExampleSet.

Description
The Rule Induction operator works similar to the propositional rule learner named ‘Repeated
Incremental Pruning to Produce Error Reduction’ (RIPPER, Cohen 1995). Starting with the less
prevalent classes, the algorithm iteratively grows and prunes rules until there are no positive
examples left or the error rate is greater than 50%.
In the growing phase, for each rule greedily conditions are added to the rule until it is perfect

(i.e. 100% accurate). The procedure tries every possible value of each attribute and selects the
condition with highest information gain.
In the prune phase, for each rule any final sequences of the antecedents is pruned with the

pruning metric p/(p+n).
Rule Set learners are often compared to Decision Tree learners. Rule Sets have the advantage

that they are easy to understand, representable in first order logic (easy to implement in lan-
guages like Prolog) and prior knowledge can be added to them easily. The major disadvantages
of Rule Setswere that they scaled poorlywith training set size and had problemswith noisy data.
The RIPPER algorithm (which this operator implements) pretty much overcomes these disad-
vantages. Themajor problemwithDecision Trees is overfitting i.e. themodel works verywell on
the training set but does not perform well on the validation set. Reduced Error Pruning (REP) is
a technique that tries to overcome overfitting. After various improvements and enhancements
over the period of time REP changed to IREP, IREP* and RIPPER.
Pruning in decision trees is a technique in which leaf nodes that do not add to the discrimi-

native power of the decision tree are removed. This is done to convert an over-specific or over-
fitted tree to a more general form in order to enhance its predictive power on unseen datasets.
A similar concept of pruning implies on Rule Sets.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Discretize by

Frequency operator in the attached Example Process. The output of other operators can
also be used as input.

Output Ports
model (mod) TheRuleModel is delivered from this output port. Thismodel cannowbeapplied

on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.
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4. Modeling

Parameters
criterion (selection) This parameter specifies the criterion for selecting attributes and nu-

merical splits. It can have one of the following values:

• information_gain The entropy of all the attributes is calculated. The attribute with
minimum entropy is selected for split. This method has a bias towards selecting at-
tributes with a large number of values.

• accuracy Such an attribute is selected for a split that maximizes the accuracy of the
Rule Set.

sample ratio (real) Thisparameter specifies the sample ratioof trainingdataused forgrowing
and pruning.

pureness (real) This parameter specifies the desired pureness, i.e. the minimum ratio of the
major class in a covered subset in order to consider the subset pure.

minimal prune benefit (real) Thisparameter specifies theminimumamountofbenefitwhich
must be exceeded over unpruned benefit in order to be pruned.

use local random seed (boolean) Indicates if a local randomseed shouldbeused for random-
ization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Introduction to the Rule Induction operator

Process

Golf

out

Discretize

exa exa

ori

pre

Rule Induction

t ra mod

exa

inp res

res

Figure 4.24: Tutorial process ‘Introduction to the Rule Induction operator’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Discretize by Frequency op-
erator is applied on it to convert the numerical attributes to nominal attributes. This is done
because the Rule Learners usually perform well on nominal attributes. The number of bins pa-
rameter of the Discretize by Frequency operator is set to 3. All other parameters are used with
default values. A breakpoint is inserted here so that you can have a look at the ExampleSet be-
fore application of the Rule Induction operator. The Rule Induction operator is applied next.
All parameters are used with default values. The resulting model is connected to the result port
of the process. The Rule Set (RuleModel) can be seen in the Results Workspace after execution
of the process.
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Subgroup Discovery

Subgroup Discov...

t ra mod

exa

This operator performs an exhaustive subgroup discovery. The
goal of subgroup discovery is to find rules describing subsets of the
population that are sufficiently large and statistically unusual.

Description

This operator discovers subgroups (or induces a rule set) by generating hypotheses exhaustively.
Generation is done by stepwise refining the empty hypothesis (which contains no literals). The
loop for this task hence iterates over the depth of the search space, i.e. the number of literals of
the generated hypotheses. The maximum depth of the search can be specified by themax depth
parameter. Furthermore the search space can be pruned by specifying a minimum coverage (by
the min coverage parameter) of the hypothesis or by using only a given amount of hypotheses
which have the highest coverage. From the hypotheses, rules are derived according to the user’s
preference. This operator allows the derivation of positive rules and negative rules separately
or the combination by deriving both rules or only the one which is the most probable due to the
examples covered by the hypothesis (hence: the actual prediction for that subset). This behavior
can be controlled by the rule generation parameter. All generated rules are evaluated on the Ex-
ampleSet by a user specified utility function (which is specified by the utility function parameter)
and stored in the final rule set if:

• They exceed a minimum utility threshold (which is specified by themin utility parameter)
or

• They are among the k best rules (where k is specified by the k best rules parameter).

The desired behavior can be specified by the mode parameter.
The problem of subgroup discovery has been defined as follows: Given a population of indi-

viduals and a property of those individuals we are interested in finding population subgroups
that are statistically most interesting, e.g. are as large as possible and have the most unusual
statistical (distributional) characteristics with respect to the property of interest. In subgroup
discovery, rules have the form Class >- Cond, where the property of interest for subgroup dis-
covery is the class value Class which appears in the rule consequent, and the rule antecedent
Cond is a conjunction of features (attribute-value pairs) selected from the features describing
the training instances. As rules are induced from labeled training instances (labeled positive
if the property of interest holds, and negative otherwise), the process of subgroup discovery is
targeted at uncovering properties of a selected target population of individuals with the given
property of interest. In this sense, subgroupdiscovery is a formof supervised learning. However,
in many respects subgroup discovery is a form of descriptive induction as the task is to uncover
individual interesting patterns in data.
Rule learning is most frequently used in the context of classification rule learning and asso-

ciation rule learning. While classification rule learning is an approach to predictive induction
(or supervised learning), aimed at constructing a set of rules to be used for classification and/or
prediction, association rule learning is a form of descriptive induction (non- classification in-
duction or unsupervised learning), aimed at the discovery of individual rules which define in-
teresting patterns in data.
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Let us emphasize the difference between subgroup discovery (as a task at the intersection of
predictive and descriptive induction) and classification rule learning (as a form of predictive in-
duction). The goal of standard rule learning is to generatemodels, one for each class, consisting
of rule sets describing class characteristics in terms of properties occurring in the descriptions
of training examples. In contrast, subgroup discovery aims at discovering individual rules or
‘patterns’ of interest, which must be represented in explicit symbolic form and which must be
relatively simple in order to be recognized as actionable by potential users. Moreover, standard
classification rule learning algorithms cannot appropriately address the task of subgroupdiscov-
ery as they use the covering algorithm for rule set construction which hinders the applicability
of classification rule induction approaches in subgroup discovery. Subgroup discovery is usu-
ally seen as different from classification, as it addresses different goals (discovery of interesting
population subgroups instead of maximizing classification accuracy of the induced rule set).

Input Ports

training set (tra) This inputport expects anExampleSet. It is theoutputof theGenerateNom-
inalData operator in the attachedExample Process. The output of other operators can also
be used as input.

Output Ports

model (mod) The Rule Set is delivered from this output port.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

mode (selection) This parameter specifies the discovery mode.

• minimum_utility If this option is selected the rules are stored in the final rule set if
they exceed the minimum utility threshold specified by the min utility parameter

• k_best_rules If this option is selected the rules are stored in the final rule set if they
are among the k best rules (where k is specified by the k best rules parameter).

utility function (selection) This parameter specifies the desired utility function.

min utility (real) Thisparameter specifies theminimumutility. Thisparameter isusefulwhen
themode parameter is set to ‘minimum utility’. The rules are stored in the final rule set if
they exceed the minimum utility threshold specified by this parameter.

k best rules (integer) This parameter specifies the number of required best rules. This pa-
rameter is useful when the mode parameter is set to ‘k best rules’. The rules are stored in
the final rule set if they are among the k best rules where k is specified by this parameter.

rule generation (selection) Thisparameterdetermineswhich rules shouldbegenerated. This
operator allows the derivation of positive rules and negative rules separately or the com-
bination by deriving both rules or only the one which is the most probable due to the ex-
amples covered by the hypothesis (hence: the actual prediction for that subset).
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max depth (integer) This parameter specifies the maximum depth of breadth-first search.
The loop for this task iterates over the depth of the search space, i.e. the number of literals
of the generated hypotheses. The maximum depth of the search can be specified by this
parameter

min coverage (real) This parameter specifies the minimum coverage. Only the rules which
exceed this coverage threshold are considered.

max cache (integer) This parameter bounds the number of rules which are evaluated (only
the most supported rules are used).

Tutorial Processes

Introduction to the Subgroup Discovery operator

Process

Generate Nomina. . .

out

Subgroup Discov...

t ra mod

exa

inp

res

res

Figure 4.25: Tutorial process ‘Introduction to the Subgroup Discovery operator’.

The Generate Nominal Data operator is used for generating an ExampleSet. The ExampleSet
has two binominal attributes with 100 examples. The Subgroup Discovery operator is applied
on this ExampleSet with default values of all parameters. The mode parameter is set to ‘k best
rules’ and the k best rules parameter is set to 10. Moreover the utility function parameter is set
to ‘WRAcc’. Thus the Rule Set will be composed of 10 best rules where rules are evaluated by the
WRAcc function. The resultant Rule Set can be seen in the Results Workspace. You can see that
there are 10 rules and they are sorted in order of their WRAcc values.
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Tree to Rules

Tree to Rules

t ra mod

exa

This operator is a meta learner. It uses an inner tree learner for
creating a rule model.

Description
The Tree to Rules operator determines a set of rules from the given decision tree model. This
operator is a nested operator i.e. it has a subprocess. The subprocessmust have a tree learner i.e.
an operator that expects an ExampleSet and generates a tree model. This operator builds a rule
model using the tree learner provided in its subprocess. Youneed to have basic understanding of
subprocesses in order to apply this operator. Please study the documentation of the Subprocess
operator for basic understanding of subprocesses.
Decision tree is a predictive model which maps observations about an item to conclusions

about the item’s target value. In these tree structures, leaves represent class labels and branches
represent conjunctions of features that lead to those class labels. In decision analysis, a decision
tree can be used to visually and explicitly represent decisions and decision making.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The rule model is delivered from this output port which can now be applied on

unseen data sets for prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Tutorial Processes

Generating rules from a Decision Tree

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at this ExampleSet. The Tree to Rules operator is applied on this Example-
Set. The Decision Tree operator is applied in the subprocess of the Tree to Rules operator. A
breakpoint is inserted after the Decision Tree operator so that you can have a look at the Deci-
sion Tree. The Tree to Rules operator generates a rule model from this Tree. The resultant rule
model can be seen in the Results Workspace.
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Process

Sonar

out

Tree to Rules

t ra mod

exa

inp res

res

Figure 4.26: Tutorial process ‘Generating rules from a Decision Tree’.

4.1.5 Neural Nets
Deep Learning

Deep Learning

t ra mod

exa

Executes Deep Learning algorithm using H2O 3.8.2.6.

Description
Please note that this algorithm is deterministic only if the reproducibleparameter is set to true. In
this case the algorithm uses only 1 thread.
Deep Learning is based on a multi-layer feed-forward artificial neural network that is trained

with stochastic gradient descent using back-propagation. The network can contain a large num-
ber of hidden layers consisting of neurons with tanh, rectifier and maxout activation functions.
Advanced features such as adaptive learning rate, rate annealing, momentum training, dropout
and L1 or L2 regularization enable high predictive accuracy. Each compute node trains a copy
of the global model parameters on its local data with multi-threading (asynchronously), and
contributes periodically to the global model via model averaging across the network.
The operator starts a 1-node local H2O cluster and runs the algorithm on it. Although it

uses one node, the execution is parallel. You can set the level of parallelism by changing the
Settings/Preferences/General/Number of threads setting. By default it uses the recommended
number of threads for the system. Only one instance of the cluster is started and it remains
running until you close RapidMiner Studio.

Input Ports
training set (tra) The input port expects a labeled ExampleSet.

Output Ports
model (mod) The Deep Learning classification or regression model is delivered from this out-

put port. This classification or regression model can be applied on unseen data sets for
prediction of the label attribute.
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example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
activation (selection) The activation function (non-linearity) to be used by the neurons in

the hidden layers.

• Tanh Hyperbolic tangent function (same as scaled and shifted sigmoid).

• Rectifier Rectifier Linear Unit: Chooses the maximum of (0, x) where x is the input
value.

• Maxout Choose the maximum coordinate of the input vector.

• ExpRectifierExponential Rectifier LinearUnit function. WithDropout options: Zero
out a randomuser-given fraction of the incomingweights to each hidden layer during
training, for each training row. This effectively trains exponentially many models at
once, and can improve generalization. In this case the hidden_dropout_ratios param-
eter is used.

hidden layer sizes (enumeration) The number and size of each hidden layer in the model.
For example, if a user specifies “100,200,100” a model with 3 hidden layers will be pro-
duced, and the middle hidden layer will have 200 neurons.

hidden dropout ratios (enumeration) A fraction of the inputs for each hidden layer to be
omitted from training in order to improve generalization. Defaults to 0.5 for each hidden
layer if omitted. Visible only if an activation function with dropout is selected.

reproducible (boolean) Force reproducibility on small data (will be slow - only uses 1 thread).

use local random seed (boolean) Indicates if a local random seed should be used for ran-
domization. Available only if reproducible is set to true.

local random seed (integer) Local random seed for random generation. This parameter is
only available if the use local random seed parameter is set to true.

epochs (real) How many times the dataset should be iterated (streamed), can be fractional.

compute variable importances (boolean) Whether tocomputevariable importances for in-
put features. The implemented method considers the weights connecting the input fea-
tures to the first two hidden layers.

train samples per iteration (long) The number of training data rows to be processed per it-
eration. Note that independent of this parameter, each row is used immediately to up-
date themodel with (online) stochastic gradient descent. This parameter controls the fre-
quency at which scoring and model cancellation can happen. Special values are 0 for one
epoch per iteration, -1 for processing the maximum amount of data per iteration. Special
value of -2 turns on automatic mode (auto-tuning).

adaptive rate (boolean) The implemented adaptive learning rate algorithm (ADADELTA) au-
tomatically combines the benefits of learning rate annealing and momentum training to
avoid slow convergence. Specification of only two parameters (rho and epsilon) simpli-
fies hyper parameter search. In some cases, manually controlled (non-adaptive) learning
rate andmomentum specifications can lead to better results, but require the specification
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(and hyper parameter search) of up to 7 parameters. If the model is built on a topology
with many local minima or long plateaus, it is possible for a constant learning rate to pro-
duce sub-optimal results. Learning rate annealing allows digging deeper into local min-
ima, while rate decay allows specification of different learning rates per layer. When the
gradient is being estimated in a long valley in the optimization landscape, a large learn-
ing rate can cause the gradient to oscillate and move in the wrong direction. When the
gradient is computed on a relatively flat surface with small learning rates, the model can
converge far slower than necessary.

epsilon (real) Similar to learning rate annealingduring initial training andmomentumat later
stages where it allows forward progress. Typical values are between 1e-10 and 1e-4. This
parameter is only active if adaptive learning rate is enabled.

rho (real) Similar to momentum and relates to the memory to prior weight updates. Typical
values are between 0.9 and 0.999. This parameter is only active if adaptive learning rate
is enabled.

standardize (boolean) If enabled, automatically standardize the data. If disabled, the user
must provide properly scaled input data.

learning rate (real) When adaptive learning rate is disabled, themagnitude of theweight up-
dates are determined by the user specified learning rate (potentially annealed), and are a
function of the difference between the predicted value and the target value. That differ-
ence, generally called delta, is only available at the output layer. To correct the output at
each hidden layer, back propagation is used. Momentummodifies back propagation by al-
lowing prior iterations to influence the current update. Using the momentum parameter
can aid in avoiding local minima and the associated instability. Toomuchmomentum can
lead to instabilities, that’s why the momentum is best ramped up slowly. This parameter
is only active if adaptive learning rate is disabled.

rate annealing (real) Learning rate annealing reduces the learning rate to “freeze” into local
minima in the optimization landscape. The annealing rate is the inverse of the number
of training samples it takes to cut the learning rate in half (e.g., 1e-6 means that it takes
1e6 training samples to halve the learning rate). This parameter is only active if adaptive
learning rate is disabled.

rate decay (real) The learning ratedecayparameter controls thechangeof learning rateacross
layers. For example, assume the rateparameter is set to0.01, and the rate_decayparameter
is set to 0.5. Then the learning rate for the weights connecting the input and first hidden
layer will be 0.01, the learning rate for the weights connecting the first and the second hid-
den layer will be 0.005, and the learning rate for the weights connecting the second and
third hidden layer will be 0.0025, etc. This parameter is only active if adaptive learning
rate is disabled.

momentum start (real) Themomentum_start parameter controls the amountofmomentum
at the beginning of training. This parameter is only active if adaptive learning rate is dis-
abled.

momentum ramp (real) The momentum_ramp parameter controls the amount of learning
for which momentum increases (assuming momentum_stable is larger than momentum-
_start). The ramp is measured in the number of training samples. This parameter is only
active if adaptive learning rate is disabled.
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momentum stable (real) Themomentum_stableparameter controls thefinalmomentumvalue
reached after momentum_ramp training samples. The momentum used for training will
remain the same for training beyond reaching that point. This parameter is only active if
adaptive learning rate is disabled.

nesterov accelerated gradient (boolean) TheNesterovacceleratedgradientdescentmethod
is a modification to traditional gradient descent for convex functions. The method relies
on gradient information at various points to build a polynomial approximation that min-
imizes the residuals in fewer iterations of the descent. This parameter is only active if
adaptive learning rate is disabled.

L1 (real) A regularization method that constrains the absolute value of the weights and has
the net effect of dropping some weights (setting them to zero) from a model to reduce
complexity and avoid overfitting.

L2 (real) Aregularizationmethod that constrains the sumof the squaredweights. Thismethod
introduces bias into parameter estimates, but frequently produces substantial gains in
modeling as estimate variance is reduced.

max w2 (real) A maximum on the sum of the squared incoming weights into any one neu-
ron. This tuning parameter is especially useful for unbound activation functions such as
Maxout or Rectifier. A special value of 0 means infinity.

loss function (selection) The loss (error) function to be minimized by the model. Absolute,
Quadratic, and Huber are applicable for regression or classification, while CrossEntropy is
only applicable for classification. Huber can improve for regressionproblemswithoutliers.
CrossEntropy loss is usedwhen themodel output consists of independent hypotheses, and
the outputs can be interpreted as the probability that each hypothesis is true. Cross en-
tropy is the recommended loss function when the target values are class labels, and espe-
cially for imbalanced data. It strongly penalizes error in the prediction of the actual class
label. Quadratic loss is used when the model output are continuous real values, but can
be used for classification as well (where it emphasizes the error on all output classes, not
just for the actual class).

Automatic

Quadratic

Cross Entropy

Huber

Absolute

Quantile

distribution function (selection) The distribution function for the training data. For some
function (e.g. tweedie) further tuning can be achieved via the expert parameters

• AUTO Automatic selection. Usesmultinomial for nominal and gaussian for numeric
labels.

• bernoulli Bernoulli distribution. Can be used for binominal or 2-class polynominal
labels.

• gaussian, possion, gamma, tweedie, quantile, laplace Distribution functions for
regression.
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early stopping (boolean) If true, parameters for early stopping needs to be specified.

stopping rounds (integer) Early stopping based on convergence of stopping_metric. Stop if
simplemovingaverageof lengthkof the stopping_metricdoesnot improve fork:=stopping-
_rounds scoring events (0 to disable). This parameter is visible only if early_stopping is set.

stopping metric (selection) Metric to use for early stopping. Set stopping_tolerance to tune
it. This parameter is visible only if early_stopping is set.

• AUTO Automatic selection. Uses logloss for classification, deviance for regression.
• deviance, logloss, MSE, AUC, lift_top_group, r2, misclassification, mean_per-
_class_error The metric to use to decide if the algorithm should be stopped.

stopping tolerance (real) Relative tolerance formetric-based stopping criterion (stop if rela-
tive improvement is not at least thismuch). This parameter is visible only if early_stopping
is set.

missing values handling (selection) Handling of missing values. Either Skip or MeanImpu-
tation.

• Skip Missing values are skipped.
• MeanImputation Missing values are replaced with the mean value.

max runtime seconds (integer) Maximum allowed runtime in seconds for model training.
Use 0 to disable.

expert parameters (enumeration) Theseparameters are for fine tuning the algorithm. Usu-
ally the default values provide a decentmodel, but in some cases itmay be useful to change
them. Please use true/false values for boolean parameters and the exact attribute name
for columns. Arrays can be provided by splitting the values with the comma (,) character.
More information on the parameters can be found in the H2O documentation.

• score_each_iteration Whether to scoreduringeach iterationofmodel training. Type:
boolean, Default: false

• fold_assignment Cross-validation fold assignment scheme, if fold_column is not
specified. Options: AUTO,Random,Modulo, Stratified. Type: enumeration, Default:
AUTO

• fold_column Column name with cross-validation fold index assignment per obser-
vation. Type: column, Default: no fold column

• offset_column Offset column name. Type: Column, Default: no offset column
• balance_classes Balance training data class counts via over/under-sampling (for im-
balanced data). Type: boolean, Default: false

• keep_cross_validation_predictions Keepcross-validationmodelpredictions. Type:
boolean, Default: false

• keep_cross_validation_fold_assignment Keepcross-validation foldassignment. Type:
boolean, Default: false

• max_after_balance_size Maximum relative size of the training data after balancing
class counts (can be less than 1.0). Requires balance_classes. Type: real, Default: 5.0

• max_confusion_matrix_size Maximum size (# classes) for confusion matrices to be
printed in the Logs. Type: integer, Default: 20

• quantile_alpha Desiredquantile for quantile regression (from0.0 to 1.0). Type: real,
Default: 0.5
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• tweedie_power Tweedie Power (between 1 and 2). Type: real, Default: 1.5

• class_sampling_factors Desiredover/under-sampling ratiosper class (in lexicographic
order). If not specified, sampling factors will be automatically computed to obtain
class balance during training. Requires balance_classes=true. Type: float array, De-
fault: empty

• input_dropout_ratio A fraction of the features for each training row to be omitted
from training in order to improve generalization (dimension sampling). Type: real,
Default: 0

• score_intervalTheminimumtime (in seconds) to elapsebetweenmodel scoring. The
actual interval is determined by the number of training samples per iteration and the
scoring duty cycle. Type: integer, Default: 5

• score_training_samples The number of training dataset points to be used for scor-
ing. Will be randomly sampled. Use 0 for selecting the entire training dataset. Type:
integer, Default: 10000

• score_validation_samples The number of validation dataset points to be used for
scoring. Can be randomly sampled or stratified (if “balance classes” is set and “score
validation sampling” is set to stratify). Use 0 for selecting the entire training dataset.
Type: integer, Default: 0

• score_duty_cycle Maximum fraction of wall clock time spent on model scoring on
training and validation samples, and on diagnostics such as computation of feature
importances (i.e., noton training). Lower: more training, higher: more scoring. Type:
real, Default: 0.1

• overwrite_with_best_model If enabled, store the best model under the destination
key of this model at the end of training. Type: boolean, Default: true.

• initial_weight_distribution The distribution from which initial weights are to be
drawn. The default option is an optimized initialization that considers the size of
the network. The “uniform” option uses a uniform distribution with a mean of 0 and
a given interval. The “normal” option drawsweights from the standard normal distri-
bution with a mean of 0 and given standard deviation. Type: enumeration, Options:
UniformAdaptive, Uniform, Normal. Default: UniformAdaptive

• initial_weight_scale The scale of the distribution function for Uniform or Normal
distributions. ForUniform, thevaluesaredrawnuniformly from-initial_weight_scale...initial-
_weight_scale. For Normal, the values are drawn from a Normal distribution with a
standard deviation of initial_weight_scale. Type: real, Default: 1

• classification_stop The stopping criteria in terms of classification error (1-accuracy)
on the training data scoring dataset. When the error is at or below this threshold,
training stops. Type: real, Default: 0

• regression_stop Thestoppingcriteria in termsof regressionerror (MSE)on the train-
ing data scoring dataset. When the error is at or below this threshold, training stops.
Type: real, Default: 1e-6.

• score_validation_sampling Method used to sample the validation dataset for scor-
ing. Type: enumeration, Options: Uniform, Stratified. Default: Uniform.

• fast_mode Enable fastmode (minor approximation in back-propagation), shouldnot
affect results significantly. Type: boolean, Default: true.

• force_load_balance Increase training speed on small datasets by splitting it into
many chunks to allow utilization of all cores. Type: boolean, Default: true.
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• shuffle_training_data Enable shuffling of training data (on each node). This option
is recommended if training data is replicated on N nodes, and the number of training
samples per iteration is close to N times the dataset size, where all nodes train will
(almost) all the data. It is automatically enabled if the number of training samples
per iteration is set to -1 (or to N times the dataset size or larger). This parameter
usually doesn’t need to be set, because RapidMiner runsH2Oalways on 1node. Type:
boolean, Default: false.

• quiet_mode Enable quiet mode for less output to standard output. Type: boolean,
Default: false.

• sparse Sparse data handling (more efficient for data with lots of 0 values). Type:
boolean, Default: false.

• average_activation Averageactivation for sparseauto-encoder (Experimental)Type:
double, Default: 0.0.

• sparsity_beta Sparsity regularization. (Experimental) Type: double, Default: 0.0.

• max_categorical_features Max. number of categorical features, enforced via hash-
ing (Experimental) Type: integer, Default: 2147483647.

• export_weights_and_biases Whether to export Neural Network weights and biases
to H2O Frames. Type: boolean, Default: false.

• mini_batch_size Mini-batch size (smaller leads to better fit, larger can speed up and
generalize better). Type: integer, Default: 1

• elastic_averaging Elastic averagingbetweencomputenodes can improvedistributed
model convergence. (Experimental) Type: boolean, Default: false.

• use_all_factor_levels Use all factor levels of categorical variables. Otherwise, the
first factor level is omitted (without loss of accuracy). Useful for variable importances
and auto-enabled for autoencoder. Type: boolean, Default: true.

• nfoldsNumber of folds for cross-validation. Use 0 to turn off cross-validation. Type:
integer, Default: 0

Tutorial Processes

Classification with Split Validation using Deep Learning

The H2O Deep Learning operator is used to predict the Survived attribute of the Titanic sample
dataset. Since the label is binominal, classificationwill be performed. To check the quality of the
model, the Split Validation operator is used to generate the training and testing datasets. The
Deep Learning operator’s parameters are the default values. This means that 2 hidden layers,
eachwith50neuronswill be constructed. The labeledExampleSet is connected to aPerformance
(Binominal Classification) operator, that calculates the Accuracy metric. On the process output
the Deep Learning Model, the labeled data and the Performance Vector is shown.

Regression using Deep Learning

The H2O Deep Learning operator is used to predict the numerical label attribute of a generated
dataset. Since the label is real, regression is performed. The data is generated, then splitted
into two parts with the Split Data operator. The first output is used as the training, the second
as the scoring data set. The Deep Learning operator uses the adaptive learning rate option (de-
fault). The algorithm automatically determines the learning rate based on the epsilon and rho
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Figure 4.27: Tutorial process ‘Classification with Split Validation using Deep Learning’.

parameters. The only non-default parameter is the hidden layer sizes, where 3 layers are used,
each with 50 neurons. After applying on the testing ExampleSet, the labelled data is connected
to the process output.
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Figure 4.28: Tutorial process ‘Regression using Deep Learning’.

Neural Net

Neural  Net

t ra mod

exa

This operator learns a model by means of a feed-forward neural
network trained by a back propagation algorithm (multi-layer per-
ceptron). This operator cannot handle polynominal attributes.

Description
This operator learns amodel bymeans of a feed-forward neural network trained by a back propa-
gation algorithm (multi-layer perceptron). The comingparagraphs explain the basic ideas about
neural networks, need-forward neural networks, back-propagation and multi-layer perceptron.
An artificial neural network (ANN), usually called neural network (NN), is a mathematical

model or computationalmodel that is inspired by the structure and functional aspects of biolog-
ical neural networks. A neural network consists of an interconnected group of artificial neurons,
and it processes information using a connectionist approach to computation (the central con-
nectionist principle is that mental phenomena can be described by interconnected networks of
simple and often uniform units). In most cases an ANN is an adaptive system that changes its
structure based on external or internal information that flows through the network during the
learning phase. Modern neural networks are usually used to model complex relationships be-
tween inputs and outputs or to find patterns in data.
A feed-forward neural network is an artificial neural network where connections between the

units do not form a directed cycle. In this network, the informationmoves in only one direction,
forward, from the input nodes, through the hidden nodes (if any) to the output nodes. There are
no cycles or loops in the network.
Back propagation algorithm is a supervised learning method which can be divided into two

phases: propagation and weight update. The two phases are repeated until the performance of
the network is good enough. In back propagation algorithms, the output values are compared
with the correct answer to compute the value of some predefined error-function. By various
techniques, the error is then fed back through the network. Using this information, the algo-
rithm adjusts the weights of each connection in order to reduce the value of the error function
by some small amount. After repeating this process for a sufficiently large number of training
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cycles, the network will usually converge to some state where the error of the calculations is
small. In this case, one would say that the network has learned a certain target function.
A multilayer perceptron (MLP) is a feed-forward artificial neural network model that maps

sets of input data onto a set of appropriate output. An MLP consists of multiple layers of nodes
in a directed graph, with each layer fully connected to the next one. Except for the input nodes,
eachnode is a neuron (or processing element)with a nonlinear activation function. MLPutilizes
back propagation for training the network. This class of networks consists of multiple layers of
computational units, usually interconnected in a feed-forward way. In many applications the
units of these networks apply a sigmoid function as an activation function.
In this operator usual sigmoid function is used as the activation function. Therefore, the val-

ues ranges of the attributes shouldbe scaled to -1 and+1. This canbedone through thenormalize
parameter. The type of the output node is sigmoid if the learning data describes a classification
task and linear if the learning data describes a numerical regression task.

Input Ports

training set (tra) The input port expects an ExampleSet. It is output of the Retrieve operator
in our example process. The output of other operators can also be used as input.

Output Ports

model (mod) The Neural Net model is delivered from this output port. This model can now be
applied on unseen data sets for prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

hidden layers This parameter describes the name and the size of all hidden layers. The user
can define the structure of the neural network with this parameter. Each list entry de-
scribes a new hidden layer. Each entry requires name and size of the hidden layer. The
layer name can be chosen arbitrarily. It is only used for displaying the model. Note that
the actual number of nodes will be one more than the value specified as hidden layer size
because an additional constant node will be added to each layer. This node will not be
connected to the preceding layer. If the hidden layer size value is set to -1 the layer size
would be calculated from the number of attributes of the input example set. In this case,
the layer size will be set to (number of attributes + number of classes) / 2 + 1. If the user does
not specify any hidden layers, a default hidden layer with sigmoid type and size equal to
(number of attributes + number of classes) / 2 + 1 will be created and added to the net. If
only a single layer without nodes is specified, the input nodes are directly connected to
the output nodes and no hidden layer will be used.

training cycles (integer) This parameter specifies the number of training cycles used for the
neural network training. In back-propagation the output values are compared with the
correct answer to compute the value of some predefined error-function. The error is then
fed back through thenetwork. Using this information, the algorithmadjusts theweights of
each connection in order to reduce the value of the error function by some small amount.
This process is repeated n number of times. n can be specified using this parameter.
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learning rate (real) Thisparameterdetermineshowmuchwechange theweightsat eachstep.
It should not be 0.

momentum (real) The momentum simply adds a fraction of the previous weight update to
the current one. This prevents local maxima and smoothes optimization directions.

decay (boolean) This is an expert parameter. It indicates if the learning rate should be de-
creased during learning.

shuffle (boolean) This is an expert parameter. It indicates if the input data should be shuf-
fled before learning. Although it increases memory usage but it is recommended if data is
sorted before.

normalize (boolean) This is an expert parameter. The Neural Net operator uses an usual sig-
moid function as the activation function. Therefore, the value range of the attributes
should be scaled to -1 and +1. This can be done through the normalize parameter. Nor-
malization is performed before learning. Although it increases runtime but it is necessary
in most cases.

error epsilon (real) The optimization is stopped if the training error gets below this epsilon
value.

use local random seed (boolean) Indicates if a local randomseed shouldbeused for random-
ization.

local random seed (integer) This parameter specifies the local random seed. It is only avail-
able if the use local random seed parameter is set to true.

Tutorial Processes

Introduction to Neural Net

Process

Ripley-Set

out

Neural  Net

t ra mod

exa

inp res

res

Figure 4.29: Tutorial process ‘Introduction to Neural Net’.

The ‘Ripley’ data set is loadedusing theRetrieve operator. A breakpoint is insertedhere so you
can see the data set before the application of the Neural Net operator. You can see that this data
set has two regular attributes i.e. att1 and att2. The label attribute has two possible values i.e. 1
or 0. Then the Neural Net operator is applied on it. All parameters are used with default values.
When you run the process, you can see the neural net in the Results Workspace. There are x+1
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number of nodes in the input, where x is the number of attributes in the input ExampleSet (other
than label attribute). The last node is the threshold node. There are y number of nodes in the
output, where y is the number of classes in the input ExampleSet (i.e. number of possible values
of label attribute). As no value was specified in the hidden layers parameter, the default value
is used. Therefore, the number of nodes are created in hidden layer are = size of hidden layer =
(number of attributes + number of classes) / 2 + 1 = (2+2)/2+1= 3. The last node (4th node) is a
threshold node. The connections between nodes are colored darker if the connection weight is
high. You can click on a node in this visualization in order to see the actual weights.
This simple process just provides basic working of this operator. In real scenarios all param-

eters should be carefully chosen.
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Perceptron

Perceptron

t ra mod

exa

This operator learns a linear classifier called Single Perceptron
whichfinds separating hyperplane (if existent). This operator can-
not handle polynominal attributes.

Description
The perceptron is a type of artificial neural network invented in 1957 by Frank Rosenblatt. It
can be seen as the simplest kind of feed-forward neural network: a linear classifier. Beside all
biological analogies, the single layer perceptron is simply a linear classifier which is efficiently
trained by a simple update rule: for all wrongly classified data points, the weight vector is either
increased or decreased by the corresponding example values. The coming paragraphs explain
the basic ideas about neural networks and feed-forward neural networks.
An artificial neural network (ANN), usually called neural network (NN), is a mathematical

model or computationalmodel that is inspired by the structure and functional aspects of biolog-
ical neural networks. A neural network consists of an interconnected group of artificial neurons,
and it processes information using a connectionist approach to computation (the central con-
nectionist principle is that mental phenomena can be described by interconnected networks of
simple and often uniform units). In most cases an ANN is an adaptive system that changes its
structure based on external or internal information that flows through the network during the
learning phase. Modern neural networks are usually used to model complex relationships be-
tween inputs and outputs or to find patterns in data.
A feed-forward neural network is an artificial neural network where connections between the

units do not form a directed cycle. In this network, the informationmoves in only one direction,
forward, from the input nodes, through the hidden nodes (if any) to the output nodes. There are
no cycles or loops in the network. If you want to use amore sophisticated neural net, please use
the Neural Net operator.

Input Ports
training set (tra) The input port expects an ExampleSet. It is the output of the Retrieve oper-

ator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The Hyperplane model is delivered from this output port. This model can now

be applied on unseen data sets for the prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
rounds (integer) This parameter specifies the number of datascans to use to adapt the hyper-

plane.
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learning rate (real) This parameter determines how much the weights should be changed at
each step. It should not be 0. The hyperplane will adapt to each example with this rate.

Tutorial Processes

Introduction to Perceptron operator

Process

Ripley-Set

out

Perceptron

t ra mod

exa

inp res

res

Figure 4.30: Tutorial process ‘Introduction to Perceptron operator’.

The ‘Ripley’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so
you can see the data set before the application of the Perceptron operator. You can see that this
data set has two regular attributes: att1 and att2. The label attribute has two possible values:
1 and 0. The Perceptron operator is applied on this ExampleSet. All parameters are used with
default values. The rounds parameter is set to 3 and the learning rate parameter is set to 0.05.
After running the process, you can see the resultant hyperplanemodel in theResultsWorkspace.
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4.1.6 Functions
Gaussian Process

Gaussian Process

t ra mod

exa

This operator is an implementation of Gaussian Process (GP)
which is a probabilistic method both for classification and regres-
sion.

Description
A Gaussian process is a stochastic process whose realizations consist of random values associ-
ated with every point in a range of times (or of space) such that each such random variable has
a normal distribution. Moreover, every finite collection of those random variables has a multi-
variate normal distribution. Gaussian processes are important in statisticalmodeling because of
properties inherited from thenormal. For example, if a randomprocess ismodeled as aGaussian
process, the distributions of various derived quantities can be obtained explicitly. Such quanti-
ties include: the average value of the process over a range of times; the error in estimating the
average using sample values at a small set of times.
Gaussian processes (GPs) extend multivariate Gaussian distributions to infinite dimension-

ality. Formally, a Gaussian process generates data located throughout some domain such that
any finite subset of the range follows a multivariate Gaussian distribution. Gaussian Process is
a powerful non-parametric machine learning technique for constructing comprehensive prob-
abilistic models of real world problems. They can be applied to geostatistics, supervised, unsu-
pervised and reinforcement learning, principal component analysis, system identification and
control, rendering music performance, optimization and many other tasks.

Input Ports
training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-

nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before the application of this operator.

Output Ports
model (mod) The Gaussian Process is applied and the resultant model is delivered from this

output port. This model can now be applied on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
kernel type (selection) The type of the kernel function is selected through this parameter.

Following kernel types are supported: rbf, cauchy, laplace, poly, sigmoid, Epanechnikov,
gaussian combination, multiquadric.

kernel lengthscale (real) This parameter specifies the lengthscale to be used in all kernels.
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kernel degree (real) This is the kernel parameter degree. This is only available when the ker-
nel type parameter is set to polynomial or epachnenikov.

kernel bias (real) This parameter specifies the bias to be used in the poly kernel.

kernel sigma1 (real) This is the kernel parameter sigma1. This is only available when the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the kernel parameter sigma2. This is only available when the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the kernel parameter sigma3. This is only available when the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the kernel parameter shift. This is only available when the kernel
type parameter is set to multiquadric.

kernel a (real) This is the kernel parameter a. This is only available when the kernel type pa-
rameter is set to sigmoid

kernel b (real) This is the kernel parameter b. This is only available when the kernel type pa-
rameter is set to sigmoid

max basis vectors (integer) This parameter specifies the maximum number of basis vectors
to be used.

epsilon tol (real) This parameter specifies the tolerance for gamma induced projections.

geometrical tol (real) This parameter specifies the tolerance for geometry induced projec-
tions.

Tutorial Processes

Introduction to the Gaussian Process operator

Process

Polynomial

out

Validat ion

t ra mod

t ra

ave

ave

inp res

res

res

Figure 4.31: Tutorial process ‘Introduction to the Gaussian Process operator’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Split Validation operator
is applied on it for training and testing a regression model. The Gaussian Process operator is
applied in the training subprocess of the Split Validation operator. All parameters are used with

474



4.1. Predictive

default values. The Gaussian Process operator generates a regression model. The Apply Model
operator is used in the testing subprocess to apply this model on the testing data set. The resul-
tant labeled ExampleSet is used by the Performance operator for measuring the performance of
the model. The regression model and its performance vector are connected to the output and it
can be seen in the Results Workspace.
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Generalized Linear Model

Generalized Line.. .

t ra mod

exa

wei

th r

Executes GLM algorithm using H2O 3.8.2.6.

Description

Please note that the result of this algorithm may depend on the number of threads used. Different
settings may lead to slightly different outputs.
Generalized linear models (GLMs) are an extension of traditional linear models. This algo-

rithm fits generalized linear models to the data by maximizing the log-likelihood. The elastic
net penalty can be used for parameter regularization. Themodel fitting computation is parallel,
extremely fast, and scales extremely well for models with a limited number of predictors with
non-zero coefficients.
The operator starts a 1-node local H2O cluster and runs the algorithm on it. Although it

uses one node, the execution is parallel. You can set the level of parallelism by changing the
Settings/Preferences/General/Number of threads setting. By default it uses the recommended
number of threads for the system. Only one instance of the cluster is started and it remains
running until you close RapidMiner Studio.
Please note that below version 7.6, a threshold value optimized formaximal F-measure is used

for prediction by default.

Input Ports

training set (tra) The input port expects a labeled ExampleSet.

Output Ports

model (mod) The Generalized Linear classification or regression model is delivered from this
output port. This classification or regressionmodel can be applied on unseen data sets for
prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

threshold (thr) This port is used only for binominal classification tasks. It provides a threshold
value optimized formaximal F-measure. If you wish to use this threshold value calculated
by H2O, connect this output to an Apply Threshold operator, along with the scored Exam-
pleSet. (By default, RapidMiner uses 0.5 threshold value when applying models.)
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Parameters
family (selection) Family. Use binomial for classification with logistic regression, others are

for regression problems.

• AUTO Automatic selection. Usesmultinomial for polynominal, binomial for binom-
inal and gaussian for numeric labels.

• gaussian The data must be numeric (real or integer).

• binomial The data must be binominal or polynominal with 2 levels/classes.

• multinomial The data must be polynominal with more than two levels/classes.

• poisson The data must be numeric and non-negative (integer).

• gamma The data must be numeric and continuous and positive (real or integer).

• tweedie The data must be numeric and continuous (real) and non-negative.

solver (selection) Select the solver to use. IRLSM is fast on problems with a small number of
predictors and for lambda-search with L1 penalty, while L_BFGS scales better for datasets
with many columns. COORDINATE_DESCENT is IRLSM with the covariance updates ver-
sionof cyclical coordinatedescent in the innermost loop. COORDINATE_DESCENT_NAIVE
is IRLSM with the naive updates version of cyclical coordinate descent in the innermost
loop. COORDINATE_DESCENT_NAIVE and COORDINATE_DESCENT are currently exper-
imental. Values:

• AUTO

• IRLSM

• L_BFGS

• COORDINATE_DESCENT (experimental)

• COORDINATE_DESCENT_NAIVE (experimental)

link (selection) The link function relates the linear predictor to the distribution function. The
default is the canonical link for the specified family. Only available for gaussian, poisson
and gamma families, because only one link type is possible for the others:

• Family: binomial; Link: logit

• Family: multinomial; Link: multinomial

• Family: tweedie; Link: tweedie

• family_default Uses identity for gaussian, log for possion and inverse for gamma
family.

• identity Possible family options: Gaussian, Poisson, Gamma

• log Possible family options: Gaussian, Poisson, Gamma

• inverse Possible family options: Gaussian, Gamma

reproducible (boolean) Makes model building reproducible. If set then maximum_number-
_of_threads parameter controls parallelism level of model building. If not set then paral-
lelism level is defined by number of threads in General Preferences.

maximum number of threads (integer) Controls parallelism level of model building.

specify beta constraints (boolean) If enabled, beta constraints for the regular attributes can
be provided.
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use regularization (boolean) Check this box if regularization should be used. For regular-
ization, you can specify the lambda, alpha and the lambda search related parameters. If
alpha or lambda is undefined (default), H2O will calculate default values for them based
on the training data and the other parameters. If this parameter is set to false, lambda is
set to 0.0 (means no regularization).

lambda (real) The lambdaparameter controls theamountof regularizationapplied. If lambda
is 0.0, no regularization is applied and the alpha parameter is ignored (you can set this by
disabling the use regularization parameter). The default value for lambda is calculated by
H2O using a heuristic based on the training data. Providing multiple lambda values via
the advanced parameters triggers a search.

lambda search (boolean) A logical value indicating whether to conduct a search over the
space of lambda values, starting from the max lambda, given lambda will be interpreted
as the min lambda. Default is false.

number of lambdas (integer) The number of lambda values when lambda search = true. 0
means no preference.

lambda min ratio (real) Smallest value for lambda as a fraction of lambda.max, the entry
value, which is the smallest value for which all coefficients in the model are zero. If the
number of observations is greater than the number of variables then default lambda_min-
_ratio = 0.0001; if the number of observations is less than the number of variables then
default lambda_min_ratio = 0.01. Default is 0.0, which means no preference.

early stopping (boolean) Check this box if early stopping should be performed on the lambda
search based on the stopping rounds and stopping tolerance parameters. The used stop-
ping metric is always deviance.

stopping rounds (integer) Early stopping based on convergence of stopping_metric. Stop if
simplemovingaverageof lengthkof the stopping_metricdoesnot improve fork:=stopping-
_rounds scoring events.

stopping tolerance (real) Relative tolerance for metric-based stopping criterion (stop if rel-
ative improvement is not at least this much).

alpha (real) Thealphaparameter controls thedistributionbetween theL1 (Lasso) andL2 (Ridge
regression) penalties. A value of 1.0 for alpha represents Lasso, and an alpha value of 0.0
produces Ridge regression. Providing multiple alpha values via the advanced parameters
triggers a search. Default is 0.0 for the L-BFGS solver, else 0.5.

standardize (boolean) Standardize numeric columns to have zero mean and unit variance

non-negative coefficients (boolean) Restrict coefficients (not intercept) tobenon-negative.

compute p-values (boolean) Request p-values computation. P-valuesworkonlywith IRLSM
solver and no regularization. Intercept must also be added to the model. Moreover, non-
negative coefficients and specify beta constraints parametershave tobe set to false to com-
pute p-values.

remove collinear columns (boolean) In case of linearly dependent columns remove some
of the dependent columns. Works only if intercept is added to the model.

add intercept (boolean) Include constant term in the model.
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missing values handling (selection) Handling of missing values. Either Skip or MeanImpu-
tation.

• Skip Missing values are skipped.

• MeanImputation Missing values are replaced with the mean value.

max iterations (integer) Maximum number of iterations. 0 means no limit.

beta constraints (list) Constraints for beta values. A row consists of the following values:
Names

• Attribute name: The name of the attribute.

• Category: A value from the attribute’s domain. Please take care to provide the exact
value. Use more rows to specify constraints for multiple categories.

Constraints

• Lower bound: Lower bound of the beta.

• Upper bound: Upper bound of the beta.

• Beta given: Specifies the given solution in proximal operator interface. The proximal
operator interface allows you to run the GLM with a proximal penalty on a distance
from a specified given solution.

• Beta start: Starting value of the beta.

max runtime seconds (integer) Maximum allowed runtime in seconds for model training.
Use 0 to disable.

expert parameters (enumeration) Theseparameters are for fine tuning the algorithm. Usu-
ally the default values provide a decentmodel, but in some cases itmay be useful to change
them. Please use true/false values for boolean parameters and the exact attribute name
for columns. Arrays can be provided by splitting the values with the comma (,) character.
More information on the parameters can be found in the H2O documentation.

• score_each_iteration Whether to scoreduringeach iterationofmodel training. Type:
boolean, Default: false

• fold_assignment Cross-validation fold assignment scheme, if fold_column is not
specified. Options: AUTO,Random,Modulo, Stratified. Type: enumeration, Default:
AUTO

• fold_column Column name with cross-validation fold index assignment per obser-
vation. Type: column, Default: no fold column

• offset_column Offset column name. Type: Column, Default: no offset column

• max_confusion_matrix_size Maximum size (# classes) for confusion matrices to be
printed in the Logs. Type: integer, Default: 20

• keep_cross_validation_predictions Keepcross-validationmodelpredictions. Type:
boolean, Default: false

• keep_cross_validation_fold_assignment Keepcross-validation foldassignment. Type:
boolean, Default: false

• tweedie_variance_powerAnumeric value specifying thepower for thevariance func-
tion when family = “tweedie”. Type: real, Default: 0

• tweedie_link_powerAnumeric value specifying thepower for the link functionwhen
family = “tweedie”. Type: real, Default: 1
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• priorAnumeric specifying theprior probability of class 1 in the responsewhen family
= “binomial”. Must be from (0,1) exclusive range or -1 (no prior). The default value
is the observation frequency of class 1. Type: real Default: -1 (no prior)

• beta_epsilonAnon-negative number specifying themagnitude of themaximumdif-
ferencebetween thecoefficientestimates fromsuccessive iterations. Defines thecon-
vergence criterion. Type: real, Default: 0.0001

• objective_epsilon Specify a threshold for convergence. If the objective value is less
than this threshold, the model is converged. Type: real, Default: -1 (no threshold)

• gradient_epsilon (For L-BFGS only) Specify a threshold for convergence. If the ob-
jective value (using the L-infinity norm) is less than this threshold, the model is con-
verged. Type: real, Default: 0.0001

• max_active_predictorsSpecify themaximumnumberof activepredictorsduringcom-
putation. This value is used as a stopping criterium toprevent expensivemodel build-
ing with many predictors. Type: integer, Default: -1 (no limit)

• obj_regLikelihooddivider inobjectivevaluecomputation, Type: real, Default: 1/nobs
• additional_alphas Providing additional alphas triggers a search. Ignored if alpha is
undefined.

• additional_lambdasProvidingadditional lambdas triggersa search. Ignored if lambda
is undefined.

• nfoldsNumber of folds for cross-validation. Use 0 to turn off cross-validation. Type:
integer, Default: 0
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Figure 4.32: Tutorial process ‘Classification using GLM’.

TheGLMoperator is used topredict theFuture customerattributeof theDeals sampledata set.
All parameters are kept at the default value in the GLM. This means that because of the binomi-
nal label the Family parameter will be set automatically to “binominal”, and the corresponding
Link function to “logit”. The resulting model is connected to an Apply Model operator that ap-
plies the Generalized Linear model on the Deals_Testset sample data. The labeled ExampleSet
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is connected to a Performance (Binominal Classification) operator, that calculates the Accuracy
metric. On the process output the Performance Vector, the Generalized Linear Model and the
output ExampleSet is shown.

Regression using GLM
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Retrieve Polyno.. .
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Validat ion
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t ra

ave
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res

res

Figure 4.33: Tutorial process ‘Regression using GLM’.

The GLM operator is used to predict the label attribute of the Polynominal sample data set
using the Split Validation operator. The label is numerical, which means that regression is per-
formed. The “compute p-values” parameter is set to true, which requires multiple parameters
to be set: the lambda parameter is set to 0.0 (no regularization), the collinear columns are re-
moved and no beta constraints are specified. The Solver parameter is set to AUTO, whichmeans
that the IRLSM solver is used - this allows the computation of the P-values. The resultingmodel
is applied in the Testing subprocess of the Split Validation operator. The labeled ExampleSet is
connected to a Performance (Regression Classification) operator, that calculates the Root mean
squared errormetric. On the process output the Performance Vector and the Generalized Linear
Model is shown.
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Linear Regression

Linear Regression

t ra mod

exa

wei

This operator calculates a linear regression model from the input
ExampleSet.

Description
Regression is a technique used for numerical prediction. Regression is a statistical measure that
attempts to determine the strength of the relationship between one dependent variable ( i.e. the
label attribute) and a series of other changing variables known as independent variables (regular
attributes). Just like Classification is used for predicting categorical labels, Regression is used
for predicting a continuous value. For example, we may wish to predict the salary of university
graduates with 5 years of work experience, or the potential sales of a new product given its price.
Regression isoftenused todeterminehowmuchspecific factors suchas thepriceof a commodity,
interest rates, particular industries or sectors influence the price movement of an asset.
Linear regression attempts to model the relationship between a scalar variable and one or

more explanatory variables by fitting a linear equation to observed data. For example, onemight
want to relate the weights of individuals to their heights using a linear regression model.
This operator calculates a linear regression model. It uses the Akaike criterion for model se-

lection. The Akaike information criterion is a measure of the relative goodness of a fit of a sta-
tistical model. It is grounded in the concept of information entropy, in effect offering a relative
measure of the information lost when a given model is used to describe reality. It can be said
to describe the tradeoff between bias and variance in model construction, or loosely speaking
between accuracy and complexity of the model.

Differentiation
• Polynomial RegressionPolynomial regression is a formof linear regression inwhich the
relationship between the independent variable x and the dependent variable y is modeled
as an nth order polynomial. See page 488 for details.

Input Ports
training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-

nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before application of this operator.

Output Ports
model (mod) The regression model is delivered from this output port. This model can now be

applied on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.
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weights (wei) This port delivers the attribute weights.

Parameters
feature selection (selection) This is an expert parameter. It indicates the feature selection

method to be used during regression. Following options are available: none, M5 prime,
greedy, T-Test, iterative T-Test

alpha (real) This parameter is available only when the feature selection parameter is set to ‘T-
Test’. It specifies the value of alpha to be used in the T-Test feature selection.

max iterations (integer) This parameter is only available when the feature selection parame-
ter is set to ‘iterativeT-Test’. It specifies themaximumnumber of iterations of the iterative
T-Test for feature selection.

forward alpha (real) This parameter is only available when the feature selection parameter
is set to ‘iterative T-Test’. It specifies the value of forward alpha to be used in the T-Test
feature selection.

backward alpha (real) This parameter is only available when the feature selection parameter
is set to ‘iterative T-Test’. It specifies the value of backward alpha to be used in the T-Test
feature selection.

eliminate colinear features (boolean) This parameter indicates if the algorithm should try
to delete collinear features during the regression or not.

min tolerance (real) This parameter is only available when the eliminate colinear features pa-
rameter is set to true. It specifies theminimumtolerance for eliminatingcollinear features.

use bias (boolean) This parameter indicates if an intercept value should be calculated or not.

ridge (real) This parameter specifies the ridge parameter for using in ridge regression.

Related Documents
• Polynomial Regression (page 488)

Tutorial Processes

Applying the Linear Regression operator on the Polynomial data set

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Filter Example Range op-
erator is applied on it. The first example parameter of the Filter Example Range parameter is set
to 1 and the last example parameter is set to 100. Thus the first 100 examples of the ‘Polyno-
mial’ data set are selected. The Linear Regression operator is applied on it with default values of
all parameters. The regressionmodel generated by the Linear Regression operator is applied on
the last 100 examples of the ‘Polynomial’ data set using the ApplyModel operator. Labeled data
from the Apply Model operator is provided to the Performance (Regression) operator. The ab-
solute error and the prediction average parameters are set to true. Thus the Performance Vector
generated by the Performance (Regression) operator has information regarding the absolute er-
ror and the prediction average in the labeled data set. The absolute error is calculated by adding
the difference of all predicted values from the actual values of the label attribute, and dividing
this sum by the total number of predictions. The prediction average is calculated by adding all
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Figure 4.34: Tutorial process ‘Applying the Linear Regression operator on the Polynomial data
set’.

actual label values and dividing this sum by the total number of examples. You can verify this
from the results in the Results Workspace.
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Local Polynomial Regression

Local Polynomial .. .

t ra mod

exa

This operator generates a local polynomial regressionmodel from
the given ExampleSet. Regression is a technique used for numer-
ical prediction.

Description

The Local Polynomial Regression operator provides functionality to perform a local regression.
This means that if the label value for a point in the data space is requested, the local neighbor-
hood of this point is searched. For this search the distance measure specified in the numerical
measure parameter is used. After the neighborhood has been determined, its data points are
used for fitting a polynomial of the specified degree using the weighted least squares optimiza-
tion. The value of this polynomial at the requested point in the data space is then returned as
result. During thefitting of the polynomial, the neighborhoods data points areweighted by their
distance to the requested point. Here again the distance function specified in the parameters
is used. The weight is calculated from the distance using the kernel smoother, specified by the
smoothing kernel parameter. The resulting weight is then included into the least squares opti-
mization. If the training ExampleSet contains a weight attribute, the distance based weight is
multiplied by the example’s weight. If the use robust estimation parameter is set to true, a Gen-
erate Weight (LPR) is performed with the same parameters as the following Local Polynomial
Regression. For different settings the Generate Weight (LPR) operator might be used as a pre-
processing step instead of using this parameter. As a result the outliers will be down-weighted
so that the least squares fitting will not be affected by them anymore.
Since this is a local method, the computational need for training is minimal. In fact, each ex-

ample is only stored in a way which provides a fast neighborhood search during the application
time. Since all calculations are performed during the application time, it is slower than for ex-
ample SVM, LinearRegressionorNaiveBayes. In fact it really depends on thenumber of training
examples and the number of attributes. If a higher degree than 1 is used, the calculations take
much longer, because implicitly the polynomial expansion must be calculated.
Regression is a technique used for numerical prediction. It is a statistical measure that at-

tempts to determine the strength of the relationship between one dependent variable ( i.e. the
label attribute) and a series of other changing variables known as independent variables (reg-
ular attributes). Just like Classification is used for predicting categorical labels, Regression is
used for predicting a continuous value. For example, we may wish to predict the salary of uni-
versity graduates with 5 years of work experience, or the potential sales of a new product given
its price. Regression is often used to determine howmuch specific factors such as the price of a
commodity, interest rates, particular industries or sectors influence the price movement of an
asset.

Input Ports

training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-
nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before application of this operator.
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Output Ports
model (mod) The regression model is delivered from this output port. This model can now be

applied on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without any modifica-
tions to the output through this port. This is usually used to reuse the same ExampleSet
in further operators or to view the ExampleSet in the Results Workspace.

Parameters
degree (integer) This parameter specifies the degree of the local fitted polynomial. Please

keep in mind, that a degree higher than 2 will increase calculation time extremely and
probably suffer from overfitting.

ridge factor (real) This parameter specifies the ridge factor. This factor is used to penalize
high coefficients. In order to avoid overfitting, the ridge factor might be increased.

use robust estimation (boolean) If this parameter is set to true, a re-weighting of the ex-
amples is performed in order to down-weight outliers.

use weights (boolean) This parameter indicates if example weights should be used if present
in the given example set.

iterations (integer) This parameter is only available when the use robust estimation parame-
ter is set to true. This parameter specifies the number of iterations performed for weight
calculation.

numerical measure (selection) This parameter specifies thenumericalmeasure for distance
calculation.

neighborhood type (selection) Thisparameterdetermineswhich typeofneighborhoodshould
be used.

k (integer) This parameter is only available when the neighborhood type parameter is set to
‘Fixed Number ‘. It specifies the number of neighbors in the neighborhood. Regardless of
the local density, always k samples are returned.

fixed distance (real) This parameter is only available when the neighborhood type parameter
is set to ‘Fixed Distance ‘. It specifies the size of the neighborhood. All points within this
distance are added.

relative size (real) This parameter is only available when the neighborhood type parameter is
set to ‘Relative Number ‘. It specifies the size of the neighborhood relative to the total
number of examples. For example, a value of 0.04 would include 4% of the data points
into the neighborhood.

distance (real) This parameter is only available when the neighborhood type parameter is set
to ‘Distance but at least’. It specifies the size of the neighborhood. All points within this
distance are added.

at least (integer) This parameter is only availablewhen theneighborhood typeparameter is set
to ‘Distance but at least’. If the neighborhood count is less than this number, the distance
is increased until this number is met.

smoothing kernel (selection) This parameter determines which kernel type should be used
to calculate the weights of distant examples.
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Tutorial Processes

Applying the Local Polynomial Regression operator on the Polynomial data set
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Figure 4.35: Tutorial process ‘Applying the Local Polynomial Regression operator on the Poly-
nomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Split Data operator is
applied on it to split the ExampleSet into training and testing data sets. The Local Polynomial
Regression operator is applied on the training data set. The degree parameter is set to 3, the
neighborhood type parameter is set to ‘relative number’ and the relative size is set to 0.5. The
regression model generated by the Local Polynomial Regression operator is applied on the test-
ing data set of the ‘Polynomial’ data set using the Apply Model operator. The labeled data set
generated by the Apply Model operator is provided to the Performance (Regression) operator.
The absolute error and the prediction average parameters are set to true. Thus the Performance
Vector generated by the Performance (Regression) operator has information regarding the ab-
solute error and the prediction average in the labeled data set. The absolute error is calculated
by adding the difference of all predicted values from the actual values of the label attribute, and
dividing this sum by the total number of predictions. The prediction average is calculated by
adding all actual label values and dividing this sum by the total number of examples. You can
verify this from the results in the Results Workspace.
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Polynomial Regression

Polynomial Regr.. .

t ra mod

exa

This operator generates a polynomial regression model from the
given ExampleSet. Polynomial regression is considered to be a
special case of multiple linear regression.

Description

Polynomial regression is a form of linear regression in which the relationship between the in-
dependent variable x and the dependent variable y is modeled as an nth order polynomial. In
RapidMiner, y is the label attribute and x is the set of regular attributes that are used for the
prediction of y. Polynomial regression fits a nonlinear relationship between the value of x and
the corresponding conditional mean of y, denoted E(y | x), and has been used to describe non-
linear phenomena such as the growth rate of tissues and the progression of disease epidemics.
Although polynomial regression fits a nonlinear model to the data, as a statistical estimation
problem it is linear, in the sense that the regression function E(y | x) is linear in the unknown
parameters that are estimated from the data. For this reason, polynomial regression is consid-
ered to be a special case of multiple linear regression.
The goal of regression analysis is to model the expected value of a dependent variable y in

terms of the value of an independent variable (or vector of independent variables) x. In simple
linear regression, the following model is used:
y = w0 + ( w1 * x )
In thismodel, for eachunit increase in the valueof x, the conditional expectationof y increases

by w1 units.
Inmany settings, such a linear relationshipmay not hold. For example, if we aremodeling the

yield of a chemical synthesis in terms of the temperature at which the synthesis takes place, we
may find that the yield improves by increasing amounts for each unit increase in temperature.
In this case, we might propose a quadratic model of the form:
y = w0 + (w1 * x1 ^1) + (w2 * x2 ^2)
In this model, when the temperature is increased from x to x + 1 units, the expected yield

changes byw1 + w2 + 2 (w2 * x). The fact that the change in yield depends on x is what makes the
relationship nonlinear (this must not be confused with saying that this is nonlinear regression;
on the contrary, this is still a case of linear regression). In general, we can model the expected
value of y as an nth order polynomial, yielding the general polynomial regression model:
y = w0 + (w1 * x1 ^1) + (w2 * x2 ^2) + . . . + (wm * xm ^m)
Regression is a technique used for numerical prediction. It is a statistical measure that at-

tempts to determine the strength of the relationship between one dependent variable ( i.e. the
label attribute) and a series of other changing variables known as independent variables (reg-
ular attributes). Just like Classification is used for predicting categorical labels, Regression is
used for predicting a continuous value. For example, we may wish to predict the salary of uni-
versity graduates with 5 years of work experience, or the potential sales of a new product given
its price. Regression is often used to determine how much specific factors such as the price of a
commodity, interest rates, particular industries or sectors influence the price movement of an
asset.
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Differentiation

• Linear Regression Polynomial regression is a form of linear regression in which the re-
lationship between the independent variable x and the dependent variable y is modeled as
an nth order polynomial. See page 482 for details.

Input Ports

training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-
nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before application of this operator.

Output Ports

model (mod) The regression model is delivered from this output port. This model can now be
applied on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without any modifica-
tions to the output through this port. This is usually used to reuse the same ExampleSet
in further operators or to view the ExampleSet in the Results Workspace.

Parameters

max iterations (integer) This parameter specifies the maximum number of iterations to be
used for the model fitting.

replication factor (integer) This parameter specifies the amount of times each input vari-
able is replicated, i.e. how many different degrees and coefficients can be applied to each
variable.

max degree (integer) This parameter specifies the maximal degree to be used for the final
polynomial.

min coefficient (real) This parameter specifies the minimum number to be used for the co-
efficients and the offset.

max coefficient (real) This parameter specifies the maximum number to be used for the co-
efficients and the offset.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of the local random seed will produce the
same randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Related Documents

• Linear Regression (page 482)
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Figure 4.36: Tutorial process ‘Applying the Polynomial Regression operator on the Polynomial
data set’.

Tutorial Processes

Applying the Polynomial Regression operator on the Polynomial data set

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Split Data operator is ap-
pliedon it to split theExampleSet into training and testingdata sets. ThePolynomialRegression
operator is applied on the training data set with default values of all parameters. The regres-
sion model generated by the Polynomial Regression operator is applied on the testing data set
of the ‘Polynomial’ data set using the Apply Model operator. The labeled data set generated by
the Apply Model operator is provided to the Performance (Regression) operator. The absolute
error and the prediction average parameters are set to true. Thus the Performance Vector gen-
erated by the Performance (Regression) operator has information regarding the absolute error
and the prediction average in the labeled data set. The absolute error is calculated by adding
the difference of all predicted values from the actual values of the label attribute, and dividing
this sum by the total number of predictions. The prediction average is calculated by adding all
actual label values and dividing this sum by the total number of examples. You can verify this
from the results in the Results Workspace.
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Relevance Vector Machine

Relevance Vector. . .

t ra mod

exa

This operator is an implementation of Relevance Vector Machine
(RVM) which is a probabilistic method both for classification and
regression.

Description
The Relevance Vector Machine operator is a probabilistic method both for classification and re-
gression. The implementationof the relevancevectormachine isbasedon theoriginal algorithm
described by ‘Tipping/2001’. The fast version of the marginal likelihood maximization (’Tip-
ping/Faul/2003’) is also available if the rvm type parameter is set to ‘Constructive-Regression-
RVM’.
A Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian infer-

ence to obtain parsimonious solutions for regression and classification. The RVMhas an identi-
cal functional form to the support vector machine, but provides probabilistic classification. It is
actually equivalent to a Gaussian process model with a certain covariance function. Compared
to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set
of free parameters of the SVM (that usually require cross-validation-based post-optimizations).
However RVMsuse an expectationmaximization (EM)-like learningmethod and are therefore at
risk of local minima. This is unlike the standard sequential minimal optimization(SMO)-based
algorithms employed by SVMs, which are guaranteed to find a global optimum.

Input Ports
training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-

nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before the application of this operator.

Output Ports
model (mod) The RVM is applied and the resultant model is delivered from this output port.

This model can now be applied on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
rvm type (selection) This parameter specifies the type of RVMRegression. The following op-

tions are available: Regression-RVM, Classification-RVM and Constructive-Regression-
RVM.

kernel type (selection) The type of the kernel function is selected through this parameter.
Following kernel types are supported: rbf, cauchy, laplace, poly, sigmoid, Epanechnikov,
gaussian combination, multiquadric
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kernel lengthscale (real) This parameter specifies the lengthscale to be used in all kernels.

kernel degree (real) This is the kernel parameter degree. This is only available when the ker-
nel type parameter is set to polynomial or epachnenikov.

kernel bias (real) This parameter specifies the bias to be used in the poly kernel.

kernel sigma1 (real) This is the kernel parameter sigma1. This is only available when the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the kernel parameter sigma2. This is only available when the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the kernel parameter sigma3. This is only available when the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the kernel parameter shift. This is only available when the kernel
type parameter is set to multiquadric.

kernel a (real) This is the kernel parameter a. This is only available when the kernel type pa-
rameter is set to sigmoid

kernel b (real) This is the kernel parameter b. This is only available when the kernel type pa-
rameter is set to sigmoid

max iteration (integer) This parameter specifies the maximum number of iterations to be
used.

min delta log alpha (real) The iteration is aborted if the largest log alpha change is smaller
than min delta log alpha.

alpha max (real) The basis function is pruned if its alpha is larger than the alpha max.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Introduction to the RVM operator

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Split Validation operator is
appliedon it for trainingand testing a regressionmodel. TheRelevanceVectorMachineoperator
is applied in the training subprocess of the Split Validation operator. All parameters are used
with default values. The Relevance Vector Machine operator generates a regressionmodel. The
Apply Model operator is used in the testing subprocess to apply this model on the testing data
set. The resultant labeled ExampleSet is used by the Performance operator for measuring the
performance of the model. The regression model and its performance vector are connected to
the output and it can be seen in the Results Workspace.
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Figure 4.37: Tutorial process ‘Introduction to the RVM operator’.

Vector Linear Regression

Vector Linear Re.. .

t ra mod

exa

This operator calculates a vector linear regression model from the
input ExampleSet.

Description

Regression is a technique used for numerical prediction. Regression is a statistical measure that
attempts to determine the strength of the relationship between one dependent variable ( i.e. the
label attribute) and a series of other changing variables known as independent variables (regular
attributes). Just like Classification is used for predicting categorical labels, Regression is used
for predicting a continuous value. For example, we may wish to predict the salary of university
graduates with 5 years of work experience, or the potential sales of a new product given its price.
Regression isoftenused todeterminehowmuchspecific factors suchas thepriceof a commodity,
interest rates, particular industries or sectors influence the price movement of an asset.
Linear regression attempts to model the relationship between a scalar variable and one or

more explanatory variables by fitting a linear equation to observed data. For example, onemight
want to relate the weights of individuals to their heights using a linear regression model.
This operator performs a vector linear regression. It regresses all regular attributes upon a

vector of labels. The attributes forming the vector should be marked as special, the special role
names of all label attributes should start with ‘label’.

Input Ports

training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-
nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before application of this operator.
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Output Ports
model (mod) The regression model is delivered from this output port. This model can now be

applied on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
use bias (boolean) This parameter indicates if an intercept value should be calculated or not.

ridge (real) This parameter specifies the ridge parameter for using in ridge regression.

Tutorial Processes

Applying the Vector Linear Regression operator on the Polynomial data set
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Figure 4.38: Tutorial process ‘Applying theVector Linear Regression operator on the Polynomial
data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Split Data operator is
applied for splitting the ExampleSet into training and testing data sets. The Vector Linear Re-
gression operator is applied on the training data set with default values of all parameters. The
regression model generated by the Vector Linear Regression operator is applied on the testing
data set of the ‘Polynomial’ data set using the ApplyModel operator. The resultant labeled data
from the Apply Model operator can be seen in the Results Workspace.
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4.1.7 Logistic Regression
Logistic Regression (SVM)

Logistic Regressi...

t ra mod

wei

exa

This operator is a Logistic Regression Learner. It is based on the
internal Java implementation of the myKLR by Stefan Rueping.

Description
This learner uses the Java implementation of themyKLR by Stefan Rueping. myKLR is a tool for
large scale kernel logistic regression based on the algorithm of Keerthi etal (2003) and the code
of mySVM. For compatibility reasons, the model of myKLR differs slightly from that of Keerthi
etal (2003). As myKLR is based on the code of mySVM; the format of example files, parameter
files and kernel definition are identical. Please see the documentation of the SVM operator for
further information. This learningmethod canbeused for both regression and classification and
provides a fast algorithm and good results for many learning tasks. mySVMworks with linear or
quadratic and even asymmetric loss functions.
This operator supports various kernel types including dot, radial, polynomial, neural, anova,

epachnenikov, gaussian combination andmultiquadric. Explanation of these kernel types is given
in the parameters section.

Input Ports
training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-

nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before application of this operator.

Output Ports
model (mod) The Logistic Regressionmodel is delivered from this output port. Thismodel can

now be applied on unseen data sets.

weights (wei) Thisport delivers theattributeweights. This is onlypossiblewhen thedotkernel
type is used, it is not possible with other kernel types.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
kernel type (selection) The type of the kernel function is selected through this parameter.

Following kernel types are supported: dot, radial, polynomial, neural, anova, epachnenikov,
gaussian combination, multiquadric

• dot The dot kernel is defined byk(x,y)=x*y i.e. it is inner product ofx and y.
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• radial The radial kernel is defined by exp(-g ||x-y||^2)where g is the gamma, it is spec-
ified by the kernel gamma parameter. The adjustable parameter gamma plays a major
role in the performance of the kernel, and should be carefully tuned to the problem
at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of polynomial and it is specified by the kernel degree parameter. The polynomial
kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• anova The anova kernel is defined by raised to power d of summation of exp(-g (x-y))
where g is gamma and d is degree. gammaanddegree are adjusted by the kernel gamma
and kernel degree parameters respectively.

• epachnenikov The epachnenikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVM kernel parameter gamma. This is only available when
the kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This is only available when
the kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This is only available when
the kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the SVM kernel parameter sigma3. This is only available when
the kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This is only available when the
kernel type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This is only available when
the kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This is only available when the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This is only available when the kernel type
parameter is set to neural.

kernel cache (real) This is an expert parameter. It specifies the size of the cache for kernel
evaluations in megabytes.

C (real) This is the SVM complexity constant which sets the tolerance for misclassification,
where higher C values allow for ‘softer’ boundaries and lower values create ‘harder’ bound-
aries. A complexity constant that is too large can lead to over-fitting, while values that are
too small may result in over-generalization.
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convergence epsilon This is an optimizer parameter. It specifies the precision on the KKT
conditions.

max iterations (integer) This is an optimizer parameter. It specifies to stop iterations after
a specified number of iterations.

scale (boolean) This is a global parameter. If checked, the example values are scaled and the
scaling parameters are stored for a test set.

Tutorial Processes

Introduction to the Logistic Regression operator
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out
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t ra mod
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res
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Figure 4.39: Tutorial process ‘Introduction to the Logistic Regression operator’.

The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is
applied on it for training and testing a regression model. The Logistic Regression operator is
applied in the training subprocess of the Split Validation operator. All parameters are used with
default values. TheLogisticRegressionoperator generates a regressionmodel. TheApplyModel
operator is used in the testing subprocess to apply this model on the testing data set. The resul-
tant labeled ExampleSet is used by the Performance operator for measuring the performance of
the model. The regression model and its performance vector are connected to the output and it
can be seen in the Results Workspace.

497



4. Modeling

Logistic Regression (Evolutionary)

Logistic Regressi...

t ra mod

exa

This operator is a kernel logistic regression learner for binary clas-
sification tasks.

Description
Logistic regression is a type of regression analysis used for predicting the outcome of a categori-
cal (a variable that can take on a limited number of categories) criterion variable based on one or
more predictor variables. The probabilities describing the possible outcome of a single trial are
modeled, as a function of explanatory variables, using a logistic function. Logistic regression
measures the relationship between a categorical dependent variable and usually a continuous
independent variable (or several), by converting the dependent variable to probability scores
This operator supports various kernel types including dot, radial, polynomial, sigmoid, anova,

epachnenikov, gaussian combination and multiquadric. An explanation of these kernel types is
given in the parameters section.

Input Ports
training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-

nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before application of this operator.

Output Ports
model (mod) The Logistic Regressionmodel is delivered from this output port. Thismodel can

now be applied on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
kernel type (selection) The type of the kernel function is selected through this parameter.

Followingkernel typesare supported: dot, radial, polynomial, sigmoid, anova, epachnenikov,
gaussian combination, multiquadric

• dot The dot kernel is defined byk(x,y)=x*y i.e. it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2)where g is the gamma, it is spec-
ified by the kernel gamma parameter. The adjustable parameter gamma plays a major
role in the performance of the kernel, and should be carefully tuned to the problem
at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of polynomial and it is specified by the kernel degree parameter. The polynomial
kernels are well suited for problems where all the training data is normalized.
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• sigmoidThe sigmoid kernel is definedby a two layeredneural net tanh(a x*y+b)where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• anova The anova kernel is defined by raised to power d of summation of exp(-g (x-y))
where g is gamma and d is degree. gammaanddegree are adjusted by the kernel gamma
and kernel degree parameters respectively.

• epachnenikov The epachnenikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combinationThis is thegaussiancombinationkernel. Ithas theadjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has the adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the kernel parameter gamma. This is only available when the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the kernel parameter sigma1. This is only available when the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the kernel parameter sigma2. This is only available when the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the kernel parameter sigma3. This is only available when the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the kernel parameter shift. This is only available when the kernel
type parameter is set to multiquadric.

kernel degree (real) This is the kernel parameter degree. This is only available when the ker-
nel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the kernel parameter a. This is only available when the kernel type pa-
rameter is set to sigmoid

kernel b (real) This is the kernel parameter b. This is only available when the kernel type pa-
rameter is set to sigmoid

C (real) This is the complexity constant which sets the tolerance for misclassification, where
higher C values allow for ‘softer’ boundaries and lower values create ‘harder’ boundaries.
A complexity constant that is too large can lead to over-fitting, while values that are too
small may result in over-generalization.

start population type (selection) This parameter specifies the type of start population ini-
tialization.

max generations (integer) This parameter specifies the number of generations after which
the algorithm should be terminated.

generations without improval (integer) Thisparameter specifies the stopcriterion forearly
stopping i.e. it stops after n generations without improvement in the performance. n is
specified by this parameter.
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population size (integer) This parameter specifies the population size i.e. the number of in-
dividuals per generation. If set to -1, all examples are selected.

tournament fraction (real) This parameter specifies the fraction of the current population
which should be used as tournament members.

keep best (boolean) This parameter specifies if the best individual should survive. This is
also called elitist selection. Retaining the best individuals in a generation unchanged in
the next generation, is called elitism or elitist selection.

mutation type (selection) This parameter specifies the type of the mutation operator.

selection type (selection) This parameter specifies the selection scheme of this evolutionary
algorithms.

crossover prob (real) Theprobability for an individual to be selected for crossover is specified
by this parameter.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

show convergence plot (boolean) This parameter indicates if a dialog with a convergence
plot should be drawn.
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Figure 4.40: Tutorial process ‘Introduction to the Logistic Regression (Evolutionary) operator’.

The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-
plied on it for training and testing a regression model. The Logistic Regression (Evolutionary)
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operator is applied in the training subprocess of the Split Validation operator. All parameters
are used with default values. The Logistic Regression (Evolutionary) operator generates a re-
gressionmodel. The Apply Model operator is used in the testing subprocess to apply this model
on the testing data set. The resultant labeled ExampleSet is used by the Performance operator
for measuring the performance of the model. The regression model and its performance vector
are connected to the output and it can be seen in the Results Workspace.
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Logistic Regression (SVM)

Logistic Regressi...

t ra mod

wei

exa

This operator is a Logistic Regression Learner. It is based on the
internal Java implementation of the myKLR by Stefan Rueping.

Description

This learner uses the Java implementation of themyKLR by Stefan Rueping. myKLR is a tool for
large scale kernel logistic regression based on the algorithm of Keerthi etal (2003) and the code
of mySVM. For compatibility reasons, the model of myKLR differs slightly from that of Keerthi
etal (2003). As myKLR is based on the code of mySVM; the format of example files, parameter
files and kernel definition are identical. Please see the documentation of the SVM operator for
further information. This learningmethod canbeused for both regression and classification and
provides a fast algorithm and good results for many learning tasks. mySVMworks with linear or
quadratic and even asymmetric loss functions.
This operator supports various kernel types including dot, radial, polynomial, neural, anova,

epachnenikov, gaussian combination andmultiquadric. Explanation of these kernel types is given
in the parameters section.

Input Ports

training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-
nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before application of this operator.

Output Ports

model (mod) The Logistic Regressionmodel is delivered from this output port. Thismodel can
now be applied on unseen data sets.

weights (wei) Thisport delivers theattributeweights. This is onlypossiblewhen thedot kernel
type is used, it is not possible with other kernel types.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

kernel type (selection) The type of the kernel function is selected through this parameter.
Following kernel types are supported: dot, radial, polynomial, neural, anova, epachnenikov,
gaussian combination, multiquadric

• dot The dot kernel is defined byk(x,y)=x*y i.e. it is inner product ofx and y.
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• radial The radial kernel is defined by exp(-g ||x-y||^2)where g is the gamma, it is spec-
ified by the kernel gamma parameter. The adjustable parameter gamma plays a major
role in the performance of the kernel, and should be carefully tuned to the problem
at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of polynomial and it is specified by the kernel degree parameter. The polynomial
kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• anova The anova kernel is defined by raised to power d of summation of exp(-g (x-y))
where g is gamma and d is degree. gammaanddegree are adjusted by the kernel gamma
and kernel degree parameters respectively.

• epachnenikov The epachnenikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVM kernel parameter gamma. This is only available when
the kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This is only available when
the kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This is only available when
the kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the SVM kernel parameter sigma3. This is only available when
the kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This is only available when the
kernel type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This is only available when
the kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This is only available when the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This is only available when the kernel type
parameter is set to neural.

kernel cache (real) This is an expert parameter. It specifies the size of the cache for kernel
evaluations in megabytes.

C (real) This is the SVM complexity constant which sets the tolerance for misclassification,
where higher C values allow for ‘softer’ boundaries and lower values create ‘harder’ bound-
aries. A complexity constant that is too large can lead to over-fitting, while values that are
too small may result in over-generalization.
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convergence epsilon This is an optimizer parameter. It specifies the precision on the KKT
conditions.

max iterations (integer) This is an optimizer parameter. It specifies to stop iterations after
a specified number of iterations.

scale (boolean) This is a global parameter. If checked, the example values are scaled and the
scaling parameters are stored for a test set.
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Figure 4.41: Tutorial process ‘Introduction to the Logistic Regression operator’.

The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is
applied on it for training and testing a regression model. The Logistic Regression operator is
applied in the training subprocess of the Split Validation operator. All parameters are used with
default values. TheLogisticRegressionoperator generates a regressionmodel. TheApplyModel
operator is used in the testing subprocess to apply this model on the testing data set. The resul-
tant labeled ExampleSet is used by the Performance operator for measuring the performance of
the model. The regression model and its performance vector are connected to the output and it
can be seen in the Results Workspace.
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4.1.8 Support Vector Machines
Fast Large Margin

Fast Large Margin

t ra mod

exa

This operator is a fast learning method for large margin optimiza-
tions.

Description

The Fast Large Margin operator applies a fast margin learner based on the linear support vector
learning schemeproposed byR.E. Fan, K.W.Chang, C.J. Hsieh, X.R.Wang, andC.J. Lin. Although
the result is similar to those delivered by classical SVM or logistic regression implementations,
this linear classifier is able to work on data set with millions of examples and attributes.
Here is a basic description of SVM. The standard SVM takes a set of input data and predicts,

for each given input, which of two possible classes comprises the input, making the SVM a non-
probabilistic binary linear classifier. Given a set of training examples, eachmarked as belonging
to one of two categories, an SVM training algorithm builds a model that assigns new examples
into one category or the other. An SVM model is a representation of the examples as points in
space, mapped so that the examples of the separate categories are divided by a clear gap that
is as wide as possible. New examples are then mapped into that same space and predicted to
belong to a category based on which side of the gap they fall on.
More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a

high- or infinite- dimensional space, which can be used for classification, regression, or other
tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance
to the nearest training data points of any class (so-called functional margin), since in general
the larger the margin the lower the generalization error of the classifier. Whereas the original
problem may be stated in a finite dimensional space, it often happens that the sets to discrimi-
nate are not linearly separable in that space. For this reason, it was proposed that the original
finite-dimensional space would be mapped into a much higher-dimensional space, presumably
making the separationeasier in that space. Tokeep the computational load reasonable, themap-
ping used by SVM schemes are designed to ensure that dot products may be computed easily in
terms of the variables in the original space, by defining them in terms of a kernel function K(x,y)
selected to suit the problem. The hyperplanes in the higher dimensional space are defined as
the set of points whose inner product with a vector in that space is constant.

Input Ports

training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-
nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before applying this operator.

Output Ports

model (mod) Theclassification/regressionmodel isdelivered fromthisoutputport. Thismodel
can now be applied on unseen data sets.
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example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
solver (selection) This parameter specifies the solver type for this fast margin method. The

following options are available: L2 SVM Dual, L2 SVM Primal, L2 Logistic Regression and
L1 SVM Dual.

C (real) This parameter specifies the cost parameter C. It is the penalty parameter of the error
term.

epsilon (real) This parameter specifies the tolerance of the termination criterion.

class weights (list) This is an expert parameter. It specifies the weights ‘w’ for all classes.
The Edit List button opens a newwindowwith two columns. The first column specifies the
class name and the second column specifies the weight for that class. The parameter C is
calculated as weight of the class multiplied by C. If the weight of a class is not specified,
that class is assigned weight = 1.

use bias (boolean) This parameter indicates if an intercept value should be calculated.
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Figure 4.42: Tutorial process ‘Introduction to the Fast Large Margin operator’.

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so
that you can have a look at the ExampleSet. The Split Validation operator is applied on this
ExampleSet to assist in training and testing a model. Have a look at the subprocesses of this
operator. The Fast Large Margin operator is applied in the Training subprocess for training a
model. The resultant model is applied in the Testing subprocess on the testing data set using
the Apply Model operator. The performance of the operator is measured using the Performance
(Classification)operator. Thefinalmodel and itsperformancevector are connected to theoutput
and they can be seen in the Results Workspace.
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Support Vector Machine

S V M

t ra mod

exa

This operator is an SVM (Support Vector Machine) Learner. It is
based on a minimal SVM implementation.

Description
This learner uses aminimal SVM implementation. Themodel is built with only one positive and
one negative example. Typically this operator is used in combination with a boosting method.

Input Ports
training set (tra) This input port expects an ExampleSet. This operator can only handle nu-

merical attributes with only one positive and one negative example.

Output Ports
model (mod) The Hyper model is delivered from this output port. This model can now be ap-

plied on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
use local random seed (boolean) This parameter indicates if a local random seed should be

used for randomization. Using the same value of local random seed will produce the same
ExampleSet. Changing the value of this parameter changes theway examples are random-
ized, thus the ExampleSet will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

507



4. Modeling

Support Vector Machine

S V M

t ra mod

est

wei

exa

This operator is an SVM (Support Vector Machine) Learner. It is
based on the internal Java implementation of themySVMby Stefan
Rueping.

Description

This learneruses the Java implementationof the support vectormachinemySVMbyStefanRueping.
This learning method can be used for both regression and classification and provides a fast al-
gorithm and good results for many learning tasks. mySVM works with linear or quadratic and
even asymmetric loss functions.
This operator supports various kernel types including dot, radial, polynomial, neural, anova,

epachnenikov, gaussian combination andmultiquadric. Explanation of these kernel types is given
in the parameters section.
Here is a basic descriptionof the SVM.The standard SVMtakes a set of input data andpredicts,

for each given input, which of the two possible classes comprises the input, making the SVM
a non-probabilistic binary linear classifier. Given a set of training examples, each marked as
belonging to one of two categories, an SVM training algorithm builds a model that assigns new
examples into one category or the other. An SVMmodel is a representation of the examples as
points in space,mapped so that the examples of the separate categories are divided by a clear gap
that is as wide as possible. New examples are then mapped into that same space and predicted
to belong to a category based on which side of the gap they fall on.
More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a

high- or infinite- dimensional space, which can be used for classification, regression, or other
tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance
to the nearest training data points of any class (so-called functional margin), since in general
the larger the margin the lower the generalization error of the classifier. Whereas the original
problem may be stated in a finite dimensional space, it often happens that the sets to discrimi-
nate are not linearly separable in that space. For this reason, it was proposed that the original
finite-dimensional space be mapped into a much higher-dimensional space, presumably mak-
ing the separation easier in that space. To keep the computational load reasonable, themapping
used by the SVM schemes are designed to ensure that dot products may be computed easily in
terms of the variables in the original space, by defining them in terms of a kernel function K(x,y)
selected to suit the problem. The hyperplanes in the higher dimensional space are defined as
the set of points whose inner product with a vector in that space is constant.

Input Ports

training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-
nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before application of this operator.
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Output Ports
model (mod) TheSVMmodel is delivered fromthis outputport. Thismodel cannowbeapplied

on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

estimated performance (est) Thisportdelivers aperformancevectorof theSVMmodelwhich
gives an estimation of statistical performance of this model.

weights (wei) Thisport delivers theattributeweights. This is possibleonlywhen thedotkernel
type is used, it is not possible with other kernel types.

Parameters
kernel type (selection) The type of the kernel function is selected through this parameter.

Following kernel types are supported: dot, radial, polynomial, neural, anova, epachnenikov,
gaussian combination, multiquadric

• dot The dot kernel is defined byk(x,y)=x*y i.e. it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2)where g is the gamma, it is spec-
ified by the kernel gamma parameter. The adjustable parameter gamma plays a major
role in the performance of the kernel, and should be carefully tuned to the problem
at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of polynomial and it is specified by the kernel degree parameter. The polynomial
kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• anova The anova kernel is defined by raised to power d of summation of exp(-g (x-y))
where g is gamma and d is degree. gammaanddegree are adjusted by the kernel gamma
and kernel degree parameters respectively.

• epachnenikov The epachnenikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVM kernel parameter gamma. This is available only when
the kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This is available only when
the kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This is available only when
the kernel type parameter is set to gaussian combination.
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kernel sigma3 (real) This is the SVM kernel parameter sigma3. This is available only when
the kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This is available only when the
kernel type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This is available only when
the kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This is available only when the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This is available only when the kernel type
parameter is set to neural.

kernel cache (real) This is an expert parameter. It specifies the size of the cache for kernel
evaluations in megabytes.

C (real) This is the SVM complexity constant which sets the tolerance for misclassification,
where higher C values allow for ‘softer’ boundaries and lower values create ‘harder’ bound-
aries. A complexity constant that is too large can lead to over-fitting, while values that are
too small may result in over-generalization.

convergence epsilon This is an optimizer parameter. It specifies the precision on the KKT
conditions.

max iterations (integer) This is an optimizer parameter. It specifies to stop iterations after
a specified number of iterations.

scale (boolean) This is a global parameter. If checked, the example values are scaled and the
scaling parameters are stored for a test set.

L pos (real) A factor for the SVM complexity constant for positive examples. This parameter
is part of the loss function.

L neg (real) A factor for the SVM complexity constant for negative examples.This parameter
is part of the loss function.

epsilon (real) This parameter specifies the insensitivity constant. No loss if the prediction lies
this close to true value. This parameter is part of the loss function.

epsilon plus (real) This parameter is part of the loss function. It specifies epsilon for positive
deviation only.

epsilon minus (real) This parameter is part of the loss function. It specifies epsilon for neg-
ative deviation only.

balance cost (boolean) If checked, adapts Cpos and Cneg to the relative size of the classes.

quadratic loss pos (boolean) Usequadratic loss forpositivedeviation. Thisparameter ispart
of the loss function.

quadratic loss neg (boolean) Use quadratic loss for negative deviation. This parameter is
part of the loss function.
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Figure 4.43: Tutorial process ‘Getting started with SVM’.

Tutorial Processes

Getting started with SVM

This is a simple Example Process which gets you started with the SVM operator. The Retrieve
operator is used to load the ‘Golf’ data set. The Nominal to Numerical operator is applied on
it to convert its nominal attributes to numerical form. This step is necessary because the SVM
operator cannot take nominal attributes, it can only classify using numerical attributes. The
model generated from the SVM operator is then applied on the ‘Golf-Testset’ data set. Nominal
to Numerical operator was applied on this data set as well. This is necessary because the testing
and training data set should be in the same format. The statistical performance of this model is
measured using the Performance operator. This is a very basic process. It is recommended that
you develop a deeper understanding of SVM for getting better results through this operator. The
support vectormachine (SVM) is a popular classification technique. However, beginnerswhoare
not familiar with SVM often get unsatisfactory results since they miss some easy but significant
steps.
Using ‘m’ numbers to represent anm-category attribute is recommended. Only one of the ‘m’

numbers is 1, theothers are 0. For example, a three-category attribute suchasOutlook {overcast,
sunny, rain} can be represented as (0,0,1), (0,1,0), and (1,0,0). This can be achieved by setting
the coding type parameter to ‘dummy coding’ in the Nominal to Numerical operator. Generally,
if the number of values in an attribute is not too large, this coding might be more stable than
using a single number.
To get amore accurate classificationmodel from SVM, scaling is recommended. Themain ad-

vantage of scaling is to avoid attributes in greater numeric ranges dominating those in smaller
numeric ranges. Another advantage is to avoid numerical difficulties during the calculation. Be-
cause kernel values usually depend on the inner products of feature vectors, e.g. the linear ker-
nel and the polynomial kernel, large attribute values might cause numerical problems. Scaling
should be performed on both training and testing data sets. In this process the scale parameter
is checked. Uncheck the scale parameter and run the process again. You will see that this time
it takes a lot longer than the time taken with scaling.
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You should have a good understanding of kernel types and different parameters associated
with each kernel type in order to get better results from this operator. The gaussian combination
kernel was used in this example process. All parameters were used with default values. The
accuracy of this model was just 35.71%. Try changing different parameters to get better results.
If you change the parameter C to 1 instead of 0, you will see that accuracy of the model rises to
64.29%. Thus, you can see howmaking small changes in parameters can have a significant effect
onoverall results. Thus it is very necessary to have a goodunderstanding of parameters of kernel
type in use. It is equally important to have a good understanding of different kernel types, and
choosing themost suitable kernel type for your ExampleSet. Try using the polynomial kernel in
this Example Process (also set the parameter C to 0); youwill see that accuracy is around 71.43%
with default values for all parameters. Change the value of the parameter C to 1 instead of 0.
Doing this increased the accuracy of model with gaussian combination kernel, but here you will
see that accuracy of the model drops.
We used default values for most of the parameters. To get more accurate results these values

should be carefully selected. Usually techniques like cross-validation are used to find the best
values of these parameters for the ExampleSet under consideration.
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Support Vector Machine (Evolutionary)

S V M

t ra mod

exa

This operator is a SVM implementation using an evolutionary al-
gorithm to solve the dual optimization problem of an SVM.

Description

TheSupportVectorMachine (Evolutionary)uses anEvolutionaryStrategy foroptimization. This
operator is a SVM implementation using an evolutionary algorithm to solve the dual optimiza-
tion problem of an SVM. It turns out that on many datasets this simple implementation is as
fast and accurate as the usual SVM implementations. In addition, it is also capable of learning
with Kernels which are not positive semi-definite and can also be used formulti-objective learn-
ing which makes the selection of the parameter C unnecessary before learning. For more infor-
mation please study ‘Evolutionary Learning with Kernels: A Generic Solution for Large Margin
Problems’ by Ingo Mierswa.
This operator supports various kernel types including dot, radial, polynomial, sigmoid, anova,

epachnenikov, gaussian combination andmultiquadric. Explanation of these kernel types is given
in the parameters section.
Here is a basic descriptionof the SVM.The standard SVMtakes a set of input data andpredicts,

for each given input, which of the two possible classes comprises the input, making the SVM
a non-probabilistic binary linear classifier. Given a set of training examples, each marked as
belonging to one of two categories, an SVM training algorithm builds a model that assigns new
examples into one category or the other. An SVMmodel is a representation of the examples as
points in space,mapped so that the examples of the separate categories are dividedby a clear gap
that is as wide as possible. New examples are then mapped into that same space and predicted
to belong to a category based on which side of the gap they fall on.
More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a

high- or infinite- dimensional space, which can be used for classification, regression, or other
tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance
to the nearest training data points of any class (so-called functional margin), since in general
the larger the margin the lower the generalization error of the classifier. Whereas the original
problem may be stated in a finite dimensional space, it often happens that the sets to discrimi-
nate are not linearly separable in that space. For this reason, it was proposed that the original
finite-dimensional space be mapped into a much higher-dimensional space, presumably mak-
ing the separation easier in that space. To keep the computational load reasonable, themapping
used by the SVM schemes are designed to ensure that dot products may be computed easily in
terms of the variables in the original space, by defining them in terms of a kernel function K(x,y)
selected to suit the problem. The hyperplanes in the higher dimensional space are defined as
the set of points whose inner product with a vector in that space is constant.

Input Ports

training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-
nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before the application of this operator.
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Output Ports
model (mod) TheSVMmodel is delivered fromthis output port. Thismodel cannowbeapplied

on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
kernel type (selection) The type of the kernel function is selected through this parameter.

Followingkernel typesare supported: dot, radial, polynomial, sigmoid, anova, epachnenikov,
gaussian combination, multiquadric

• dot The dot kernel is defined byk(x,y)=x*y i.e. it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2)where g is the gamma, it is spec-
ified by the kernel gamma parameter. The adjustable parameter gamma plays a major
role in the performance of the kernel, and should be carefully tuned to the problem
at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of polynomial and it is specified by the kernel degree parameter. The polynomial
kernels are well suited for problems where all the training data is normalized.

• sigmoidThe sigmoid kernel is definedbya two layeredneural net tanh(a x*y+b)where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• anova The anova kernel is defined by raised to power d of summation of exp(-g (x-y))
where g is gamma and d is degree. gammaanddegree are adjusted by the kernel gamma
and kernel degree parameters respectively.

• epachnenikov The epachnenikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the kernel parameter gamma. This is only available when the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the kernel parameter sigma1. This is only available when the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the kernel parameter sigma2. This is only available when the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the kernel parameter sigma3. This is only available when the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the kernel parameter shift. This is only available when the kernel
type parameter is set to multiquadric.
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kernel degree (real) This is the kernel parameter degree. This is only available when the ker-
nel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the kernel parameter a. This is only available when the kernel type pa-
rameter is set to sigmoid

kernel b (real) This is the kernel parameter b. This is only available when the kernel type pa-
rameter is set to sigmoid

C (real) This is the complexity constant which sets the tolerance for misclassification, where
higher C values allow for ‘softer’ boundaries and lower values create ‘harder’ boundaries.
A complexity constant that is too large can lead to over-fitting, while values that are too
small may result in over-generalization.

epsilon Thisparameter specifies thewidthof the regression tube loss functionof the regression
SVM.

start population type (selection) This parameter specifies the type of start population ini-
tialization.

max generations (integer) This parameter specifies the number of generations after which
the algorithm should be terminated.

generations without improval (integer) Thisparameter specifies the stopcriterion forearly
stopping i.e. it stops after n generations without improvement in the performance. n is
specified by this parameter.

population size (integer) This parameter specifies the population size i.e. the number of in-
dividuals per generation. If set to -1, all examples are selected.

tournament fraction (real) This parameter specifies the fraction of the current population
which should be used as tournament members.

keep best (boolean) This parameter specifies if the best individual should survive. This is
also called elitist selection. Retaining the best individuals in a generation unchanged in
the next generation, is called elitism or elitist selection.

mutation type (selection) This parameter specifies the type of the mutation operator.

selection type (selection) This parameter specifies the selection scheme of this evolutionary
algorithms.

crossover prob (real) Theprobability for an individual to be selected for crossover is specified
by this parameter.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

hold out set ratio (real) This operator uses this amount as a hold out set to estimate gener-
alization error after learning.

show convergence plot (boolean) This parameter indicates if a dialog with a convergence
plot should be drawn.
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show population plot (boolean) This parameter indicates if the population plot in case of
the non-dominated sorting should be shown.

return optimization performance (boolean) Thisparameter indicates if finaloptimization
fitness should be returned as performance.

Tutorial Processes

Introduction to the Support Vector Machine (Evolutionary) operator
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Figure 4.44: Tutorial process ‘Introduction to the Support Vector Machine (Evolutionary)
operator’.

This is a simple ExampleProcesswhich gets you startedwith the SVM(Evolutionary) operator.
The Retrieve operator is used to load the ‘Golf’ data set. The Nominal to Numerical operator is
applied on it to convert its nominal attributes to numerical form. This step is necessary because
the SVM (Evolutionary) operator cannot take nominal attributes, it can only classify using nu-
merical attributes. The model generated from the SVM (Evolutionary) operator is then applied
on the ‘Golf-Testset’ data set. The Nominal to Numerical operator was applied on this data set
as well. This is necessary because the testing and training data set should be in the same format.
The statistical performance of this model is measured using the Performance operator. This is
a very basic process. It is recommended that you develop a deeper understanding of SVM for
getting better results through this operator. The support vector machine (SVM) is a popular
classification technique. However, beginners who are not familiar with SVM often get unsatis-
factory results since they miss some easy but significant steps.
You should have a good understanding of kernel types and different parameters associated

with each kernel type in order to get better results from this operator. The gaussian combination
kernel was used in this example process. All parameters were used with default values. The
accuracy of this model was just 35.71%. Try changing different parameters to get better results.
If you change the parameter C to 1 instead of 0, you will see that accuracy of the model rises to
64.29%. Thus, you can see howmaking small changes in parameters can have a significant effect
onoverall results. Thus it is very necessary to have a goodunderstanding of parameters of kernel
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type in use. It is equally important to have a good understanding of different kernel types, and
choosing themost suitable kernel type for your ExampleSet. Try using the polynomial kernel in
this Example Process (also set the parameter C to 0); youwill see that accuracy is around 64.29%
with default values for all parameters. Change the value of the parameter C to 1 instead of 0.
Doing this increased the accuracy of model with gaussian combination kernel, but here you will
see that accuracy of the model drops.
Default values were used for most of the parameters in the process. To get more accurate

results these values should be carefully selected. Usually techniques like cross-validation are
used to find the best values of these parameters for the ExampleSet under consideration.
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Support Vector Machine (LibSVM)

S V M

t ra mod

exa

This operator is an SVM (Support vector machine) Learner. It is
based on the Java libSVM.

Description

This operator applies the “http://www.csie.ntu.edu.tw/ cjlin/libsvm” libsvm learner by Chih-
Chung Chang and Chih-Jen Lin. SVM is a powerful method for both classification and regres-
sion. This operator supports the C-SVC and nu-SVC SVM types for classification tasks as well as
the epsilon-SVR and nu-SVR SVM types for regression tasks. Additionally one-class SVM type is
supported for distribution estimation. The one-class SVMtype gives the possibility to learn from
just one class of examples and later on test if new examples match the known ones. In contrast
to other SVM learners, the libsvm supports internal multiclass learning and probability estima-
tion based on Platt scaling for proper confidence values after applying the learned model on a
classification data set.
Here is a basic description of SVM. The standard SVM takes a set of input data and predicts,

for each given input, which of two possible classes comprises the input, making the SVM a non-
probabilistic binary linear classifier. Given a set of training examples, eachmarked as belonging
to one of two categories, an SVM training algorithm builds a model that assigns new examples
into one category or the other. An SVM model is a representation of the examples as points in
space, mapped so that the examples of the separate categories are divided by a clear gap that
is as wide as possible. New examples are then mapped into that same space and predicted to
belong to a category based on which side of the gap they fall on.
More formally, a support vector machine constructs a hyperplane or set of hyperplanes in a

high- or infinite- dimensional space, which can be used for classification, regression, or other
tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance
to the nearest training data points of any class (so-called functional margin), since in general
the larger the margin the lower the generalization error of the classifier. Whereas the original
problem may be stated in a finite dimensional space, it often happens that the sets to discrimi-
nate are not linearly separable in that space. For this reason, it was proposed that the original
finite-dimensional space would be mapped into a much higher-dimensional space, presumably
making the separationeasier in that space. Tokeep the computational load reasonable, themap-
ping used by SVM schemes are designed to ensure that dot products may be computed easily in
terms of the variables in the original space, by defining them in terms of a kernel function K(x,y)
selected to suit the problem. The hyperplanes in the higher dimensional space are defined as
the set of points whose inner product with a vector in that space is constant.
Formore information regarding libsvmyoucanvisit ”http://www.csie.ntu.edu.tw/ cjlin/libsvm”.

Input Ports

training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-
nal attributes; it can be applied on data sets with numeric attributes. Thus often you may
have to use the Nominal to Numerical operator before applying this operator.
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Output Ports
model (mod) TheSVMmodel is delivered fromthis outputport. Thismodel cannowbeapplied

on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
svm type (selection) The SVM type is selected through this parameter. This operator sup-

ports the C-SVC and nu-SVC SVM types for classification tasks. The epsilon-SVR and nu-
SVR SVM types are for regression tasks. The one-class SVM type is for distribution estima-
tion. The one-class SVM type gives the possibility to learn from just one class of examples
and later on test if new examples match the known ones.

kernel type (selection) The type of the kernel function is selected through this parameter.
Followingkernel types are supported: linear, poly, rbf, sigmoid, precomputed. The rbfkernel
type is the default value. In general, the rbf kernel is a reasonable first choice. Here are a
few guidelines regarding different kernel types.

• the rbf kernel nonlinearly maps samples into a higher dimensional space

• the rbf kernel, unlike the linear kernel, can handle the casewhen the relation between
class labels and attributes is nonlinear

• the linear kernel is a special case of the rbf kernel

• the sigmoid kernel behaves like the rbf kernel for certain parameters

• thenumberofhyperparameters influence the complexityofmodel selection. Thepoly
kernel has more hyperparameters than the rbf kernel

• the rbf kernel has fewer numerical difficulties

• the sigmoid kernel is not valid under some parameters

• There are some situations where the rbf kernel is not suitable. In particular, when the
number of features is very large, one may just use the linear kernel.

degree (real) This parameter is only available when the kernel type parameter is set to ‘poly’.
This parameter is used to specify the degree for a polynomial kernel function.

gamma (real) This parameter is only available when the kernel type parameter is set to ‘poly’,
‘rbf’ or ‘sigmoid’. This parameter specifies gamma for ‘polynomial’, ‘rbf’, and ‘sigmoid’ ker-
nel functions. The value of gammamay play an important role in the SVMmodel. Chang-
ing the value of gamma may change the accuracy of the resulting SVM model. So, it is a
good practice to use cross-validation to find the optimal value of gamma.

coef0 (real) This parameter is only available when the kernel type parameter is set to ‘poly’ or
‘precomputed’. This parameter specifies coef0 for ‘poly’ and ‘precomputed’ kernel func-
tions.

C (real) This parameter is only availablewhen the svm typeparameter is set to ‘c-SVC’, ‘epsilon-
SVR’ or ‘nu-SVR’. This parameter specifies the cost parameter C for ‘c-SVC’, ‘epsilon-SVR’
and ‘nu-SVR’. C is the penalty parameter of the error term.
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nu (real) This parameter is only availablewhen the svm typeparameter is set to ‘nu-SVC’, ‘one-
class’ and ‘nu-SVR’. This parameter specifies the nu parameter for ‘nu-SVC’, ‘one-class’
and ‘nu-SVR’. Its value should be between 0.0 and 0.5.

cache size (real) This is an expert parameter. It specifies the Cache size in Megabyte.

epsilon (real) This parameter specifies the tolerance of the termination criterion.

p (real) This parameter is only available when the svm type parameter is set to ‘epsilon-SVR’.
This parameter specifies tolerance of loss function of ‘epsilon-SVR’.

class weights (list) This is an expert parameter. It specifies theweights ‘w’ for all classes. The
Edit List button opens a newwindowwith two columns. The first column specifies the class
name and the second column specifies the weight for that class. Parameter C is calculated
as weight of class multiplied by C. If weight of a class is not specified, that class is assigned
weight = 1.

shrinking (boolean) This is an expert parameter. It specifies whether to use the shrinking
heuristics.

calculate confidences (boolean) Thisparameter indicates if proper confidencevalues should
be calculated.

confidence for multiclass (boolean) This is an expert parameter. It indicates if the class
with the highest confidence should be selected in the multiclass setting. Uses binary ma-
jority vote over all 1-vs-1 classifiers otherwise (selected class must not be the one with
highest confidence in that case).

Tutorial Processes

SVM with rbf kernel
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Figure 4.45: Tutorial process ‘SVM with rbf kernel’.
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This is a simple Example Process which gets you started with the SVM(libSVM) operator. The
Retrieve operator is used to load the ‘Golf’ data set. The Nominal to Numerical operator is ap-
plied on it to convert its nominal attributes to numerical form. This step is necessary because
the SVM(libSVM) operator cannot take nominal attributes, it can only classify using numerical
attributes. The model generated from the SVM(libSVM) operator is then applied on the ‘Golf-
Testset’ data set using the Apply Model operator. The Nominal to Numerical operator was also
applied on this data set. This is necessary because the testing and training data sets should be in
the same format. The statistical performance of this model is measured using the Performance
operator. This is a very basic process. It is recommended that you develop a deeper understand-
ing of the SVM(libSVM) for getting better results through this operator. The support vector ma-
chine (SVM) is a popular classification technique. However, beginners who are not familiar with
SVM often get unsatisfactory results since they miss some easy but significant steps.
Using ‘m’ numbers to represent an m-category attribute is recommended. Only one of the

‘m’ numbers is 1, and others are 0. For example, a three-category attribute such as Outlook
{overcast, sunny, rain} can be represented as (0,0,1), (0,1,0), and (1,0,0). This can be achieved
by setting the coding type parameter to ‘dummy coding’ in the Nominal to Numerical operator.
Generally, if the number of values in an attribute is not too large, this coding might be more
stable than using a single number.
This basic process omitted various essential steps that are necessary for getting acceptable

results from this operator. For example to get a more accurate classification model from SVM,
scaling is recommended. Themain advantage of scaling is to avoid attributes in greater numeric
ranges dominating those in smaller numeric ranges. Another advantage is to avoid numerical
difficulties during the calculation. Because kernel values usually depend on the inner products
of feature vectors, e.g. the linear kernel and the polynomial kernel, large attribute values might
cause numerical problems. Scaling should be performed on both training and testing data sets.
We have used default values of the parameters C, gamma and epsilon. To get more accurate

results these values should be carefully selected. Usually techniques like cross-validation are
used to find best values of these parameters for the ExampleSet under consideration.
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Support Vector Machine (PSO)

S V M

t ra mod

exa

This operator is a Support Vector Machine (SVM) Learner which
uses Particle Swarm Optimization (PSO) for optimization. PSO is
a computational method that optimizes a problem by iteratively
trying to improve a candidate solution with regard to a givenmea-
sure of quality.

Description
This operator implements a hybrid approach which combines support vector classifier with par-
ticle swarm optimization, in order to improve the strength of each individual technique and
compensate for each other’s weaknesses. Particle SwarmOptimization (PSO) is an evolutionary
computation technique in which each potential solution is seen as a particle with a certain ve-
locity flying through the problem space. Support Vector Machine (SVM) classification operates
a linear separation in an augmented space bymeans of some defined kernels satisfyingMercer’s
condition. These kernels map the input vectors into a very high dimensional space, possibly of
infinite dimension, where linear separation is more likely. Then a linear separating hyper plane
is found by maximizing the margin between two classes in this space. Hence the complexity of
the separating hyper plane depends on the nature and the properties of the used kernel.

Support Vector Machine (SVM)

Here is a basic description of the SVM. The standard SVM takes a set of input data and predicts,
for each given input, which of the two possible classes comprises the input, making the SVM
a non-probabilistic binary linear classifier. Given a set of training examples, each marked as
belonging to one of two categories, an SVM training algorithm builds a model that assigns new
examples into one category or the other. An SVMmodel is a representation of the examples as
points in space,mapped so that the examples of the separate categories are divided by a clear gap
that is as wide as possible. New examples are then mapped into that same space and predicted
to belong to a category based on which side of the gap they fall on. For more information about
SVM please study the description of the SVM operator.

Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a computational method that optimizes a problem by iter-
atively trying to improve a candidate solution with regard to a given measure of quality. PSO is
a metaheuristic as it makes few or no assumptions about the problem being optimized and can
search very large spaces of candidate solutions. However, metaheuristics such as PSO do not
guarantee an optimal solution is ever found. More specifically, PSO does not use the gradient of
the problem being optimized, whichmeans PSO does not require that the optimization problem
be differentiable as is required bymost classic optimizationmethods. PSO can therefore also be
used on optimization problems that are partially irregular, noisy, change over time, etc.

Input Ports
training set (tra) This input port expects an ExampleSet. This operator cannot handle nomi-

nal attributes; it can be applied on data sets with numeric attributes. Moreover, this op-
erator can only be applied on ExampleSets with binominal label.
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Output Ports
model (mod) TheSVMmodel is delivered fromthis outputport. Thismodel cannowbeapplied

on unseen data sets.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
show convergence plot (boolean) This parameter indicates if a dialog with a convergence

plot should be drawn.

kernel type (selection) The type of the kernel function is selected through this parameter.
Following kernel types are supported: dot, radial, polynomial, neural, anova, epachnenikov,
gaussian combination, multiquadric

• dot The dot kernel is defined byk(x,y)=x*y i.e. it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2)where g is the gamma, it is spec-
ified by the kernel gamma parameter. The adjustable parameter gamma plays a major
role in the performance of the kernel, and should be carefully tuned to the problem
at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of polynomial and it is specified by the kernel degree parameter. The polynomial
kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• anova The anova kernel is defined by raised to power d of summation of exp(-g (x-y))
where g is gamma and d is degree. gammaanddegree are adjusted by the kernel gamma
and kernel degree parameters respectively.

• epachnenikov The epachnenikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVM kernel parameter gamma. This is available only when
the kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This is available only when
the kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This is available only when
the kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the SVM kernel parameter sigma3. This is available only when
the kernel type parameter is set to gaussian combination.
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kernel shift (real) This is the SVM kernel parameter shift. This is available only when the
kernel type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This is available only when
the kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This is available only when the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This is available only when the kernel type
parameter is set to neural.

C (real) This is the SVM complexity constant which sets the tolerance for misclassification,
where higher C values allow for ‘softer’ boundaries and lower values create ‘harder’ bound-
aries. A complexity constant that is too large can lead to over-fitting, while values that are
too small may result in over-generalization.

max evaluation (integer) This is an optimizer parameter. It specifies to stop evaluations af-
ter the specified number of evaluations.

generations without improval (integer) Thisparameter specifies the stopcriterion forearly
stopping i.e. it stops after n generations without improvement in the performance. n is
specified by this parameter.

population size (integer) This parameter specifies the population size i.e. the number of in-
dividuals per generation.

inertia weight (real) This parameter specifies the (initial) weight for the old weighting.

local best weight (real) This parameter specifies theweight for the individual’s best position
during run.

global best weight (real) This parameter specifies the weight for the population’s best posi-
tion during run.

dynamic inertia weight (boolean) This parameter specifies if the inertia weight should be
improved during run.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Introduction to the SVM (PSO) operator

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. The Split Validation operator is
appliedon it for training and testing a classificationmodel. TheSVM(PSO)operator is applied in
the training subprocess of the Split Validation operator. The SVM (PSO) operator is appliedwith
default values of all parameters. The Apply Model operator is used in the testing subprocess for
applying the model generated by the SVM (PSO) operator. The resultant labeled ExampleSet is
used by the Performance (Classification) operator for measuring the performance of the model.

524



4.1. Predictive

Process

Ripley-Set

out

Validat ion

t ra mod

t ra

ave

ave

inp res

res

res

Figure 4.46: Tutorial process ‘Introduction to the SVM (PSO) operator’.

The classification model and its performance vector are connected to the output and they can
be seen in the Results Workspace. The accuracy of this model turns out to be around 85%.
Default values were used formost of the parameters. To getmore reliable results these values

should be carefully selected. Usually techniques like cross-validation are used to find the best
values of these parameters for the ExampleSet under consideration.
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4.1.9 Discriminant Analysis
Linear Discriminant Analysis

LDA

t ra mod

exa

This operator performs linear discriminant analysis (LDA). This
method tries to find the linear combination of features which best
separate two or more classes of examples. The resulting combina-
tion is thenused as a linear classifier. Discriminant analysis is used
to determine which variables discriminate between two or more
naturally occurring groups, it may have a descriptive or a predic-
tive objective.

Description

This operator performs linear discriminant analysis (LDA). This method tries to find the linear
combination of features which best separates two or more classes of examples. The resulting
combination is then used as a linear classifier. LDA is closely related to ANOVA (analysis of
variance) and regression analysis, which also attempt to express one dependent variable as a
linear combination of other features or measurements. In the other two methods however, the
dependent variable is anumerical quantity, while for LDA it is a categorical variable (i.e. the class
label). LDA is also closely related to principal component analysis (PCA) and factor analysis in
that both look for linear combinations of variables which best explain the data. LDA explicitly
attempts to model the difference between the classes of data. PCA on the other hand does not
take into account any difference in class.
Discriminant analysis is used to determine which variables discriminate between two ormore

naturally occurring groups. For example, an educational researcher may want to investigate
which variables discriminate between high school graduates who decide (1) to go to college, (2)
NOT to go to college. For that purpose the researcher could collect data on numerous variables
prior to students’ graduation. After graduation, most students will naturally fall into one of the
two categories. Discriminant Analysis could then be used to determine which variable(s) are
the best predictors of students’ subsequent educational choice. Computationally, discriminant
function analysis is very similar to analysis of variance (ANOVA). For example, suppose the same
student graduation scenario. We could have measured students’ stated intention to continue
on to college one year prior to graduation. If the means for the two groups (those who actually
went to college and those who did not) are different, then we can say that intention to attend
college as stated one year prior to graduation allows us to discriminate between those who are
and are not college bound (and this information may be used by career counselors to provide
the appropriate guidance to the respective students). The basic idea underlying discriminant
analysis is to determine whether groups differ with regard to the mean of a variable, and then
to use that variable to predict group membership (e.g., of new cases).
Discriminant Analysis may be used for two objectives: either we want to assess the adequacy

of classification, given the group memberships of the objects under study; or we wish to assign
objects to one of a number of (known) groups of objects. Discriminant Analysis may thus have
a descriptive or a predictive objective. In both cases, some group assignments must be known
before carrying out the Discriminant Analysis. Such group assignments, or labeling, may be
arrived at in any way. Hence Discriminant Analysis can be employed as a useful complement to
Cluster Analysis (in order to judge the results of the latter) or Principal Components Analysis.
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Differentiation
• Quadratic Discriminant Analysis The QDA performs a quadratic discriminant analysis
(QDA). QDA is closely related to linear discriminant analysis (LDA), where it is assumed
that the measurements are normally distributed. Unlike LDA however, in QDA there is no
assumption that the covariance of each of the classes is identical.

See page 528 for details.

• Regularized Discriminant Analysis The RDA regularized discriminant analysis (RDA)
which is a generalization of the LDA and QDA. Both algorithms are special cases of this
algorithm. If the alpha parameter is set to 1, RDA operator performs LDA. Similarly if the
alpha parameter is set to 0, RDA operator performs QDA.

See page 531 for details.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) TheDiscriminantAnalysis is performedand the resultantmodel is delivered from

this output port

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
approximate covariance inverse (boolean) This parameter indicates whether the inverse

of the covariancematrices shouldbe approximated if the actual inversedoesnot exist. This
is activated by default.

Related Documents
• Quadratic Discriminant Analysis (page 528)

• Regularized Discriminant Analysis (page 531)

Tutorial Processes

Introduction to the LDA operator

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at this ExampleSet. The Linear Discriminant Analysis operator is applied on
this ExampleSet. The Linear Discriminant Analysis operator performs the discriminant analysis
and the resultant model can be seen in the Results Workspace.
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Figure 4.47: Tutorial process ‘Introduction to the LDA operator’.

Quadratic Discriminant Analysis

QDA

t ra mod

exa

This operator performs quadratic discriminant analysis (QDA) for
nominal labels and numerical attributes. Discriminant analysis is
used to determine which variables discriminate between two or
morenaturally occurringgroups, itmayhave adescriptive or apre-
dictive objective.

Description

This operator performs a quadratic discriminant analysis (QDA). QDA is closely related to lin-
ear discriminant analysis (LDA), where it is assumed that the measurements are normally dis-
tributed. Unlike LDA however, in QDA there is no assumption that the covariance of each of the
classes is identical. To estimate the parameters required in quadratic discriminationmore com-
putation and data is required than in the case of linear discrimination. If there is not a great
difference in the group covariance matrices, then the latter will perform as well as quadratic
discrimination. Quadratic Discrimination is the general form of Bayesian discrimination.
Discriminant analysis is used to determine which variables discriminate between two ormore

naturally occurring groups. For example, an educational researcher may want to investigate
which variables discriminate between high school graduates who decide (1) to go to college, (2)
NOT to go to college. For that purpose the researcher could collect data on numerous variables
prior to students’ graduation. After graduation, most students will naturally fall into one of the
two categories. Discriminant Analysis could then be used to determine which variable(s) are
the best predictors of students’ subsequent educational choice. Computationally, discriminant
function analysis is very similar to analysis of variance (ANOVA). For example, suppose the same
student graduation scenario. We could have measured students’ stated intention to continue
on to college one year prior to graduation. If the means for the two groups (those who actually
went to college and thosewho did not) are different, thenwe can say that the intention to attend
college as stated one year prior to graduation allows us to discriminate between those who are
and are not college bound (and this information may be used by career counselors to provide
the appropriate guidance to the respective students). The basic idea underlying discriminant
analysis is to determine whether groups differ with regard to the mean of a variable, and then
to use that variable to predict group membership (e.g. of new cases).
Discriminant Analysis may be used for two objectives: either we want to assess the adequacy

of classification, given the group memberships of the objects under study; or we wish to assign
objects to one of a number of (known) groups of objects. Discriminant Analysis may thus have
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a descriptive or a predictive objective. In both cases, some group assignments must be known
before carrying out the Discriminant Analysis. Such group assignments, or labeling, may be
arrived at in any way. Hence Discriminant Analysis can be employed as a useful complement to
Cluster Analysis (in order to judge the results of the latter) or Principal Components Analysis.

Differentiation

• LinearDiscriminantAnalysisTheQDAperformsaquadraticdiscriminantanalysis (QDA).
QDA is closely related to linear discriminant analysis (LDA), where it is assumed that the
measurements are normally distributed. Unlike LDA however, in QDA there is no assump-
tion that the covariance of each of the classes is identical.

See page 526 for details.

• Regularized Discriminant Analysis The RDA regularized discriminant analysis (RDA)
which is a generalization of the LDA and QDA. Both algorithms are special cases of this
algorithm. If the alpha parameter is set to 1, RDA operator performs LDA. Similarly if the
alpha parameter is set to 0, RDA operator performs QDA.

See page 531 for details.

Input Ports

training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports

model (mod) TheDiscriminantAnalysis is performedand the resultantmodel is delivered from
this output port

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

approximate covariance inverse (boolean) This parameter indicates whether the inverse
of the covariancematrices shouldbe approximated if the actual inversedoesnot exist. This
is activated by default.

Related Documents

• Linear Discriminant Analysis (page 526)

• Regularized Discriminant Analysis (page 531)
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Figure 4.48: Tutorial process ‘Introduction to the QDA operator’.

Tutorial Processes

Introduction to the QDA operator

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you canhave a look at this ExampleSet. TheQuadratic DiscriminantAnalysis operator is applied
on this ExampleSet. The Quadratic Discriminant Analysis operator performs the discriminant
analysis and the resultant model can be seen in the Results Workspace.
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Regularized Discriminant Analysis

RDA

t ra mod

exa

This operator performs a regularized discriminant analysis (RDA).
for nominal labels and numerical attributes. Discriminant analy-
sis is used to determine which variables discriminate between two
or more naturally occurring groups, it may have a descriptive or a
predictive objective.

Description
The regularized discriminant analysis (RDA) is a generalization of the linear discriminant anal-
ysis (LDA) and the quadratic discreminant analysis (QDA). Both algorithms are special cases of
this algorithm. If the alpha parameter is set to 1, this operator performs LDA. Similarly if the
alpha parameter is set to 0, this operator performs QDA. For more information about LDA and
QDA please study the documentation of the corresponding operators.
Discriminant analysis is used to determine which variables discriminate between two ormore

naturally occurring groups. For example, an educational researcher may want to investigate
which variables discriminate between high school graduates who decide (1) to go to college, (2)
NOT to go to college. For that purpose the researcher could collect data on numerous variables
prior to students’ graduation. After graduation, most students will naturally fall into one of the
two categories. Discriminant Analysis could then be used to determine which variable(s) are
the best predictors of students’ subsequent educational choice. Computationally, discriminant
function analysis is very similar to analysis of variance (ANOVA). For example, suppose the same
student graduation scenario. We could have measured students’ stated intention to continue
on to college one year prior to graduation. If the means for the two groups (those who actually
went to college and those who did not) are different, then we can say that intention to attend
college as stated one year prior to graduation allows us to discriminate between those who are
and are not college bound (and this information may be used by career counselors to provide
the appropriate guidance to the respective students). The basic idea underlying discriminant
analysis is to determine whether groups differ with regard to the mean of a variable, and then
to use that variable to predict group membership (e.g., of new cases).
Discriminant Analysis may be used for two objectives: either we want to assess the adequacy

of classification, given the group memberships of the objects under study; or we wish to assign
objects to one of a number of (known) groups of objects. Discriminant Analysis may thus have
a descriptive or a predictive objective. In both cases, some group assignments must be known
before carrying out the Discriminant Analysis. Such group assignments, or labeling, may be
arrived at in any way. Hence Discriminant Analysis can be employed as a useful complement to
Cluster Analysis (in order to judge the results of the latter) or Principal Components Analysis.

Differentiation
• LinearDiscriminantAnalysisTheRDAoperatorperforms regularizeddiscriminantanal-
ysis (RDA) which is a generalization of the LDA which is special cases of this algorithm. If
the alpha parameter is set to 1, the RDA operator performs LDA.

See page 526 for details.

• Quadratic Discriminant Analysis The RDA operator performs regularized discriminant
analysis (RDA)which is a generalizationof theQDAwhich is special casesof this algorithm.
If the alpha parameter is set to 0, the RDA operator performs QDA.
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See page 528 for details.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) TheDiscriminantAnalysis is performedand the resultantmodel is delivered from

this output port

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
alpha (real) This parameter specifies the strength of regularization. If set to 1, only global

covariance is used. If set to 0, only per class covariance is used.

approximate covariance inverse (boolean) This parameter indicates whether the inverse
of the covariancematrices shouldbe approximated if the actual inversedoesnot exist. This
is activated by default.

Related Documents
• Quadratic Discriminant Analysis (page 528)

• Linear Discriminant Analysis (page 526)

Tutorial Processes

Introduction to the RDA operator

Process
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out

RDA
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inp res

res

Figure 4.49: Tutorial process ‘Introduction to the RDA operator’.

The ‘Sonar’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so
that you can have a look at this ExampleSet. The Regularized Discriminant Analysis operator
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is applied on this ExampleSet. The Regularized Discriminant Analysis operator performs the
discriminant analysis and the resultant model can be seen in the Results Workspace.
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4.1.10 Ensembles
AdaBoost

AdaBoost

t ra mod

exa

This operator is an implementation of theAdaBoost algorithmand
it can be used with all learners available in RapidMiner. AdaBoost
is a meta-algorithm which can be used in conjunction with many
other learning algorithms to improve their performance.

Description
The AdaBoost operator is a nested operator i.e. it has a subprocess. The subprocessmust have a
learner i.e. an operator that expects an ExampleSet and generates a model. This operator tries
to build a better model using the learner provided in its subprocess. You need to have a basic
understanding of subprocesses in order to apply this operator. Please study the documentation
of the Subprocess operator for basic understanding of subprocesses.
AdaBoost, short for Adaptive Boosting, is a meta-algorithm, and can be used in conjunction

withmany other learning algorithms to improve their performance. AdaBoost is adaptive in the
sense that subsequent classifiers built are tweaked in favor of those instances misclassified by
previous classifiers. AdaBoost is sensitive to noisy data and outliers. In some problems, how-
ever, it can be less susceptible to the overfitting problem than most learning algorithms. The
classifiers it uses can be weak (i.e., display a substantial error rate), but as long as their perfor-
mance is not random (resulting in an error rate of 0.5 for binary classification), theywill improve
the final model.
AdaBoost generates and calls a new weak classifier in each of a series of rounds t = 1,…,T . For

each call, a distribution of weights D(t) is updated that indicates the importance of examples
in the data set for the classification. On each round, the weights of each incorrectly classified
example are increased, and the weights of each correctly classified example are decreased, so
the new classifier focuses on the examples which have so far eluded correct classification.

Ensemble Theory

Boosting is an ensemble method, therefore an overview of the Ensemble Theory has been dis-
cussed here. Ensemble methods use multiple models to obtain better predictive performance
than could be obtained from any of the constituent models. In other words, an ensemble is a
technique for combining many weak learners in an attempt to produce a strong learner. Eval-
uating the prediction of an ensemble typically requires more computation than evaluating the
prediction of a single model, so ensembles may be thought of as a way to compensate for poor
learning algorithms by performing a lot of extra computation.
An ensemble is itself a supervised learning algorithm, because it can be trained and then used

to make predictions. The trained ensemble, therefore, represents a single hypothesis. This hy-
pothesis, however, is not necessarily contained within the hypothesis space of the models from
which it is built. Thus, ensembles can be shown to have more flexibility in the functions they
can represent. This flexibility can, in theory, enable them to over-fit the training datamore than
a single model would, but in practice, some ensemble techniques (especially bagging) tend to
reduce problems related to over-fitting of the training data.
Empirically, ensembles tend to yield better results when there is a significant diversity among

the models. Many ensemble methods, therefore, seek to promote diversity among the models
they combine. Although perhaps non-intuitive, more random algorithms (like random decision
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trees) can be used to produce a stronger ensemble than very deliberate algorithms (like entropy-
reducingdecision trees). Using a variety of strong learning algorithms, however, has been shown
to be more effective than using techniques that attempt to dumb-down the models in order to
promote diversity.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The meta model is delivered from this output port which can now be applied on

unseen data sets for prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
iterations (integer) This parameter specifies the maximum number of iterations of the Ad-

aBoost algorithm.

Tutorial Processes

Using the AdaBoost operator for generating a better Decision Tree

Process

Sonar

out

Validat ion

t ra mod

t ra
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inp res

res

res

Figure 4.50: Tutorial process ‘Using the AdaBoost operator for generating a better Decision
Tree’.

The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is
applied on it for training and testing a classificationmodel. The AdaBoost operator is applied in
the training subprocess of the Split Validation operator. The Decision Tree operator is applied
in the subprocess of the AdaBoost operator. The iterations parameter of the AdaBoost opera-
tor is set to 10, thus there will be at maximum 10 iterations of its subprocess. The Apply Model
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operator is used in the testing subprocess for applying the model generated by the AdaBoost
operator. The resultant labeled ExampleSet is used by the Performance (Classification) opera-
tor for measuring the performance of the model. The classification model and its performance
vector is connected to the output and it can be seen in the Results Workspace. You can see that
the AdaBoost operator produced a new model in each iteration and there are different weights
for each model. The accuracy of this model turns out to be around 69%. If the same process
is repeated without AdaBoost operator i.e. only the Decision Tree operator is used in training
subprocess. The accuracy of that model turns out to be around 66%. Thus AdaBoost generated
a combination of models that performed better than the original model.
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Bagging

Bagging

t ra mod

exa

Bootstrap aggregating (bagging) is a machine learning ensemble
meta-algorithm to improve classification and regressionmodels in
terms of stability and classification accuracy. It also reduces vari-
ance and helps to avoid overfitting. Although it is usually applied
to decision tree models, it can be used with any type of model.

Description

The Bagging operator is a nested operator i.e. it has a subprocess. The subprocess must have a
learner i.e. an operator that expects an ExampleSet and generates a model. This operator tries
to build a better model using the learner provided in its subprocess. You need to have basic
understanding of subprocesses in order to apply this operator. Please study the documentation
of the Subprocess operator for basic understanding of subprocesses.
The concept of bagging (voting for classification, averaging for regression-type problemswith

continuous dependent variables of interest) applies to the area of predictive data mining, to
combine the predicted classifications (prediction) frommultiple models, or from the same type
of model for different learning data. It is also used to address the inherent instability of results
when applying complexmodels to relatively small data sets. Suppose your datamining task is to
build amodel for predictive classification, and the dataset fromwhich to train themodel (learn-
ing data set, which contains observed classifications) is relatively small. You could repeatedly
sub-sample (with replacement) from the dataset, and apply, for example, a tree classifier (e.g.,
CHAID) to the successive samples. In practice, very different trees will often be grown for the
different samples, illustrating the instability of models often evident with small data sets. One
method of deriving a single prediction (for new observations) is to use all trees found in the dif-
ferent samples, and to apply some simple voting: The final classification is the one most often
predicted by the different trees. Note that someweighted combination of predictions (weighted
vote, weighted average) is also possible, and commonly used. A sophisticated algorithm for gen-
erating weights for weighted prediction or voting is the Boosting procedure which is available
in RapidMiner as AdaBoost operator.

Ensemble Theory

Bagging is an ensemble method, therefore an overview of the Ensemble Theory has been dis-
cussed here. Ensemble methods use multiple models to obtain a better predictive performance
than could be obtained from any of the constituent models. In other words, an ensemble is a
technique for combining many weak learners in an attempt to produce a strong learner. Eval-
uating the prediction of an ensemble typically requires more computation than evaluating the
prediction of a single model, so ensembles may be thought of as a way to compensate for poor
learning algorithms by performing a lot of extra computation.
An ensemble is itself a supervised learning algorithm, because it can be trained and then used

to make predictions. The trained ensemble, therefore, represents a single hypothesis. This hy-
pothesis, however, is not necessarily contained within the hypothesis space of the models from
which it is built. Thus, ensembles can be shown to have more flexibility in the functions they
can represent. This flexibility can, in theory, enable them to over-fit the training datamore than
a single model would, but in practice, some ensemble techniques (especially bagging) tend to
reduce problems related to over-fitting of the training data.
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Empirically, ensembles tend to yield better results when there is a significant diversity among
the models. Many ensemble methods, therefore, seek to promote diversity among the models
they combine. Although perhaps non-intuitive, more random algorithms (like random decision
trees) can be used to produce a stronger ensemble than very deliberate algorithms (like entropy-
reducingdecision trees). Using a variety of strong learning algorithms, however, has been shown
to be more effective than using techniques that attempt to dumb-down the models in order to
promote diversity.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The meta model is delivered from this output port which can now be applied on

an unseen data sets for prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
sample ratio (real) This parameter specifies the fraction of examples to be used for training.

Its value must be greater than 0 (i.e. zero examples) and should be lower than or equal to
1 (i.e. entire data set).

iterations (integer) This parameter specifies the maximum number of iterations of the Bag-
ging algorithm.

average confidences (boolean) This parameter specifies whether to average available pre-
diction confidences or not.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
sample. Changing the value of this parameter changes the way examples are randomized,
thus the sample will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is available only if the use local random seed parameter is set to true.

Tutorial Processes

Using the Bagging operator for generating a better Decision Tree

The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-
plied on it for training and testing a classification model. The Bagging operator is applied in
the training subprocess of the Split Validation operator. The Decision Tree operator is applied
in the subprocess of the Bagging operator. The iterations parameter of the Bagging operator is
set to 10, thus there will be 10 iterations of its subprocess. The Apply Model operator is used in
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Figure 4.51: Tutorial process ‘Using the Bagging operator for generating a better Decision Tree’.

the testing subprocess for applying themodel generated by the Bagging operator. The resultant
labeled ExampleSet is used by the Performance (Classification) operator for measuring the per-
formance of the model. The classification model and its performance vector are connected to
the output and they can be seen in the Results Workspace. You can see that the Bagging opera-
tor produced a new model in each iteration. The accuracy of this model turns out to be around
75.81%. If the same process is repeated without the Bagging operator i.e. only the Decision
Tree operator is used in the training subprocess then the accuracy of that model turns out to be
around 66%. Thus Bagging improved the performance of the base learner (i.e. Decision Tree).

539



4. Modeling

Bayesian Boosting

Bayesian Boosting

t ra

mod

mod

exa

This operator is a boosting operator based on Bayes’ theorem.
It implements a meta-algorithm which can be used in conjunc-
tion with many other learning algorithms to improve their perfor-
mance.

Description

The Bayesian Boosting operator is a nested operator i.e. it has a subprocess. The subprocess
must have a learner i.e. an operator that expects an ExampleSet and generates a model. This
operator tries to build a better model using the learner provided in its subprocess. You need
to have a basic understanding of subprocesses in order to apply this operator. Please study the
documentation of the Subprocess operator for basic understanding of subprocesses.
This operator trains an ensemble of classifiers for boolean target attributes. In each iteration

the training set is reweighted, so that previously discovered patterns and other kinds of prior
knowledge are ‘sampled out’. An inner classifier, typically a rule or decision tree induction al-
gorithm, is sequentially applied several times, and the models are combined to a single global
model. The maximum number of models to be trained are specified by the iterations parameter.
If the rescale label priors parameter is set to true, then the ExampleSet is reweighted, so that

all classes are equally probable (or frequent). For two-class problems this turns the problem of
fitting models to maximize weighted relative accuracy into the more common task of classifier
induction. Applying a rule induction algorithm as an inner learner allows to do subgroup dis-
covery. This option is also recommended for data sets with class skew, if a very weak learner
like a decision stump is used. If the rescale label priors parameter is not set, then the operator
performs boosting based on probability estimates.
If the allow marginal skews parameter is not set, then the support of each subset defined in

terms of commonbasemodel predictions does not change fromone iteration to the next. Analo-
gously theclasspriorsdonot change. This is theprocedureoriginallydescribed in ‘Scholz/2005b’
in the context of subgroup discovery. Setting the allow marginal skews option to true leads to
a procedure that changes the marginal weights/probabilities of subsets, if this is beneficial in a
boosting context, and stratifies the two classes to be equally likely. As for AdaBoost, the total
weight upper-bounds the training error in this case. This bound is reduced more quickly by the
Bayesian Boosting operator.
To reproduce the sequential sampling, or knowledge-based sampling, from ‘Scholz/2005b’ for

subgroup discovery, two of the default parameter settings of this operator have to be changed:
rescale label priorsmust be set to true, and allowmarginal skewsmust be set to false. In addition,
a boolean (binomial) label has to be used.
Thisoperator requires anExampleSet as its input. To sampleoutprior knowledgeof adifferent

form it is possible to provide another model as an optional additional input. The predictions
of this model are used to produce an initial weighting of the training set. The output of the
operator is a classification model applicable for estimating conditional class probabilities or for
plain crisp classification. It contains up to the specified number of inner base models. In the
case of an optional initial model, this model will also be stored in the output model, in order to
produce the same initial weighting during model application.
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Ensemble Theory

Boosting is an ensemble method, therefore an overview of the Ensemble Theory has been dis-
cussed here. Ensemble methods use multiple models to obtain better predictive performance
than could be obtained from any of the constituent models. In other words, an ensemble is a
technique for combining many weak learners in an attempt to produce a strong learner. Eval-
uating the prediction of an ensemble typically requires more computation than evaluating the
prediction of a single model, so ensembles may be thought of as a way to compensate for poor
learning algorithms by performing a lot of extra computation.
An ensemble is itself a supervised learning algorithm, because it can be trained and then used

to make predictions. The trained ensemble, therefore, represents a single hypothesis. This hy-
pothesis, however, is not necessarily contained within the hypothesis space of the models from
which it is built. Thus, ensembles can be shown to have more flexibility in the functions they
can represent. This flexibility can, in theory, enable them to over-fit the training datamore than
a single model would, but in practice, some ensemble techniques (especially bagging) tend to
reduce problems related to over-fitting of the training data.
Empirically, ensembles tend to yield better results when there is a significant diversity among

the models. Many ensemble methods, therefore, seek to promote diversity among the models
they combine. Although perhaps non-intuitive, more random algorithms (like random decision
trees) can be used to produce a stronger ensemble than very deliberate algorithms (like entropy-
reducingdecision trees). Using a variety of strong learning algorithms, however, has been shown
to be more effective than using techniques that attempt to dumb-down the models in order to
promote diversity.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

model (mod) The input port expects a model. This is an optional port. To sample out prior
knowledge of a different form it is possible to provide a model as an optional input. The
predictions of this model are used to produce an initial weighting of the training set. The
output of the operator is a classificationmodel applicable for estimating conditional class
probabilities or for plain crisp classification. It containsup to the specifiednumberof inner
base models. In the case of an optional initial model, this model will also be stored in the
output model, in order to produce the same initial weighting during model application.

Output Ports
model (mod) The meta model is delivered from this output port which can now be applied on

unseen data sets for prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
use subset for training (real) This parameter specifies the fraction of examples to be used

for training, remaining examples are used to estimate the confusionmatrix. If set to 1, the
test set is turned off.
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iterations (integer) This parameter specifies themaximumnumber of iterations of this algo-
rithm.

rescale label priors (boolean) Thisparameter specifieswhether theproportionof labels should
be equal by construction after first iteration. Please study the description of this operator
for more information about this parameter.

allow marginal skews (boolean) This parameter specifies if the skewing of themarginal dis-
tribution (P(x)) should be allowed during learning. Please study the description of this
operator for more information about this parameter.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
sample. Changing the value of this parameter changes the way examples are randomized,
thus the sample will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes
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Figure 4.52: Tutorial process ‘Using the Bayesian Boosting operator for generating a better De-
cision Tree’.

The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is
applied on it for training and testing a classification model. The Bayesian Boosting operator is
applied in the training subprocess of the Split Validation operator. The Decision Tree opera-
tor is applied in the subprocess of the Bayesian Boosting operator. The iterations parameter of
the Bayesian Boosting operator is set to 10, thus there will be at maximum 10 iterations of its
subprocess. The Apply Model operator is used in the testing subprocess for applying the model
generated by the Bayesian Boosting operator. The resultant labeled ExampleSet is used by the
Performance (Classification) operator for measuring the performance of the model. The classi-
fication model and its performance vector is connected to the output and it can be seen in the
Results Workspace. You can see that the Bayesian Boosting operator produced a new model in
each iteration. The accuracy of this model turns out to be around 67.74%. If the same process
is repeated without Bayesian Boosting operator i.e. only the Decision Tree operator is used in
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training subprocess. The accuracy of that model turns out to be around 66%. Thus Bayesian
Boosting generated a combination of models that performed better than the original model.
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Classification by Regression

Classification by ...

t ra mod

exa

This operator builds a polynominal classification model through
the given regression learner.

Description
The Classification by Regression operator is a nested operator i.e. it has a subprocess. The sub-
process must have a regression learner i.e. an operator that generates a regression model. This
operator builds a classification model using the regression learner provided in its subprocess.
You need to have a basic understanding of subprocesses in order to apply this operator. Please
study the documentation of the Subprocess operator for basic understanding of subprocesses.
Here is an explanation of how a classification model is built from a regression learner. For

each class i of the given ExampleSet, a regression model is trained after setting the label to +1 if
the label is i and to -1 if it is not. Then the regression models are combined into a classification
model. This model can be applied using the Apply Model operator. In order to determine the
prediction for an unlabeled example, all regression models are applied and the class belonging
to the regression model which predicts the greatest value is chosen.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The classification model is delivered from this output port. This classification

model can now be applied on unseen data sets for prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Tutorial Processes

Using the Linear Regression operator for classification

The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-
plied on it for training and testing a classificationmodel. The Classification by Regression oper-
ator is applied in the training subprocess of the Split Validation operator. The Linear Regression
operator is applied in the subprocess of the Classification by Regression operator. Although Lin-
ear Regression is a regression learner but it will be used by the Classification by Regression oper-
ator to train a classification model. The Apply Model operator is used in the testing subprocess
to apply the model. The resultant labeled ExampleSet is used by the Performance (Classifica-
tion) operator for measuring the performance of the model. The classification model and its
performance vector is connected to the output and it can be seen in the Results Workspace.
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Figure 4.53: Tutorial process ‘Using the Linear Regression operator for classification’.

MetaCost

MetaCost

t ra mod

exa

This metaclassifier makes its base classifier cost-sensitive by us-
ing the given cost matrix to compute label predictions according
to classification costs.

Description

TheMetaCost operator makes its base classifier cost-sensitive by using the cost matrix specified
in the costmatrixparameter. Themethodusedby this operator is similar to theMetaCostmethod
described by Pedro Domingos (1999).
The MetaCost operator is a nested operator i.e. it has a subprocess. The subprocess must

have a learner i.e. an operator that expects an ExampleSet and generates amodel. This operator
tries to build a better model using the learner provided in its subprocess. You need to have basic
understanding of subprocesses in order to apply this operator. Please study the documentation
of the Subprocess operator for basic understanding of subprocesses.
Most classification algorithms assume that all errors have the same cost, which is seldom the

case. For example, in database marketing the cost of mailing to a non-respondent is very small,
but the cost of not mailing to someone who would respond is the entire profit lost. In gen-
eral, misclassification costs may be described by an arbitrary cost matrix C, with C(i,j) being
the cost of predicting that an example belongs to class i when in fact it belongs to class j. In-
dividually making each classification learner cost-sensitive is laborious, and often non-trivial.
MetaCost is a principled method for making an arbitrary classifier cost-sensitive by wrapping a
cost-minimizing procedure around it. This procedure treats the underlying classifier as a black
box, requiring no knowledge of its functioning or change to it. MetaCost is applicable to any
number of classes and to arbitrary cost matrices.
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Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The meta model is delivered from this output port which can now be applied on

unseen data sets for prediction of the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
cost matrix (string) This parameter is used for specifying the cost matrix. The cost matrix is

similar in structure to a confusion matrix because it has predicted classes in one dimen-
sion and actual classes on the other dimension. Therefore the cost matrix can denote the
costs for every possible classification outcome: predicted label vs. actual label. Actually
this matrix is a matrix of misclassification costs because you can specify different weights
for certain classes misclassified as other classes. Weights can also be assigned to correct
classifications but usually they are set to 0. The classes in thematrix are labeled as Class 1,
Class 2 etc where classes are numbered according to their order in the internal mapping.

use subset for training (real) This parameter specifies the fraction of examples to be used
for training. Its valuemust be greater than 0 (i.e. zero examples) and should be lower than
or equal to 1 (i.e. entire data set).

iterations (integer) This parameter specifies themaximumnumber of iterations of theMeta-
Cost algorithm.

sampling with replacement (boolean) This parameter indicates if sampling with replace-
ment should be used. In sampling with replacement, at every step all examples have equal
probability of being selected. Once anexamplehas been selected for the sample, it remains
candidate for selection and it can be selected again in any other coming steps. Thus a sam-
ple with replacement can have the same example multiple number of times.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
sample. Changing the value of this parameter changes the way examples are randomized,
thus the sample will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Using the MetaCost operator for generating a better Decision Tree

The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-
plied on it for training and testing a classification model. The MetaCost operator is applied in

546



4.1. Predictive

Process

Sonar

out

Validat ion

t ra mod

t ra

ave

ave

inp res

res

res

Figure 4.54: Tutorial process ‘Using the MetaCost operator for generating a better Decision
Tree’.

the training subprocess of the Split Validation operator. The Decision Tree operator is applied
in the subprocess of the MetaCost operator. The iterations parameter of the MetaCost opera-
tor is set to 10, thus there will be 10 iterations of its subprocess. Have a look at the cost matrix
specified in the cost matrix parameter of the MetaCost operator. You can see that the misclas-
sification costs are not equal. The Apply Model operator is used in the testing subprocess for
applying the model generated by the MetaCost operator. The resultant labeled ExampleSet is
used by the Performance (Classification) operator for measuring the performance of the model.
The classificationmodel and its performance vector are connected to the output and they can be
seen in the Results Workspace. You can see that the MetaCost operator produced a new model
in each iteration. The accuracy of this model turns out to be around 82%. If the same process is
repeated withoutMetaCost operator i.e. only Decision Tree operator is used in training subpro-
cess then the accuracy of that model turns out to be around 66%. Thus MetaCost improved the
performance of the base learner (i.e. Decision Tree) by using the cost matrix to compute label
predictions according to classification costs.
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Polynomial by Binomial Classification

Polynominal by B...

t ra mod

exa

This operator builds a polynomial classificationmodel through the
given binomial classification learner.

Description
The Polynomial by Binomial Classification operator is a nested operator i.e. it has a subpro-
cess. The subprocess must have a binomial classification learner i.e. an operator that generates
a binomial classification model. This operator builds a polynomial classification model using
the binomial classification learner provided in its subprocess. You need to have basic under-
standing of subprocesses in order to apply this operator. Please study the documentation of the
Subprocess operator for basic understanding of subprocesses.
Many classificationoperators (e.g. the SVMoperator) allow for classificationonly for binomial

(binary) label. The Polynomial by Binomial Classification operator uses a binomial classifier and
generates binomial classificationmodels for different classes and then aggregates the responses
of these binomial classification models for classification of polynomial label.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) Thepolynomial classificationmodel is delivered from this output port. This clas-

sificationmodel cannowbeappliedonunseendata sets forpredictionof the labelattribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
classification strategies (selection) Thisparameter specifies the strategy that shouldbeused

for multi-class classifications i.e. polynomial classifications.

random code multiplicator (real) This parameter is only available when the classification
strategies parameter is set to ‘exhaustive code’ or ‘random code’. This parameter specifies
a multiplicator regulating the codeword length in random code modus.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.
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Figure 4.55: Tutorial process ‘Using the SVM operator for polynomial classification’.

The ‘Iris’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-
plied on it for training and testing a polynomial classification model. The Polynomial by Bino-
mial Classification operator is applied in the training subprocess of the Split Validationoperator.
The SVM operator is applied in the subprocess of the Polynomial by Binomial Classification op-
erator. Although SVM is a binomial classification learner but it will be used by the Polynomial
by Binomial Classification operator to train a polynomial classificationmodel. The ApplyModel
operator is used in the testing subprocess to apply themodel. The resultant labeled ExampleSet
is usedby thePerformance (Classification) operator formeasuring theperformanceof themodel.
The polynomial classification model and its performance vector is connected to the output and
it can be seen in the Results Workspace.
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Stacking

Stacking

t ra mod

This operator is an implementation of Stacking which is used for
combining the models rather than choosing among them, thereby
typically getting a performance better than any single one of the
trained models.

Description
Stacked generalization (or stacking) is a way of combining multiple models, that introduces the
concept of a meta learner. Unlike bagging and boosting, stacking may be (and normally is) used
to combine models of different types. The procedure is as follows:

1. Split the training set into two disjoint sets.

2. Train several base learners on the first part.

3. Test the base learners on the second part.

4. Using the predictions from step 3 as the inputs, and the correct responses as the outputs,
train a higher level learner.

Note that steps 1 to 3 are the same as cross-validation, but instead of using a winner-takes-all
approach, we combine the base learners, possibly nonlinearly.
The crucial prior belief underlying the scientific method is that one can judge among a set of

models by comparing them on data that was not used to create any of them. This prior belief
is used in the cross-validation technique, to choose among a set of models based on a single
data set. This is done by partitioning the data set into a training data set and a testing data set;
training the models on the training data; and then choosing whichever of those trained models
performs best on the testing data.
Stacking exploits this prior belief further. It does this by using performance on the testing

data to combine the models rather than choose among them, thereby typically getting a better
performance than any single one of the trained models. It has been successfully used on both
supervised learning tasks (e.g. regression) and unsupervised learning (e.g. density estimation).
The Stacking operator is a nested operator. It has two subprocess: the Base Learners and the

Stacking Model Learner subprocess. You need to have a basic understanding of subprocesses
in order to apply this operator. Please study the documentation of the Subprocess operator for
basic understanding of subprocesses.

Ensemble Theory

Stacking is an ensemble method, therefore an overview of the Ensemble Theory has been dis-
cussed here. Ensemble methods use multiple models to obtain a better predictive performance
than could be obtained from any of the constituent models. In other words, an ensemble is a
technique for combining many weak learners in an attempt to produce a strong learner. Eval-
uating the prediction of an ensemble typically requires more computation than evaluating the
prediction of a single model, so ensembles may be thought of as a way to compensate for poor
learning algorithms by performing a lot of extra computation.
An ensemble is itself a supervised learning algorithm, because it can be trained and then used

to make predictions. The trained ensemble, therefore, represents a single hypothesis. This hy-
pothesis, however, is not necessarily contained within the hypothesis space of the models from
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which it is built. Thus, ensembles can be shown to have more flexibility in the functions they
can represent. This flexibility can, in theory, enable them to over-fit the training datamore than
a single model would, but in practice, some ensemble techniques (especially bagging) tend to
reduce problems related to over-fitting of the training data.
Empirically, ensembles tend to yield better results when there is a significant diversity among

the models. Many ensemble methods, therefore, seek to promote diversity among the models
they combine. Although perhaps non-intuitive, more random algorithms (like random decision
trees) can be used to produce a stronger ensemble than very deliberate algorithms (like entropy-
reducingdecision trees). Using a variety of strong learning algorithms, however, has been shown
to be more effective than using techniques that attempt to dumb-down the models in order to
promote diversity.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The stacking model is delivered from this output port which can be applied on

unseen data sets.

Parameters
keep all attributes (boolean) This parameter indicates if all attributes (including the origi-

nal ones) should be kept in order to learn the stacked model.

Tutorial Processes

Introduction to Stacking
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Figure 4.56: Tutorial process ‘Introduction to Stacking’.
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The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is
applied on it for training and testing a model. The Stacking operator is applied in the training
subprocess of the Split Validation operator. Three learners are applied in the Base Learner sub-
process of the Stacking operator. These learners are: DecisionTree, K-NNandLinearRegression
operators. The Naive Bayes operator is applied in the Stacking Model Learner subprocess of the
Stacking operator. The Naive Bayes learner is used as a stacking learner which uses the predic-
tions of the preceding three learners tomake a combined prediction. The ApplyModel operator
is used in the testing subprocess of the Split Validation operator for applying the model gen-
erated by the Stacking operator. The resultant labeled ExampleSet is used by the Performance
operator for measuring the performance of the model. The stacking model and its performance
vector is connected to the output and it can be seen in the Results Workspace.
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Vote

V o t e

t ra mod
Thisoperatoruses amajority vote (for classification)or theaverage
(for regression) on top of the predictions of the inner learners (i.e.
learning operators in its subprocess).

Description
The Vote operator is a nested operator i.e. it has a subprocess. The subprocess must have at
least two learners, called base learners. This operator builds a classification model or regres-
sion model depending upon the ExampleSet and learners. This operator uses a majority vote
(for classification) or the average (for regression) on top of the predictions of the base learners
provided in its subprocess. You need to have a basic understanding of subprocesses in order to
apply this operator. Please study the documentation of the Subprocess operator for basic under-
standing of subprocesses. All the operator chains in the subprocess must accept an ExampleSet
and return a model.
In case of a classification task, all the operators in the subprocess of the Vote operator accept

the given ExampleSet and generate a classificationmodel. For prediction of an unknown exam-
ple, the Vote operator applies all the classification models from its subprocess and assigns the
predicted class with maximum votes to the unknown example. Similarly, In case of a regression
task, all the operators in the subprocess of the Vote operator accept the given ExampleSet and
generate a regression model. For prediction of an unknown example, the Vote operator applies
all the regression models from its subprocess and assigns the average of all predicted values to
the unknown example.

Input Ports
training set (tra) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
model (mod) The simple vote model for classification or regression is delivered from this out-

put port. This model can now be applied on unseen data sets for prediction of the label
attribute.

Tutorial Processes

Using the Vote operator for classification

The ‘Sonar’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-
plied on it for training and testing a model. The Vote operator is applied in the training subpro-
cess of the Split Validation operator. Three learners are applied in the subprocess of the Vote
operator. These base learners are: Decision Tree, Neural Net and SVM. The Vote operator uses
the vote of each learner for classification of an example, the prediction with maximum votes is
assigned to the unknown example. In otherwords it uses the predictions of the three base learn-
ers to make a combined prediction (using simple voting). The Apply Model operator is used in
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Figure 4.57: Tutorial process ‘Using the Vote operator for classification’.

the testing subprocess of the Split Validation operator for applying the model generated by the
Vote operator. The resultant labeled ExampleSet is used by the Performance operator for mea-
suring the performance of the model. The Vote model and its performance vector is connected
to the output and it can be seen in the Results Workspace.
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4.2 Segmentation
Agglomerative Clustering

Clustering

exa clu

exa

This operator performs Agglomerative clustering which is a
bottom-up strategy of Hierarchical clustering. Three different
strategies are supported by this operator: single-link, complete-
link and average-link. The result of this operator is a hierarchical
cluster model, providing distance information to plot as a dendro-
gram.

Description
Agglomerative clustering is a strategy of hierarchical clustering. Hierarchical clustering (also
known as Connectivity based clustering) is a method of cluster analysis which seeks to build a
hierarchy of clusters. Hierarchical clustering, is based on the core idea of objects being more
related to nearby objects than to objects farther away. As such, these algorithms connect ‘ob-
jects’ (or examples, in case of an ExampleSet) to form clusters based on their distance. A cluster
can be described largely by the maximum distance needed to connect parts of the cluster. At
different distances, different clusters will form, which can be represented using a dendrogram,
which explains where the commonname ‘hierarchical clustering’ comes from: these algorithms
do not provide a single partitioning of the data set, but instead provide an extensive hierarchy
of clusters that merge with each other at certain distances. In a dendrogram, the y-axis marks
the distance at which the clusters merge, while the objects are placed along the x-axis so the
clusters don’t mix.
Strategies for hierarchical clustering generally fall into two types:

• Agglomerative: This is a bottom-up approach: each observation starts in its own cluster,
and pairs of clusters are merged as one moves up the hierarchy.

• Divisive: This is a top-down approach: all observations start in one cluster, and splits are
performed recursively as one moves down the hierarchy.

Hierarchical clustering is a whole family of methods that differ by the way distances are com-
puted. Apart from the usual choice of distance functions, the user also needs to decide on the
linkage criterion touse, since a cluster consists ofmultiple objects, there aremultiple candidates
to compute the distance to. Popular choices are known as single-linkage clustering (the min-
imum of object distances), complete-linkage clustering (the maximum of object distances) or
average-linkage clustering (also known as UPGMA, ‘Unweighted Pair GroupMethod with Arith-
metic Mean’).
The algorithm forms clusters in a bottom-up manner, as follows:

1. Initially, put each example in its own cluster.

2. Among all current clusters, pick the two clusters with the smallest distance.

3. Replace these two clusters with a new cluster, formed by merging the two original ones.

4. Repeat the above two steps until there is only one remaining cluster in the pool.

Clustering is concerned with grouping together objects that are similar to each other and dis-
similar to the objects belonging to other clusters. It is a technique for extracting information
from unlabeled data and can be very useful in many different scenarios e.g. in a marketing ap-
plication we may be interested in finding clusters of customers with similar buying behavior.
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Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process.

Output Ports
cluster model (clu) This port delivers the hierarchical cluster model. It has information re-

garding the clustering performed. It explains how clusters were merged to make a hierar-
chy of clusters.

example set (exa) The ExampleSet that was given as input is passedwithout anymodification
to the output through this port.

Parameters
mode (selection) This parameter specifies the cluster mode or the linkage criterion.

• SingleLink In single-link hierarchical clustering, wemerge in each step the two clus-
ters whose two closest members have the smallest distance (or: the two clusters with
the smallest minimum pairwise distance).

• CompleteLink In complete-link hierarchical clustering, we merge in each step the
two clusters whose merger has the smallest diameter (or: the two clusters with the
smallest maximum pairwise distance).

• AverageLinkAverage-linkclustering is a compromisebetween thesensitivityof complete-
link clustering to outliers and the tendency of single-link clustering to form long
chains that do not correspond to the intuitive notion of clusters as compact, spherical
objects.

measure types (selection) This parameter is used for selecting the typeofmeasure tobeused
formeasuring thedistancebetweenpoints.The followingoptions are available: mixedmea-
sures, nominal measures, numerical measures and Bregman divergences.

mixed measure (selection) This parameter is available when the measure type parameter is
set to ‘mixed measures’. The only available option is the ‘Mixed Euclidean Distance’

nominal measure (selection) This parameter is available when the measure type parameter
is set to ‘nominal measures’. This option cannot be applied if the input ExampleSet has
numerical attributes. In this case the ‘numerical measure’ option should be selected.

numerical measure (selection) This parameter is available when the measure type parame-
ter is set to ‘numerical measures’. This option cannot be applied if the input ExampleSet
has nominal attributes. If the input ExampleSet has nominal attributes the ‘nominalmea-
sure’ option should be selected.

divergence (selection) This parameter is available when themeasure type parameter is set to
‘bregman divergences’.

kernel type (selection) This parameter is only availablewhen the numericalmeasureparame-
ter is set to ‘Kernel EuclideanDistance’. The type of the kernel function is selected through
this parameter. Following kernel types are supported:

• dot The dot kernel is defined byk(x,y)=x*y i.e.it is inner product ofx and y.

556



4.2. Segmentation

• radial The radial kernel is defined by exp(-g ||x-y||^2) where g is the gamma that is
specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in theperformanceof the kernel, and shouldbe carefully tuned to theprob-
lem at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of the polynomial and it is specified by the kernel degree parameter. The Polyno-
mial kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• sigmoid This is the sigmoid kernel. Please note that the sigmoid kernel is not valid
under some parameters.

• anova This is the anova kernel. It has adjustable parameters gamma and degree.
• epachnenikov The Epanechnikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVMkernel parameter gamma. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the SVM kernel parameter sigma3. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.
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Tutorial Processes
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Figure 4.58: Tutorial process ‘Agglomerative Clustering of Ripley-Set data set’.

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. A breakpoint is inserted at
this step so that you can have a look at the ExampleSet. The Agglomerative Clustering operator
is applied on this ExampleSet. Run the process and switch to the Results Workspace. Note the
Graph View of the results. You can see that the algorithm has not created separate groups or
clusters as other clustering algorithms (like k-means), instead the result is a hierarchy of clus-
ters. Under the Folder View you can see members of each cluster in folder format. You can see
that it is an hierarchy of folders. The Dendogram View shows the dendrogram for this cluster-
ing which shows how single-element clusters were joined step by step to make a hierarchy of
clusters.
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Cluster Model Visualizer

Cluster Model Vis.. .

mod

clu

vis

mod

This operator uses visualization tools for centroid-based cluster
models to capture the essential details of each cluster.

Description
The visualization tools include the following:

• Overview: shows the size of all found clusters, together with some information about the
clusters and their quality.

• Heat map:: displays a decision tree describing the main difference between the clusters.

• Centroid Chart: shows the values for the cluster centroids in a parallel chart.

• Centroid table: shows the values for the cluster centroids in a table.

• Scatter plot: with a choice of cluster, displays a scatter plot in terms of the two most im-
portant Attributes.

Input Ports
model (mod) This input port expects a centroid-based cluster model.

clustered data (clu) This input port expects a clustered ExampleSet which is the output of the
cluster model building process.

Output Ports
visualization output (vis) This output port provides visualization tools to help understand

clusters.

model output (mod) The input model is passed without changing to the output through this
port.

Tutorial Processes

Visualizing Cluster for Iris

This process creates a cluster model on the Iris data set. We use the very common k-Means
clustering algorithm with k=3, i.e. we want to find three clusters in the data. The cluster model
is then delivered together with the clustered data to the Cluster Model Visualization operator,
which creates the visualizations.
Examining the output from each of the visualization tools, we find the following: Overview:

Cluster 1 is the biggest cluster with 61 items.Heat map: Cluster 0 has on average much higher
values for a1, a3, and a4. The cluster tree, centroid chart, centroid table, and scatter plot show
the same results in a different form.
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Figure 4.59: Tutorial process ‘Visualizing Cluster for Iris’.

DBSCAN

Clustering

exa clu

clu

This operator performs clustering with DBSCAN. DBSCAN (for
density-based spatial clustering of applications with noise) is a
density-based clustering algorithm because it finds a number of
clusters starting from the estimated density distribution of corre-
sponding nodes.

Description
DBSCAN’s definition of a cluster is based on the notion of density reachability. Basically, a point
q is directly density-reachable fromapointp if it is not farther away thanagivendistance epsilon
(i.e. it is part of its epsilon-neighborhood) and if p is surrounded by sufficiently many points
such that onemay consider p and q to be part of a cluster. q is called density-reachable (note the
distinction from “directly density-reachable”) from p if there is a sequence p(1),…,p(n) of points
with p(1) = p and p(n) = q where each p(i+1) is directly density-reachable from p(i).
Note that the relation of density-reachable is not symmetric. q might lie on the edge of a

cluster, having insufficiently many neighbors to count as dense itself. This would halt the pro-
cess of finding a path that stops with the first non-dense point. By contrast, starting the pro-
cess with q would lead to p (though the process would halt there, p being the first non-dense
point). Due to this asymmetry, the notion of density-connected is introduced: two points p and
q are density-connected if there is a point o such that both p and q are density-reachable from
o. Density-connectedness is symmetric.
A cluster, which is a subset of the points of the data set, satisfies two properties:

1. All points within the cluster are mutually density-connected.

2. If a point is density-connected to any point of the cluster, it is part of the cluster as well.

DBSCAN requires two parameters: epsilon and the minimum number of points required to
form a cluster (minPts). epsilon and minPts can be specified through the epsilon andmin points
parameters respectively. DBSCAN starts with an arbitrary starting point that has not been vis-
ited. This point’s epsilon-neighborhood is retrieved, and if it contains sufficiently many points,
a cluster is started. Otherwise, the point is labeled as noise. Note that this point might later be
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found in a sufficiently sized epsilon-environment of a different point and hence be made part
of a cluster.
If a point is found to be a dense part of a cluster, its epsilon-neighborhood is also part of that

cluster. Hence, all points that are found within the epsilon-neighborhood are added, as is their
own epsilon-neighborhood when they are also dense. This process continues until the density-
connected cluster is completely found. Then, a new unvisited point is retrieved and processed,
leading to the discovery of a further cluster or noise.
If no id attribute is present, this operator will create one. The ‘Cluster 0’ assigned by DBSCAN

operator corresponds to points that are labeled as noise. These are the points that have less than
min points points in their epsilon-neighborhood.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. It is a technique for extracting information
from unlabeled data and can be very useful in many different scenarios e.g. in a marketing ap-
plication we may be interested in finding clusters of customers with similar buying behavior.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator

in the attached Example Process.

Output Ports
cluster model (clu) Thisport delivers the clustermodel. It has information regarding the clus-

tering performed. It tells which examples are part of which cluster.

clustered set (clu) The ExampleSet that was given as input is passed with minor changes to
the output through this port. An attribute with id role is added to the input ExampleSet to
distinguish examples. An attribute with cluster role may also be added depending on the
state of the add cluster attribute parameter.

Parameters
epsilon (real) This parameter specifies the epsilon parameter of the DBSCAN algorithm. ep-

silon specifies the size of the neighborhood.

min points (integer) This parameter specifies the minimal number of points forming a clus-
ter.

add cluster attribute (boolean) If this parameter is set to true, a new attribute with cluster
role is generated in the resultant ExampleSet, otherwise this operator does not add the
cluster attribute. In the latter case you have to use the Apply Model operator to generate
the cluster attribute.

add as label (boolean) If this parameter is set to true, the cluster id is stored in an attribute
with the label role instead of cluster role (see add cluster attribute parameter).

remove unlabeled (boolean) If this parameter is set to true, unlabeled examples are deleted
from the ExampleSet.

measure types (selection) This parameter is used for selecting the typeofmeasure tobeused
formeasuring thedistancebetweenpoints.The followingoptions are available: mixedmea-
sures, nominal measures, numerical measures and Bregman divergences.
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mixed measure (selection) This parameter is available when the measure type parameter is
set to ‘mixed measures’. The only available option is the ‘Mixed Euclidean Distance’

nominal measure (selection) This parameter is available when the measure type parameter
is set to ‘nominal measures’. This option cannot be applied if the input ExampleSet has
numerical attributes. In this case the ‘numerical measure’ option should be selected.

numerical measure (selection) This parameter is available when the measure type parame-
ter is set to ‘numerical measures’. This option cannot be applied if the input ExampleSet
has nominal attributes. If the input ExampleSet has nominal attributes the ‘nominalmea-
sure’ option should be selected.

divergence (selection) This parameter is available when themeasure type parameter is set to
‘bregman divergences’.

kernel type (selection) This parameter is only availablewhen the numericalmeasureparame-
ter is set to ‘Kernel EuclideanDistance’. The type of the kernel function is selected through
this parameter. Following kernel types are supported:

• dot The dot kernel is defined byk(x,y)=x*y i.e.it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2) where g is the gamma that is
specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in theperformanceof the kernel, and shouldbe carefully tuned to theprob-
lem at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of the polynomial and it is specified by the kernel degree parameter. The Polyno-
mial kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• sigmoid This is the sigmoid kernel. Please note that the sigmoid kernel is not valid
under some parameters.

• anova This is the anova kernel. It has adjustable parameters gamma and degree.

• epachnenikov The Epanechnikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVMkernel parameter gamma. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.
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kernel sigma2 (real) This is the SVM kernel parameter sigma2. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the SVM kernel parameter sigma3. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

Tutorial Processes

Clustering of Ripley-Set data set by the DBSCAN operator

Process

Ripley-Set

out

Clustering

exa clu

clu

inp res

res

res

Figure 4.60: Tutorial process ‘Clustering of Ripley-Set data set by the DBSCAN operator’.

In many cases, no target attribute (i.e. label) can be defined and the data should be auto-
matically grouped. This procedure is called Clustering. RapidMiner supports a wide range of
clustering schemes which can be used in just the same way like any other learning scheme. This
includes the combination with all preprocessing operators.
In this Example Process, the ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note

that the label is loaded too, but it is only used for visualization and comparison andnot for build-
ing the clusters itself. A breakpoint is inserted at this step so that you can have a look at the Ex-
ampleSet before application of theDBSCANoperator. Other than the label attribute the ‘Ripley-
Set’ has two real attributes; ‘att1’ and ‘att2’. The DBSCAN operator is applied on this data set
with default values for all parameters except the epsilon parameter which is set to 0.1. Run the
process and you will see that two new attributes are created by the DBSCAN operator. The id at-
tribute is created to distinguish examples clearly. The cluster attribute is created to showwhich
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cluster the examples belong to. Each example is assigned to a particular cluster. The examples
in ‘cluster_0’ are considered as noise. Also note the Plot View of this data set. Switch to Plot
View and set the the Plotter to ‘Scatter’, x-Axis to ‘att1’, y-Axis to ‘att2’ and Color Column to
‘cluster’. You can clearly see how the algorithm has created three separate groups (noise i.e.
cluster_0 is also visible separately). A cluster model is also delivered through the cluster model
output port. It has information regarding the clustering performed. Under Folder View you can
see members of each cluster in folder format.
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Expectation Maximization Clustering

Clustering

exa clu

clu

This operator performs clustering using the Expectation Maxi-
mizationalgorithm. Clustering is concernedwithgroupingobjects
together that are similar to each other and dissimilar to the objects
belonging to other clusters. But the ExpectationMaximization al-
gorithm extends this basic approach to clustering in some impor-
tant ways.

Description

The general purpose of clustering is to detect clusters in examples and to assign those examples
to the clusters. A typical application for this type of analysis is a marketing research study in
which a number of consumer behavior related variables are measured for a large sample of re-
spondents. The purpose of the study is to detect ‘market segments’, i.e., groups of respondents
that are somehow more similar to each other (to all other members of the same cluster) when
compared to respondents that belong to other clusters. In addition to identifying such clusters,
it is usually equally of interest to determine how the clusters are different, i.e., determine the
specific variables or dimensions that vary and how they vary in regard to members in different
clusters.
The EM (expectationmaximization) technique is similar to the K-Means technique. The basic

operation of K-Means clustering algorithms is relatively simple: Given a fixed number of k clus-
ters, assign observations to those clusters so that the means across clusters (for all variables)
are as different from each other as possible. The EM algorithm extends this basic approach to
clustering in two important ways:

• Instead of assigning examples to clusters to maximize the differences in means for con-
tinuous variables, the EM clustering algorithm computes probabilities of cluster member-
ships based on one or more probability distributions. The goal of the clustering algorithm
then is to maximize the overall probability or likelihood of the data, given the (final) clus-
ters.

Expectation Maximization algorithm

The basic approach and logic of this clustering method is as follows. Suppose you measure a
single continuous variable in a large sample of observations. Further, suppose that the sample
consists of two clusters of observations with different means (and perhaps different standard
deviations); within each sample, the distribution of values for the continuous variable follows
the normal distribution. The goal of EM clustering is to estimate the means and standard devi-
ations for each cluster so as to maximize the likelihood of the observed data (distribution). Put
another way, the EM algorithm attempts to approximate the observed distributions of values
based on mixtures of different distributions in different clusters. The results of EM clustering
are different from those computed by k-means clustering. The latter will assign observations
to clusters to maximize the distances between clusters. The EM algorithm does not compute
actual assignments of observations to clusters, but classification probabilities. In other words,
each observation belongs to each cluster with a certain probability. Of course, as a final result
you can usually review an actual assignment of observations to clusters, based on the (largest)
classification probability.
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Differentiation
• k-Means (Deprecated) The K-Means operator performs clustering using the k-means
algorithm. k-means clustering is an exclusive clustering algorithm i.e. each object is as-
signed to precisely one of a set of clusters. Objects in one cluster are similar to each other.
The similarity betweenobjects is based on ameasure of the distance between them. TheK-
Means operator assigns observations to clusters to maximize the distances between clus-
ters. The Expectation Maximization Clustering operator, on the other hand, computes
classification probabilities. See page ?? for details.

Input Ports
example set (exa) The input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
cluster model (clu) This port delivers the cluster model which has information regarding the

clustering performed. It has information about cluster probabilities and cluster means.

clustered set (clu) The ExampleSet that was given as input is passed with minor changes to
the output through this port. An attribute with id role is added to the input ExampleSet
to distinguish examples. An attribute with cluster role may also be added depending on
the state of the add cluster attribute parameter. If the show probabilities parameter is set
to true, one probability column is added for each cluster.

Parameters
k (integer) This parameter specifies the number of clusters to form. There is no hard and fast

rule of number of clusters to form. But, generally it is preferred to have small number of
clusters with examples scattered (not too scattered) around them in a balanced way.

add cluster attribute (boolean) If enabled, a new attribute with cluster role is generated di-
rectly in this operator, otherwise this operator does not add the cluster attribute. In the
latter case you have to use the Apply Model operator to generate the cluster attribute.

add as label (boolean) If true, the cluster id is stored in an attributewith the label role instead
of cluster role (see add cluster attribute parameter).

remove unlabeled (boolean) If set to true, unlabeled examples are deleted.

max runs (integer) This parameter specifies the maximal number of runs of this operator to
be performed with random initialization.

max optimization steps (integer) Thisparameter specifies themaximalnumberof iterations
performed for one run of this operator.

quality (real) This parameter specifies the quality that must be fulfilled before the algorithm
stops ( i.e. the rising of the log-likelihood that must be undercut).

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization.
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local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

show probabilities (boolean) This parameter indicates if the probabilities for every cluster
should be inserted with every example in the ExampleSet.

inital distribution (selection) This parameter indicates the initial distribution of the cen-
troids.

correlated attributes (boolean) This parameter should be set to true if the ExampleSet con-
tains correlated attributes.

Related Documents
• k-Means (Deprecated) (page ??)

Tutorial Processes

Clustering of the Ripley-Set data set using the Expectation Maximization Clustering
operator

Process

Ripley-Set

out

Clustering

exa clu

clu

inp res

res

res

Figure 4.61: Tutorial process ‘Clustering of the Ripley-Set data set using the Expectation Max-
imization Clustering operator’.

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note that the label is loaded
too, but it is only used for visualization and comparison and not for building the clusters itself.
A breakpoint is inserted at this step so that you can have a look at the ExampleSet before the
applicationof theExpectationMaximizationClustering operator. Besides the label attribute the
‘Ripley-Set’ has two real attributes; ‘att1’ and ‘att2’. The Expectation Maximization Clustering
operator is applied on this data set with default values for all parameters. Run the process and
you will see that a few new attributes are created by the Expectation Maximization Clustering
operator. The id attribute is created to distinguish examples clearly. The cluster attribute is
created to show which cluster the examples belong to. As parameter k was set to 2, only two
clusters are possible. That is why each example is assigned to either ‘cluster_0’ or ‘cluster_1’.
Note that the Expectation Maximization Clustering operator has added probability attributes
for each cluster that show the probability of an example to be part of that cluster. This operator
assignsanexample to the clusterwithmaximumprobability. Alsonote thePlotViewof this data.
You can clearly see how the algorithmhas created two separate groups in thePlotView. A cluster
model is also delivered through the cluster model output port. It has information regarding
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the clustering performed. It also has information about cluster probabilities and cluster means.
Under Folder View you can see members of each cluster in folder format.

568



4.2. Segmentation

Extract Cluster Prototypes

Extract Cluster P.. .

mod exa

mod

This operator generates an ExampleSet consisting of the Cluster
Prototypes from the Cluster Model. This operator is usually ap-
plied after clustering operators to store the Cluster Prototypes in
form of an ExampleSet.

Description

Most clustering algorithms like K-Means or K-Medoids cluster the data around some prototyp-
ical data vectors. For example the K-Means algorithm uses the centroid of all examples of a
cluster. The Extract Cluster Prototypes operator extracts these prototypes and stores them in
an ExampleSet for further use. This operator expects a cluster model as input. The information
about the cluster prototypes can be seen in the cluster models generated by most clustering
operators but the Extract Cluster Prototypes operator stores this information in form of an Ex-
ampleSet thus it can be used easily.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. Clustering is a technique for extracting infor-
mation from unlabeled data. Clustering can be very useful in many different scenarios e.g. in a
marketing application wemay be interested in finding clusters of customers with similar buying
behavior.

Differentiation

• k-MedoidsTheK-Medoidsoperatorperforms the clusteringandgenerates a clustermodel
and a clustered ExampleSet. The cluster model generated by the K-Medoids operator can
be used by the Extract Cluster Prototypes operator to store the Centroid Table in form of
an ExampleSet. See page 591 for details.

• k-Means (Deprecated) The K-Means operator performs the clustering and generates a
cluster model and a clustered ExampleSet. The cluster model generated by the K-Means
operator can be used by the Extract Cluster Prototypes operator to store theCentroid Table
in form of an ExampleSet. See page ?? for details.

Input Ports

model (mod) This port expects a cluster model. It has information regarding the clustering
performed by a clustering operator. It tells which examples are part of which cluster. It
also has information regarding centroids of each cluster.

Output Ports

example set (exa) The ExampleSet consisting of the Cluster Prototypes is generated from the
input Cluster Model and the ExampleSet is delivered through this port

model (mod) The cluster model that was given as input is passed without any changes to the
output through this port.
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Related Documents
• k-Medoids (page 591)

• k-Means (Deprecated) (page ??)

Tutorial Processes

Extracting Centroid Table after application of the K-Means operator on Ripley-Set
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Figure 4.62: Tutorial process ‘Extracting Centroid Table after application of the K-Means oper-
ator on Ripley-Set’.

In many cases, no target attribute (i.e. label) can be defined and the data should be auto-
matically grouped. This procedure is called Clustering. RapidMiner supports a wide range of
clustering schemes which can be used in just the same way like any other learning scheme. This
includes the combination with all preprocessing operators.
In this Example Process, the ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note

that the label is loaded too, but it is only used for visualization and comparison and not for
building the clusters itself. A breakpoint is inserted at this step so that you can have a look
at the ExampleSet before application of the K-Means operator. Other than the label attribute
the ‘Ripley-Set’ has two real attributes; ‘att1’ and ‘att2’. The K-Means operator is applied on
this data set with default values for all parameters. Run the process and you will see that two
new attributes are created by the K-Means operator. The id attribute is created to distinguish
examples clearly. The cluster attribute is created to show which cluster the examples belong to.
As parameter k was set to 2, only two clusters are possible. That is why each example is assigned
to either ‘cluster_0’ or ‘cluster_1’. A cluster model is delivered through the cluster model out-
put port. It has information regarding the clustering performed. Under Folder View you can see
members of each cluster in folder format. You can see information regarding centroids under
the Centroid Table and Centroid Plot View tabs. A breakpoint is inserted at this step so that you
can have a look at the cluster model (especially the Centroid Table) before application of the
Extract Cluster Prototypes operator. The Extract Cluster Prototypes operator is applied on the
cluster model generated by the K-Means operator which stores the Centroid Table in form of an
ExampleSet which can be seen in the Results Workspace.
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Flatten Clustering

Flatten Clustering

hie

exa

fla

exa

This operator creates a flat clustering model from the given hier-
archical clustering model. Clustering is concerned with grouping
objects together that are similar to each other and dissimilar to the
objects belonging to other clusters.

Description

The Flatten Clustering operator creates a flat cluster model from the given hierarchical cluster
model by expanding nodes in the order of their distance until the desired number of clusters
(specified by the number of clusters parameter) is reached. In RapidMiner, operators like the
Agglomerative Clustering operator provide hierarchical cluster models. The Flatten Clustering
operator takes this hierarchical clustermodel and anExampleSet as input and returns aflat clus-
ter model and the clustered ExampleSet. Please note that RapidMiner also provides operators
that perform Flat clustering e.g. the K-Means operator.
Flat clustering creates a flat set of clusters without any explicit structure that would relate

clusters to each other. Hierarchical clustering creates a hierarchy of clusters. Flat clustering is
efficient and conceptually simple, but it has a number of drawbacks. These algorithms return a
flat unstructured set of clusters, require a prespecified number of clusters as input and are non-
deterministic. Hierarchical clustering outputs a hierarchy, a structure that is more informative
than the unstructured set of clusters returned by flat clustering. Hierarchical clustering does
not require us to prespecify the number of clusters and most hierarchical algorithms that have
been used in information retrieval are deterministic. These advantages of hierarchical cluster-
ing come at the cost of lower efficiency.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. It is a technique for extracting information
from unlabeled data and can be very useful in many different scenarios e.g. in a marketing ap-
plication we may be interested in finding clusters of customers with similar buying behavior.

Input Ports

hierarchical (hie) This port expects thehierarchical clustermodel. Hierarchical clusteringop-
erators like the Agglomerative Clustering operator generate such a model.

example set (exa) The inputport expects anExampleSet. It is theoutputof theAgglomerative
Clustering operator in the attached Example Process. The output of other operators can
also be used as input.

Output Ports

flat (fla) This port delivers the flat cluster model which has information regarding the cluster-
ing performed. It tells which examples are part of which cluster.

example set (exa) The ExampleSet that was given as input is passed with minor changes to
the output through this port. An attribute with id role is added to the input ExampleSet
to distinguish examples.
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Parameters
number of clusters (integer) Thisparameter specifies thedesirednumberof clusters to form.

There is no hard and fast rule to form a number of clusters. But, generally it is preferred to
have a small number of clusters with examples scattered (not too scattered) around them
in a balanced way.

add as label (boolean) If true, the cluster id is stored in an attributewith the label role instead
of cluster role.

remove unlabeled (boolean) If set to true, unlabeled examples are deleted.

Tutorial Processes

Flattening the Agglomerative Cluster model
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Figure 4.63: Tutorial process ‘Flattening the Agglomerative Cluster model’.

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted at this step so
that you canhave a look at the ExampleSet. TheAgglomerativeClustering operator is applied on
this ExampleSet. Run the process and switch to the Results Workspace. Note the Graph View
of the results. You can see that the algorithm has not created separate groups or clusters as
other clustering algorithms (like k-means), instead the result is a hierarchy of clusters. Under
the Folder View you can see members of each cluster in folder format. You can see that it is
an hierarchy of folders. The Dendogram View shows the dendrogram for this clustering which
shows how single-element clusters were joined step by step tomake a hierarchy of clusters. The
ExampleSet and the hierarchical cluster model returned by this operator are provided as input
to the Flatten Clustering operator.
The Flatten Clustering operator is applied with default values for all parameters. Run the

process and you will see that two new attributes are created by the Flatten Clustering operator.
The id attribute is created to distinguish examples clearly. The cluster attribute is created to
show which cluster the examples belong to. As the parameter number of clusters was set to 3,
only three clusters are possible. That is why each example is assigned to ‘cluster_0’, ‘cluster_1’
or ‘cluster_2’. Also note the Plot View of this data. You can clearly see how the algorithm has
created three separate groups in the Plot View. A cluster model is also delivered through the
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cluster model output port. It has information regarding the clustering performed. Under Folder
View you can see members of each cluster in folder format.
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Random Clustering

Clustering

exa clu

clu

This operator performs a random flat clustering of the given Ex-
ampleSet. Clustering is concerned with grouping objects together
that are similar to each other and dissimilar to the objects belong-
ing to other clusters.

Description

This operator performs a random flat clustering of the given ExampleSet. Please note that this
algorithm does not guarantee that all clusters will be non-empty. This operator creates a clus-
ter attribute in the resultant ExampleSet if the add cluster attribute parameter is set to true. It is
important to note that this operator randomly assigns examples to clusters, if you want proper
clustering please use an operator that implements a clustering algorithm like the K-Means op-
erator.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. Clustering is a technique for extracting infor-
mation from unlabeled data. Clustering can be very useful in many different scenarios e.g. in a
marketing application wemay be interested in finding clusters of customers with similar buying
behavior.

Input Ports

example set (exa) The input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports

cluster model (clu) This port delivers the cluster model which has information regarding the
clustering performed. It tells which examples are part of which cluster.

clustered set (clu) The ExampleSet that was given as input is passed with minor changes to
the output through this port. An attribute with id role is added to the input ExampleSet to
distinguish examples. An attribute with cluster role may also be added depending on the
state of the add cluster attribute parameter.

Parameters

add cluster attribute (boolean) If enabled, a new attribute with cluster role is generated di-
rectly in this operator, otherwise this operator does not add the cluster attribute. In the
latter case you have to use the Apply Model operator to generate the cluster attribute.

add as label (boolean) If true, the cluster id is stored in an attributewith the label role instead
of cluster role (see add cluster attribute parameter).

remove unlabeled (boolean) If set to true, unlabeled examples are deleted.
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number of clusters (integer) Thisparameter specifies thedesirednumberof clusters to form.
There is no hard and fast rule for the number of clusters to form. But, generally it is pre-
ferred tohavea smallnumberof clusterswithexamples scattered (not tooscattered) around
them in a balanced way.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Random clustering of the Ripley-Set data set
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Figure 4.64: Tutorial process ‘Random clustering of the Ripley-Set data set’.

In many cases, no target attribute (i.e. label) can be defined and the data should be auto-
matically grouped. This procedure is called Clustering. RapidMiner supports a wide range of
clustering schemes which can be used in just the same way like any other learning scheme. This
includes the combination with all preprocessing operators.
In this Example Process, the ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note

that the label is loaded too, but it is only used for visualization and comparison andnot for build-
ing the clusters itself. A breakpoint is inserted at this step so that you can have a look at the Ex-
ampleSet before the application of the Random Clustering operator. Besides the label attribute
the ‘Ripley-Set’ has two real attributes; ‘att1’ and ‘att2’. The Random Clustering operator is ap-
plied on this data set with default values for all parameters. Run the process and you will see
that two new attributes are created by the Random Clustering operator. The id attribute is cre-
ated to distinguish examples clearly. The cluster attribute is created to show which cluster the
examples belong to. As the number of clusters parameter was set to 3, only three clusters are
possible. That is why each example is assigned to ‘cluster_0’, ‘cluster_1’ or ‘cluster_2’. Also note
the Plot View of this data. You can clearly see how this operator has created three groups in the
Plot View. A cluster model is also delivered through the cluster model output port. It has in-
formation regarding the clustering performed. Under Folder View you can see members of each
cluster in folder format. It is important to note that this operator randomly assigns examples to
clusters (this can be seen easily in the Plot View). If youwant proper clustering of your Example-
Set please use an operator that implements a clustering algorithm like the K-Means operator.
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Support Vector Clustering

Clustering

exa clu

clu

This operator performs clustering with support vectors. Cluster-
ing is concerned with grouping objects together that are similar to
each other and dissimilar to the objects belonging to other clus-
ters. Clustering is a technique for extracting information fromun-
labeled data.

Description
This operator is an implementation of Support Vector Clustering based on Ben-Hur et al (2001).
In this Support Vector Clustering (SVC) algorithm data points are mapped from data space to
a high dimensional feature space using a Gaussian kernel. In feature space the smallest sphere
that encloses the image of the data is searched. This sphere ismapped back to data space, where
it formsa set of contourswhichenclose thedatapoints. These contours are interpretedas cluster
boundaries. Points enclosed by each separate contour are associated with the same cluster. As
the width parameter of the Gaussian kernel is decreased, the number of disconnected contours
in data space increases, leading to an increasing number of clusters. Since the contours can be
interpreted as delineating the support of the underlying probability distribution, this algorithm
can be viewed as one identifying valleys in this probability distribution.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. It is a technique for extracting information
from unlabeled data and can be very useful in many different scenarios e.g. in a marketing ap-
plication we may be interested in finding clusters of customers with similar buying behavior.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of the Generate Data

operator in the attached Example Process.

Output Ports
cluster model (clu) Thisport delivers the clustermodel. It has information regarding the clus-

tering performed. It tells which examples are part of which cluster.

clustered set (clu) The ExampleSet that was given as input is passed with minor changes to
the output through this port. An attribute with id role is added to the input ExampleSet to
distinguish examples. An attribute with cluster role may also be added depending on the
state of the add cluster attribute parameter.

Parameters
add cluster attribute (boolean) If this parameter is set to true, a new attribute with cluster

role is generated in the resultant ExampleSet, otherwise this operator does not add the
cluster attribute. In the latter case you have to use the Apply Model operator to generate
the cluster attribute.

add as label (boolean) If this parameter is set to true, the cluster id is stored in an attribute
with the label role instead of cluster role (see add cluster attribute parameter).
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remove unlabeled (boolean) If this parameter is set to true, unlabeled examples are deleted
from the ExampleSet.

min pts (integer) This parameter specifies the minimal number of points in each cluster.

kernel type (selection) The type of the kernel function is selected through this parameter.
Following kernel types are supported: dot, radial, polynomial, neural

• dot The dot kernel is defined byk(x,y)=x*y i.e. it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2)where g is the gamma, it is spec-
ified by the kernel gamma parameter. The adjustable parameter gamma plays a major
role in the performance of the kernel, and should be carefully tuned to the problem
at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of polynomial and it is specified by the kernel degree parameter. The polynomial
kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

kernel gamma (real) This is the SVM kernel parameter gamma. This is available only when
the kernel type parameter is set to radial.

kernel degree (real) This is the SVM kernel parameter degree. This is available only when
the kernel type parameter is set to polynomial.

kernel a (real) This is the SVM kernel parameter a. This is available only when the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This is available only when the kernel type
parameter is set to neural.

kernel cache (real) This is an expert parameter. It specifies the size of the cache for kernel
evaluations in megabytes.

convergence epsilon (real) This is an optimizer parameter. It specifies the precision on the
KKT conditions.

max iterations (integer) This is an optimizer parameter. It specifies to stop iterations after
a specified number of iterations.

p (real) This parameter specifies the fraction of allowed outliers.

r (real) If this parameter is set to -1 then the the calculated radius is used as radius. Otherwise
the value specified in this parameter is used as radius.

number sample points (real) This parameter specifies the number of virtual sample points
to check for neighborhood.
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Figure 4.65: Tutorial process ‘Clustering of Ripley-Set data set by the Support Vector Clustering
operator’.

Tutorial Processes

Clustering of Ripley-Set data set by the Support Vector Clustering operator

Inmany cases, no target attribute (i.e. label) canbedefined and thedata should be automatically
grouped. This procedure is called Clustering. RapidMiner supports a wide range of clustering
schemes which can be used in just the same way like any other learning scheme. This includes
the combination with all preprocessing operators.
In this Example Process, the Generate Data operator is used for generating an ExampleSet.

Note that the label is loaded too, but it is only used for visualization and comparison and not for
building the clusters itself. A breakpoint is inserted at this step so that you can have a look at
the ExampleSet before application of the clustering operator. Other than the label attribute the
ExampleSet has two real attributes; ‘att1’ and ‘att2’. The Support Vector Clustering operator is
applied on this data set. Run the process and you will see that two new attributes are created
by the Support Vector Clustering operator. The id attribute is created to distinguish examples
clearly. The cluster attribute is created to show which cluster the examples belong to. Each ex-
ample is assigned to a particular cluster. The examples that are not in any cluster are considered
as noise. Also note the Plot View of this data set. Switch to Plot View and set the the Plotter
to ‘Scatter’, x-Axis to ‘att1’, y-Axis to ‘att2’ and Color Column to ‘cluster’. You can clearly see
how the algorithm has created three separate cluster (noise is also visible separately). A cluster
model is also delivered through the cluster model output port. It has information regarding the
clustering performed. Under Folder View you can see members of each cluster in folder format.
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Top Down Clustering

Clustering

exa clu

clu

This operator performs top down clustering by applying the inner
flat clustering scheme recursively. Top down clustering is a strat-
egy of hierarchical clustering. The result of this operator is an hi-
erarchical cluster model.

Description

This operator is a nested operator i.e. it has a subprocess. The subprocess must have a flat clus-
tering operator e.g. the K-Means operator. This operator builds a Hierarchical clusteringmodel
using the clustering operator provided in its subprocess. Youneed to have a basic understanding
of subprocesses in order to apply this operator. Please study the documentation of the Subpro-
cess operator for basic understanding of subprocesses.
The basic idea of Top down clustering is that all observations start in one cluster, and splits

are performed recursively as onemoves down the hierarchy. Top down clustering is a strategy of
hierarchical clustering. Hierarchical clustering (also known as Connectivity based clustering) is
amethod of cluster analysis which seeks to build a hierarchy of clusters. Hierarchical clustering,
is based on the core idea of objects being more related to nearby objects than to objects farther
away. As such, these algorithms connect ‘objects’ (or examples, in case of an ExampleSet) to
form clusters based on their distance. A cluster can be described largely by the maximum dis-
tance needed to connect parts of the cluster. At different distances, different clusters will form.
These algorithms do not provide a single partitioning of the data set, but instead provide an
extensive hierarchy of clusters that merge with each other at certain distances.
Strategies for hierarchical clustering generally fall into two types:

• Agglomerative: This is a bottom-up approach: each observation starts in its own cluster,
and pairs of clusters are merged as one moves up the hierarchy. This type of clustering is
implemented in RapidMiner as the Agglomerative Clustering operator.

• Divisive: This is a top-down approach: all observations start in one cluster, and splits are
performed recursively as one moves down the hierarchy.

Clustering is concerned with grouping together objects that are similar to each other and dis-
similar to the objects belonging to other clusters. It is a technique for extracting information
from unlabeled data and can be very useful in many different scenarios e.g. in a marketing ap-
plication we may be interested in finding clusters of customers with similar buying behavior.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process.

Output Ports

cluster model (clu) This port delivers the hierarchical cluster model. It has information re-
garding the clustering performed.
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clustered set (clu) The ExampleSet that was given as input is passed with minor changes to
the output through this port. An attribute with id role is added to the input ExampleSet to
distinguish examples. An attribute with cluster role may also be added depending on the
state of the add cluster label parameter.

Parameters
create cluster label (boolean) This parameter specifies if a cluster label should be created.

If this parameter is set to true, a newattributewith cluster role is generated in the resultant
ExampleSet, otherwise this operator does not add the cluster attribute.

max depth (integer) This parameter specifies the maximal depth of the cluster tree.

max leaf size (integer) This parameter specifies themaximal number of items in each cluster
leaf.

Tutorial Processes

Top down clustering of Ripley-Set data set

Root

Ripley-Set

out

Top Down Cluste.. .

exa clu

clu

inp res

res

res

Figure 4.66: Tutorial process ‘Top down clustering of Ripley-Set data set’.

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note that the label is loaded
too, but it is only used for visualization and comparison and not for building the clusters itself.
A breakpoint is inserted at this step so that you can have a look at the ExampleSet before ap-
plication of the Top Down Clustering operator. Other than the label attribute the ‘Ripley-Set’
has two real attributes; ‘att1’ and ‘att2’. The Top Down Clustering operator is applied on this
data set. Run the process and you will see that two new attributes are created by the Top Down
Clustering operator. The id attribute is created to distinguish examples clearly. The cluster at-
tribute is created to show which cluster the examples belong to. Each example is assigned to a
particular cluster. Note the Graph View of the results. You can see that the algorithm has not
created separate groups or clusters as other clustering algorithms (like k-means), instead the
result is a hierarchy of clusters. Under the Folder View you can see members of each cluster in
folder format. You can see that it is an hierarchy of folders.
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k-Means

Clustering

exa clu

clu

This Operator performs clustering using the k-means algorithm.

Description

This Operator performs clustering using the k-means algorithm. Clustering groups Examples
together which are similar to each other. As no Label Attribute is necessary, Clustering can be
used on unlabelled data and is an algorithm of unsupervised machine learning.
The k-means algorithmdetermines a set of k clusters and assignes each Examples to exact one

cluster. The clusters consist of similar Examples. The similarity between Examples is based on
a distance measure between them.
Acluster in thek-meansalgorithmisdeterminedby thepositionof thecenter in then-dimensional

space of the n Attributes of the ExampleSet. This position is called centroid. It can, but do not
have to be the position of an Example of the ExampleSets.
The k-means algorithm starts with k points which are treated as the centroid of k potential

clusters. These start points are either the position of k randomly drawn Examples of the input
ExampleSet, or are determined by the k-means++ heuristic if determine good start values is set
to true.
All Examples are assigned to their nearest cluster (nearest is defined by the measure type).

Next the centroids of the clusters are recalculated by averaging over all Examples of one cluster.
The previous steps are repeated for the new centroids until the the centroids no longer move or
max optimization steps is reached. Be aware that it is not ensured that the k-means algorithm
converges if the measure type is not based on Euclidean Distance calculation (cause the recal-
culation of the centroids by averaging is assuming Euclidean space).
The procedure is repeated max runs times with each time a different set of start points. The

set of clusters is delivered which has the minimal sum of squared distances of all Examples to
their corresponding centroids.

Differentiation

• k-Medoids

In case of the k-medoids algorithm the centroid of a cluster will always be one of the points
in the cluster. This is themajor difference between the k-means and k-medoids algorithm.

See page 591 for details.

• k-Means (Kernel)

Kernel k-means uses kernels to estimate distances between Examples and clusters. Be-
cause of the nature of kernels it is necessary to sum over all Examples of a cluster to cal-
culate one distance. So this algorithm is quadratic in number of Examples and does not
return a Centroid Cluster Model (on the contrary the K-Means operator returns a Centroid
Cluster Model).

See page 587 for details.
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Input Ports
example set input (exa) This input port expects an ExampleSet.

Output Ports
cluster model (clu) This port delivers the cluster model. It contains the information which

Examples are part of which cluster. It also stores the position of the centroids of the clus-
ters.

It can be used by the Apply Model Operator to perform the specified clustering on another
ExampleSet.

The cluster model can also be grouped together with other clusteringmodels, preprocess-
ing models and learning models by the Group Models Operator.

clustered set (clu) An Attribute ‘id’ with special role ‘Id’ is added to the input ExampleSet to
distinguish Examples. Depending on the add cluster attribute and the add as label parame-
ters an Attribute ‘cluster’ with special role ‘Cluster’ or ‘Label’ is also added. The resulting
ExampleSet is delivered at this output port.

Parameters
add cluster attribute If true, a new Attribute called ‘cluster’ with the cluster_id for each Ex-

ample is generated. By default the Attribute is created with the special role ‘Cluster’, ex-
cept the parameter add as label is true. If so the new Attribute is called ‘label’ and has the
special role ‘Label’. The Attribute can also be generated later by using the Apply Model
Operator.

add as label If true the new Attribute with the cluster_id is called ‘label’ and has the special
role ‘Label’. If the parameter add cluster attribute is false, no new Attribute is created.

remove unlabeled If set to true, Examples which cannot be assigned to a cluster are removed
from the output ExampleSet.

k This parameter specifies the number of clusters to determine.

max runs This parameter specifies the maximal number of runs of k-Means with random ini-
tialization of the start points that are performed.

determine good start values If true the k start points are determined using the k-means++
heuristic, descriped in “k-means++: The Advantages of Careful Seeding” by David Arthur
and Sergei Vassilvitskii 2007.

max optimization steps Thisparameter specifies themaximalnumberof iterationsperformed
for one run of k-Means.

measure types This parameter is used for selecting the type of measure to be used for finding
the nearest neighbors. The following options are available:

• MixedMeasures MixedMeasures areused to calculate distances in case of bothnom-
inal and numerical Attributes.

• NominalMeasures In case of only nominal Attributes different distance metrices
can be used to calculate distances on this nominal Attributes.
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• NumericalMeasures In case of onlynumericalAttributes different distancemetrices
can be used to calculate distances on this numerical Attributes.

• BregmannDivergences Bregmann divergences are more generic “closeness” mea-
sure types with does not satisfy the triangle inequality or symmetry. Formore details
see the parameter divergence.

mixed measure Theonly available option formixedmeasure is the ‘MixedEuclideanDistance’.
For numerical values the euclidean distance is calculated. For nomimal values, a distance
of 0 is taken if both values are the same and a distance of one is taken otherwise. This
parameter is available when the measure type parameter is set to ‘mixed measures’.

nominal measure This parameters defines how to calculate distances for only nominal At-
tributes in the input ExampleSet, in case the measure type is set to nominal measure. In
case of using a similarity as a distance measure, the actual distance is calculated as the
negative similarity. For the different similarities the following variables are defined:
e: number of Attribute for which both Examples have equal and non-zero values
u: number of Attribute for which both Examples have not equal values
z: number of Attribute for which both Examples have zero values

• NominalDistance Distance of two values is 0 if both values are the same and 1 oth-
erwise.

• DiceSimilarity With theabovementioneddefinitions theDiceSimilarity is: 2*e/(2*e+u)
• JaccardSimilarity With the above mentioned definitions the JaccardSimilarity is:
e/(e+u)

• KulczynskiSimilarity With theabovementioneddefinitions theKulczynskiSimilarity
is: e/u

• RogersTanimotoSimilarity With the above mentioned definitions the RogersTani-
motoSimilarity is: (e+z)/(e+2*u+z)

• RussellRaoSimilarity With the abovementioned definitions the RussellRaoSimilar-
ity is: e/(e+u+z)

• SimpleMatchingSimilarity With theabovementioneddefinitions theSimpleMatch-
ingSimilarity is: (e+z)/(e+u+z)

numerical measure This parameters defines how to calculate distances for only numerical
Attributes in the input ExampleSet, in case the measure type is set to numerical measure.
For the different distance measures the following variable is defined:
y(i,j) : Value of the j.th Attribute of the i.th Example. Hence y(1,3) - y(2,3) is the difference
of the values of the third Attribute of the first and second Example.
In case of using a similarity as a distance measure, the actual distance is calculated as the
negative similarity.

• EuclideanDistance Square rootof the sumofquadraticdifferencesoverallAttributes.
Dist = Sqrt ( Sum_(j=1) [y(1,j)-y(2,j)]^2 )

• CanberraDistance Sum over all Attributes. The summand is the absolute of the
difference of the value, divided by the sum of the absolute values. Dist = Sum_(j=1)
|y(1,j)-y(2,j)| / (|y(1,j)|+|y(2,j)| )TheCanberraDistance isoftenused tocompare ranked
list or for intrusion detection in computer security.

• ChebychevDistance Maximum of all differences of all Attributes. Dist = max_(j=1)
(|y(1,j)-y(2,j)| )
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• CorrelationSimilarity The similarity is calculated as the correlation between the
Attribute vectors of the two Examples.

• CosineSimilarity Similaritymeasuremeasuring the cosine of the angle between the
Attribute vectors of the two Examples.

• DiceSimilarity TheDiceSimilarity fornumericalAttributes is calculatedas2*Y1Y2/(Y1+Y2).
Y1Y2 = Sum over product of values = Sum_(j=1) y(1,j)*y(2,j). Y1 = Sum over values of
first Example = Sum_(j=1) y(1,j) Y2 = Sum over values of second Example = Sum_(j=1)
y(2,j)

• DynamicTimeWarpingDistance Dynamic TimeWarping is often use in Time Series
analysis for measuring the distance between two temporal sequences. Here the dis-
tance on an optimal “warping” path from the Attribute vector of the first Example to
the second Example is calculated.

• InnerProductSimilarity The similarity is calculated as the sumof the product of the
Attribute vectors of the two Examples. Dist = -Similarity = -Sum_(j=1) y(1,j)*y(2,j)

• JaccardSimilarity The JaccardSimilarity is calculated as Y1Y2/(Y1+Y2-Y1Y2). See
DiceSimilarity for the definition of Y1Y2, Y1 and Y2.

• KernelEuclideanDistance Thedistance is calculatedby theeuclideandistanceof the
two Examples, in a transformed space. The transformation is defined by the chosen
kernel and configured by the parameters kernel type, gamma, sigma1, sigma2, sigma
3, shift, degree, a, b.

• ManhattanDistance Sum of the absolute distances of the Attribute values. Dist =
Sum_(j=1) |y(1,j)-y(2,j)|

• MaxProductSimilarity The similarity is themaximumof all products of all Attribute
values. If the maximum is less or equal to zero the similarity is not defined. Dist =
-Similarity = -max_(j=1) (y(1,j)*y(2,j))

• OverlapSimilarity The similarity is a variant of simple matching for numerical At-
tributes and is calculated as minY1Y2 / min(Y1,Y2). See DiceSimilarity for the defini-
tionofY1, Y2. minY1Y2=Sumover theminimumofvalues=Sum_(j=1)min [y(1,j),y(2,j)]
.

divergence This parameter defines which type of Bregman divergence is used when the mea-
sure type parameter is set to ‘bregman divergences’. For the different distance measures
the following variable is defined:

y(i,j) : Value of the j.th Attribute of the i.th Example. Hence y(1,3) - y(2,3) is the difference
of the values of the third Attribute of the first and second Example.

• GeneralizedIDivergence The distance is calculated as Sum1Sum2. It is not applica-
ble if any Attribute value is less or equal to 0. Sum1 = Sum_(j=1) y(1,j)*ln[y(1,j)/y(2,j)]
Sum2 = Sum_(j=1) [y(1,j)-y(2,j)]

• ItakuraSaitoDistance The ItakuraSaitoDistance can only be calculated for Exam-
pleSets with 1 Attribute and values larger 0. Dist = y(1,1)/y(2,1)-ln[y(1,1)/y(2,1)]-1

• KLDivergence The Kullback-Leibler divergence is a measure of how one probability
distribution diverges from a second expected probability distribution. Dist = Sum-
_(j=1) [y(1,j)*log_2(y(1,j)/y(2,j))]

• LogarithmicLoss The LogarithmicLoss can only be calculated for ExampleSets with
1 Attribute and values larger 0. Dist = y(1,1)*ln[y(1,1)/y(2,1)]-(y(1,1)-y(2,1))
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• LogisticLoss The LogisticLoss can only be calculated for ExampleSets with 1 At-
tribute and values larger 0. Dist = y(1,1)*ln[y(1,1)/y(2,1)]+(1-y(1,1))*ln[(1-y(1,1))/(1-
y(2,1))]

• MahalanobisDistance The Mahalanobis distance measures the distance between
the two Examples under the assumption they are both random vectors of the same
distribution. Therefore thecovariancematrixS is calculatedon thewholeExampleSet
and the Distance is calculated as: Dist = Sqrt [ (vecY1-vecY2) S (vecY1-vecY2) ] vecY1
= Attribute vector of Example 1 vecY2 = Attribute vector of Example 2

• SquaredEuclideanDistance Sum of quadratic differences over all Attributes. Dist =
Sum_(j=1) [y(1,j)-y(2,j)]^2

• SquaredLoss The SquaredLoss can only be calculated for ExampleSets with 1 At-
tribute. Dist = [y(1,1)-y(2,1)]^2

kernel type This parameter is available only when the numerical measure parameter is set to
‘Kernel Euclidean Distance’. The type of the kernel function is selected through this pa-
rameter. Following kernel types are supported:

• dot The dot kernel is defined by k(x,y) = x*y i.e. it is the inner product of x and y.

• radial The radial kernel is defined by k(x,y) = exp(-g*||x-y||^2) where g is gamma,
specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in theperformanceof the kernel, and shouldbe carefully tuned to theprob-
lem at hand.

• polynomial The polynomial kernel is defined by k(x,y) = (x*y+1)^dwhere d is the de-
gree of the polynomial and is specified by the _kernel degree_ parameter. Polynomial
kernels are well suited for problems where all the training data is normalized.

• sigmoid This is a hyperbolic tangent sigmoid kernel. The distance is calculated as
tanh[a*Y1Y2+b] where Y1Y2 is the inner product of the Attribute vector of the two
Examples. a and b can be adjusted using the kernel a and kernel b parameters. A com-
mon value for a is 1/N, where N is the data dimension. Note that not all choices of a
and b lead to a valid kernel function.

• anova The anova kernel is defined by the raised to the power d of summation of exp(-
g(x-y)) where g is gamma and d is degree. The two are adjusted by the kernel gamma
and kernel degree parameters respectively.

• epachnenikov The Epanechnikov kernel is this function (3/4)(1-u2) for u between -1
and 1 and zero for u outside that range. It has the two adjustable parameters kernel
sigma1 and kernel degree.

• gaussian_combination This is thegaussiancombinationkernel. It has theadjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2+c^2.
It has the adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma This is the SVM kernel parameter gamma. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to radial or anova.

kernel sigma1 This is the SVM kernel parameter sigma1. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to epachnenikov, gaussian combination or multiquadric.
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kernel sigma2 This is the SVM kernel parameter sigma2. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to gaussian combination.

kernel sigma3 This is the SVM kernel parameter sigma3. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to gaussian combination.

kernel shift This is the SVM kernel parameter shift. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to multiquadric.

kernel degree This is theSVMkernel parameter degree. This parameter is only availablewhen
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to polynomial, anova or epachnenikov.

kernel a This is the SVMkernel parameter a. This parameter is only available when the numer-
ical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type parameter
is set to neural.

kernel b This is the SVMkernel parameter b. This parameter is only availablewhen the numer-
ical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type parameter
is set to neural.

use local random seed This parameter indicates if a local random seed should be used for ran-
domization of the k different starting points of the algorithm.

local random seed If the use local random seed parameter is checked this parameter deter-
mines the local random seed.

Tutorial Processes

Clustering of the Iris Data Set

In this tutorial process the Iris data set is clustered using the k-means Operator. The Iris data
set is retrieved from the Samples folder. Also the label Attribute is also retrieved, but only for
comparison of the cluster assignment with the class of the Examples. The label Attribute is not
used in the Clustering. For more details see the comments in the Process.
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Process

The aggregated ExampleSet is postprocessed for an easier 
visualisation.

Look into the results of the process: 
ExampleSet (Rename): 
- cluster_0 consist mainly of iris_virginica Examples (36) with only a few (3) iris_versicolor Examples 
- cluster_1 consists completely of iris_setosa Examples (50). Also iris_setosa Example cannot be found in other clusters. 
- cluster_2 consists most of iris_versicolor Examples (47) but with also some (14) iris_virginica Examples 
 
ExampleSet (Clustering): 
- You can visualize the assignment of the Examples to the clusters by using the 'Scatter' Chart, plotting two of the Attributes 
a1,a2,a3,a4 on x-and y-axis and the cluster Attribute as Color Column 
 
Cluster Model (Clustering): 
- The Cluster Model consist information which Example is assigned to which cluster 
- the size of the clusters can be visualized as a graph 
- the position of the centroids is listed

The aggregated ExampleSet is postprocessed for an easier 
visualisation.

Look into the results of the process: 
ExampleSet (Rename): 
- cluster_0 consist mainly of iris_virginica Examples (36) with only a few (3) iris_versicolor Examples 
- cluster_1 consists completely of iris_setosa Examples (50). Also iris_setosa Example cannot be found in other clusters. 
- cluster_2 consists most of iris_versicolor Examples (47) but with also some (14) iris_virginica Examples 
 
ExampleSet (Clustering): 
- You can visualize the assignment of the Examples to the clusters by using the 'Scatter' Chart, plotting two of the Attributes 
a1,a2,a3,a4 on x-and y-axis and the cluster Attribute as Color Column 
 
Cluster Model (Clustering): 
- The Cluster Model consist information which Example is assigned to which cluster 
- the size of the clusters can be visualized as a graph 
- the position of the centroids is listed

The aggregated ExampleSet is postprocessed for an easier 
visualisation.

Look into the results of the process: 
ExampleSet (Rename): 
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Figure 4.67: Tutorial process ‘Clustering of the Iris Data Set’.

K-Means (Kernel)

Clustering

exa clu

clu

This operator performs clustering using the kernel k-means algo-
rithm. Clustering is concernedwith groupingobjects together that
are similar to each other and dissimilar to the objects belonging to
other clusters. Kernel k-means uses kernels to estimate the dis-
tance between objects and clusters. K-means is an exclusive clus-
tering algorithm.

Description
This operator performs clustering using the kernel k-means algorithm. The k-means is an exclu-
sive clustering algorithm i.e. each object is assigned to precisely one of a set of clusters. Objects
in one cluster are similar to each other. The similarity between objects is based on a measure
of the distance between them. Kernel k-means uses kernels to estimate the distance between
objects and clusters. Because of the nature of kernels it is necessary to sumover all elements of a
cluster to calculate one distance. So this algorithm is quadratic in number of examples and does
not return a Centroid Cluster Model contrary to the K-Means operator. This operator creates a
cluster attribute in the resultant ExampleSet if the add cluster attribute parameter is set to true.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. Clustering is a technique for extracting infor-
mation from unlabeled data. Clustering can be very useful in many different scenarios e.g. in a
marketing application wemay be interested in finding clusters of customers with similar buying
behavior.
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Differentiation
• k-Means (Deprecated) Kernel k-means uses kernels to estimate the distance between
objects and clusters. Because of the nature of kernels it is necessary to sum over all ele-
ments of a cluster to calculate one distance. So this algorithm is quadratic in number of
examples and does not return a Centroid Cluster Model which does the K-Means operator.
See page ?? for details.

Input Ports
example set (exa) The input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
cluster model (clu) This port delivers the cluster model which has information regarding the

clustering performed. It tells which examples are part of which cluster.

clustered set (clu) The ExampleSet that was given as input is passed with minor changes to
the output through this port. An attribute with id role is added to the input ExampleSet to
distinguish examples. An attribute with cluster role may also be added depending on the
state of the add cluster attribute parameter.

Parameters
add cluster attribute (boolean) If enabled, a new attribute with cluster role is generated di-

rectly in this operator, otherwise this operator does not add the cluster attribute. In the
latter case you have to use the Apply Model operator to generate the cluster attribute.

add as label (boolean) If true, the cluster id is stored in an attributewith the label role instead
of cluster role (see add cluster attribute parameter).

remove unlabeled (boolean) If set to true, unlabeled examples are deleted.

use weights (boolean) This parameter indicates if the weight attribute should be used.

k (integer) This parameter specifies the number of clusters to form. There is no hard and fast
rule of number of clusters to form. But, generally it is preferred to have small number of
clusters with examples scattered (not too scattered) around them in a balanced way.

max optimization steps (integer) Thisparameter specifies themaximalnumberof iterations
performed for one run of k-Means

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

kernel type (selection) The type of the kernel function is selected through this parameter.
Following kernel types are supported: dot, radial, polynomial, neural, anova, epachnenikov,
gaussian combination, multiquadric

• dot The dot kernel is defined byk(x,y)=x*y i.e. it is inner product ofx and y.
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• radial The radial kernel is defined by exp(-g ||x-y||^2)where g is the gamma, it is spec-
ified by the kernel gamma parameter. The adjustable parameter gamma plays a major
role in the performance of the kernel, and should be carefully tuned to the problem
at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of polynomial and it is specified by the kernel degree parameter. The polynomial
kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• anova The anova kernel is defined by raised to power d of summation of exp(-g (x-y))
where g is gamma and d is degree. gammaanddegree are adjusted by the kernel gamma
and kernel degree parameters respectively.

• epachnenikov The epachnenikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the kernel parameter gamma. This is only available when the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the kernel parameter sigma1. This is only available when the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the kernel parameter sigma2. This is only available when the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the kernel parameter sigma3. This is only available when the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the kernel parameter shift. This is only available when the kernel
type parameter is set to multiquadric.

kernel degree (real) This is the kernel parameter degree. This is only available when the ker-
nel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the kernel parameter a. This is only available when the kernel type pa-
rameter is set to neural.

kernel b (real) This is the kernel parameter b. This is only available when the kernel type pa-
rameter is set to neural.

Related Documents

• k-Means (Deprecated) (page ??)
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Tutorial Processes

Clustering of the Ripley-Set data set using the Kernel K-Means operator

Process

Ripley-Set

out

Clustering

exa clu

clu

inp res

res

res

Figure 4.68: Tutorial process ‘Clustering of the Ripley-Set data set using the Kernel K-Means
operator’.

In many cases, no target attribute (i.e. label) can be defined and the data should be auto-
matically grouped. This procedure is called Clustering. RapidMiner supports a wide range of
clustering schemes which can be used in just the same way like any other learning scheme. This
includes the combination with all preprocessing operators.
In this Example Process, the ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note

that the label is loaded too, but it is only used for visualization and comparison andnot for build-
ing the clusters itself. A breakpoint is inserted at this step so that you can have a look at the
ExampleSet before application of the Kernel K-Means operator. Besides the label attribute the
‘Ripley-Set’ has two real attributes; ‘att1’ and ‘att2’. The Kernel K-Means operator is applied on
this data setwith default values for all parameters. Run theprocess and youwill see that twonew
attributes are created by the Kernel K-Means operator. The id attribute is created to distinguish
examples clearly. The cluster attribute is created to show which cluster the examples belong to.
As parameter k was set to 2, only two clusters are possible. That is why each example is assigned
to either ‘cluster_0’ or ‘cluster_1’. Also note the Plot View of this data. You can clearly see how
the algorithmhas created two separate groups in the Plot View. A clustermodel is also delivered
through the cluster model output port. It has information regarding the clustering performed.
Under Folder View you can see members of each cluster in folder format.
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K-Medoids

Clustering

exa clu

clu

This operator performs clustering using the k-medoids algorithm.
Clustering is concerned with grouping objects together that are
similar to each other and dissimilar to the objects belonging to
other clusters. Clustering is a technique for extracting information
fromunlabelled data. k-medoids clustering is an exclusive cluster-
ing algorithm i.e. each object is assigned to precisely one of a set
of clusters.

Description

This operator performs clustering using the k-medoids algorithm. K-medoids clustering is an
exclusive clustering algorithm i.e. each object is assigned to precisely one of a set of clusters.
Objects in one cluster are similar to each other. The similarity between objects is based on a
measure of the distance between them.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. It is a technique for extracting information
from unlabeled data and can be very useful in many different scenarios e.g. in a marketing ap-
plication we may be interested in finding clusters of customers with similar buying behavior.
Here is a simple explanation of how the k-medoids algorithm works. First of all we need to

introduce the notion of the center of a cluster, generally called its centroid. Assuming that we
are using Euclidean distance or something similar as a measure we can define the centroid of a
cluster to be the point for which each attribute value is the average of the values of the corre-
sponding attribute for all the points in the cluster. The centroid of a cluster will always be one
of the points in the cluster. This is the major difference between the k-means and k-medoids
algorithm. In the k-means algorithm the centroid of a cluster will frequently be an imaginary
point, not part of the cluster itself, which we can take to mark its center. For more information
about the k-means algorithm please study the k-means operator.

Differentiation

• k-Means (Deprecated) In case of the k-medoids algorithm the centroid of a cluster will
always be one of the points in the cluster. This is the major difference between the k-
means and k-medoids algorithm. In the k-means algorithm the centroid of a cluster will
frequently be an imaginary point, not part of the cluster itself, which we can take to mark
its center. See page ?? for details.

Input Ports

example set input (exa) The input port expects an ExampleSet. It is the output of the Re-
trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports

cluster model (clu) Thisport delivers the clustermodel. It has information regarding the clus-
tering performed. It tells which examples are part of which cluster. It also has information
regarding centroids of each cluster.
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clustered set (clu) The ExampleSet that was given as input is passed with minor changes to
the output through this port. An attribute with id role is added to the input ExampleSet to
distinguish examples. An attribute with cluster role may also be added depending on the
state of the add cluster attribute parameter.

Parameters
add cluster attribute (boolean) If enabled, a new attribute with cluster role is generated di-

rectly in this operator, otherwise this operator does not add the cluster attribute. In the
latter case you have to use the Apply Model operator to generate the cluster attribute.

add as label (boolean) If true, the cluster id is stored in an attributewith the label role instead
of cluster role (see add cluster attribute parameter).

remove unlabeled (boolean) If set to true, unlabeled examples are deleted.

k (integer) This parameter specifies the number of clusters to form. There is no hard and fast
rule of number of clusters to form. But, generally it is preferred to have a small number of
clusters with examples scattered (not too scattered) around them in a balanced way.

max runs (integer) This parameter specifies the maximal number of runs of k-medoids with
random initialization that are performed.

max optimization steps (integer) Thisparameter specifies themaximalnumberof iterations
performed for one run of k-medoids.

use local random seed (boolean) Indicates if a local randomseed shouldbeused for random-
ization. Randomization may be used for selecting k different points at the start of the al-
gorithm as potential centroids.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

measure types (selection) This parameter is used for selecting the typeofmeasure tobeused
formeasuring thedistancebetweenpoints.The followingoptions are available: mixedmea-
sures, nominal measures, numerical measures and Bregman divergences.

mixed measure (selection) This parameter is available when the measure type parameter is
set to ‘mixed measures’. The only available option is the ‘Mixed Euclidean Distance’

nominal measure (selection) This parameter is available when the measure type parameter
is set to ‘nominal measures’. This option cannot be applied if the input ExampleSet has
numerical attributes. In this case the ‘numerical measure’ option should be selected.

numerical measure (selection) This parameter is available when the measure type parame-
ter is set to ‘numerical measures’. This option cannot be applied if the input ExampleSet
has nominal attributes. If the input ExampleSet has nominal attributes the ‘nominalmea-
sure’ option should be selected.

divergence (selection) This parameter is available when themeasure type parameter is set to
‘bregman divergences’.

kernel type (selection) This parameter is only availablewhen the numericalmeasureparame-
ter is set to ‘Kernel EuclideanDistance’. The type of the kernel function is selected through
this parameter. Following kernel types are supported:
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• dot The dot kernel is defined byk(x,y)=x*y i.e.it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2) where g is the gamma that is
specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in theperformanceof the kernel, and shouldbe carefully tuned to theprob-
lem at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of the polynomial and it is specified by the kernel degree parameter. The Polyno-
mial kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• sigmoid This is the sigmoid kernel. Please note that the sigmoid kernel is not valid
under some parameters.

• anova This is the anova kernel. It has adjustable parameters gamma and degree.

• epachnenikov The Epanechnikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVMkernel parameter gamma. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the SVM kernel parameter sigma3. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.
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kernel b (real) This is the SVM kernel parameter b. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

Related Documents
• k-Means (Deprecated) (page ??)

Tutorial Processes

Clustering of Ripley-Set data set by the K-Medoids operator

Process

Ripley-Set

out

Clustering

exa clu

clu

inp res

res

res

Figure 4.69: Tutorial process ‘Clustering of Ripley-Set data set by the K-Medoids operator’.

In many cases, no target attribute (i.e. label) can be defined and the data should be auto-
matically grouped. This procedure is called Clustering. RapidMiner supports a wide range of
clustering schemes which can be used in just the same way like any other learning scheme. This
includes the combination with all preprocessing operators.
In this Example Process, the ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note

that the label is loaded too, but it is only used for visualization and comparison andnot for build-
ing the clusters itself. A breakpoint is inserted at this step so that you can have a look at the
ExampleSet before application of the K-Medoids operator. Other than the label attribute the
‘Ripley-Set’ has two real attributes; ‘att1’ and ‘att2’. The K-Medoids operator is applied on this
data set with default values for all parameters. Run the process and you will see that two new
attributes are created by the K-Medoids operator. The id attribute is created to distinguish ex-
amples clearly. The cluster attribute is created to show which cluster the examples belong to.
As parameter k was set to 2, only two clusters are possible. That is why each example is as-
signed to either ‘cluster_0’ or ‘cluster_1’. Also note the Plot View of this data. You can clearly
see how the algorithm has created two separate groups in the Plot View. A cluster model is also
delivered through the cluster model output port. It has information regarding the clustering
performed. Under Folder View you can see members of each cluster in folder format. You can
see information regarding centroids under the Centroid Table and Centroid Plot View tabs.
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4.3 Associations
Apply Association Rules

Apply Associatio...

exa

ass

exa This operator applies the given association rules on an Example-
Set.

Description
This operator creates a new confidence attribute for each item occurring in at least one conclu-
sion of an association rule. Then it checks for each example and for each rule, if the example
fulfills the premise of the rule, which it does, if it covers all items in the premise. An example
covers an item, if the attribute representing the item contains the positive value. If the check is
positive, a confidence value for each item in the conclusion is derived. Which value is used, de-
pends on the selected confidence aggregation method. There are two types: The binary choice
will set a 1, for any item contained inside a fulfilled rule’s conclusion. This is independent of
how confident the rule was. Any aggregation choice will select the maximum of the previous
and the new value of the selected confidence function.
Association rules are if/then statements that help uncover relationships between seemingly

unrelated data. An example of an association rule would be “If a customer buys eggs, he is 80%
likely to also purchase milk.” An association rule has two parts, an antecedent (if) and a conse-
quent (then). An antecedent or premise is an item (or itemset) found in the data. A consequent
or conclusion is an item (or itemset) that is found in combination with the antecedent.
Association Rules can be created by using the Create Association Rules operator. Association

rules are created by analyzing data for frequent if/then patterns and using the criteria support
and confidence to identify themost important relationships. Support is an indication of how fre-
quently the items appear in the database. Confidence indicates the number of times the if/then
statements have been found to be true. The frequent if/then patterns are mined using the oper-
ators like the FP-Growth operator. The Create Association Rules operator takes these frequent
itemsets and generates association rules.
Such information can be used as the basis for decisions about marketing activities such as,

e.g., promotional pricing or product placements. In addition to the above example frommarket
basket analysis association rules are employed today in many application areas including Web
usage mining, intrusion detection and bioinformatics.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of the Subprocess op-

erator in the attached Example Process.

association rules (ass) This input port expects association rules.

Output Ports
example set (exa) The association rules are applied and the resultant ExampleSet is output

of this port.
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Parameters
confidence aggregation method (selection) This parameter selects the method for aggre-

gation of the confidence on the items in each fulfilled conclusion.

positive value (string) This parameter determines, which value of the binominal attributes
is treated as positive. Attributes with that value are considered as part of a transaction. If
left blank, the ExampleSet determines which value to use.

Tutorial Processes

Applying association rules

Process

Subprocess

in ou t

ou t

ou t

Apply Associatio...

exa

ass

exainp res

res

Figure 4.70: Tutorial process ‘Applying association rules’.

This Example Process starts with the Subprocess operator which provides an ExampleSet and
Association Rules. A breakpoint is inserted here so that you can view the ExampleSet and the
AssociationRules. This Example Process dealswith the application of these rules. If youwant to
know how these association rules were created, please study the Example Process of the Create
Association Rules operator. The ExampleSet and Association Rules are provided as input to the
Apply Association Rules operator. All parameters of the Apply Association Rules operator are
used with default values. The resultant ExampleSet can be viewed in the Results Workspace.
You can see that this operator has created several confidence attributes in the ExampleSet. The
explanation of these confidence attributes is given in the description of this operator.
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Create Association Rules

Create Associatio...

i te ru l

i te

This operator generates a set of association rules from the given
set of frequent itemsets.

Description
Association rules are if/then statements that help uncover relationships between seemingly un-
related data. An example of an association rule would be “If a customer buys eggs, he is 80%
likely to also purchase milk.” An association rule has two parts, an antecedent (if) and a conse-
quent (then). An antecedent is an item (or itemset) found in the data. A consequent is an item
(or itemset) that is found in combination with the antecedent.
Association rules are created by analyzing data for frequent if/then patterns and using the

criteria support and confidence to identify the most important relationships. Support is an in-
dication of how frequently the items appear in the database. Confidence indicates the number
of times the if/then statements have been found to be true. The frequent if/then patterns are
mined using the operators like the FP-Growth operator. The Create Association Rules operator
takes these frequent itemsets and generates association rules.
Such information can be used as the basis for decisions about marketing activities such as,

e.g., promotional pricing or product placements. In addition to the above example frommarket
basket analysis association rules are employed today in many application areas including Web
usage mining, intrusion detection and bioinformatics.

Input Ports
item sets (ite) This input port expects frequent itemsets. Operators like the FP-Growth oper-

ator can be used for providing these frequent itemsets.

Output Ports
item sets (ite) The itemsets that was given as input is passed without changing to the output

through this port. This is usually used to reuse the same itemsets in further operators or
to view the itemsets in the Results Workspace.

rules (rul) The association rules are delivered through this output port.

Parameters
criterion (selection) This parameter specifies the criterion which is used for the selection of

rules.
• confidence The confidence of a rule is defined conf(X implies Y) = supp(X∪Y)/supp(X)
. Be careful when reading the expression: here supp(X∪Y)means “support for occur-
rences of transactions where X and Y both appear”, not “support for occurrences of
transactions where either X or Y appears”. Confidence ranges from 0 to 1. Confi-
dence is an estimate of Pr(Y | X), the probability of observing Y given X. The support
supp(X) of an itemset X is defined as the proportion of transactions in the data set
which contain the itemset.
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• lift The lift of a rule is defined as lift(X implies Y) = supp(X ∪ Y)/((supp(Y) x supp(X))
or the ratio of the observed support to that expected if X and Y were independent.
Lift can also be defined as lift(X implies Y) =conf(X implies Y)/supp(Y). Lift measures
how far from independence are X and Y. It ranges within 0 to positive infinity. Values
close to 1 imply that X and Y are independent and the rule is not interesting.

• conviction conviction is sensitive to rule direction i.e. conv(X implies Y) is not same
as conv(Y implies X). Conviction is somewhat inspired in the logical definition of im-
plication and attempts to measure the degree of implication of a rule. Conviction is
defined as conv(X implies Y) =(1 - supp(Y))/(1 - conf(X implies Y))

• gainWhen this option is selected, the gain is calculated using the gain theta param-
eter.

• laplace When this option is selected, the Laplace is calculated using the laplace k
parameter.

• psWhen this option is selected, the ps criteria is used for rule selection.

min confidence (real) This parameter specifies the minimum confidence of the rules.

min criterion value (real) This parameter specifies the minimum value of the rules for the
selected criterion.

gain theta (real) This parameter specifies the parameter Theta which is used in the Gain cal-
culation.

laplace k (real) This parameter specifies the parameter kwhich is used in the Laplace function
calculation.

Tutorial Processes

Introduction to the Create Association Rules operator

Process

I r is

out

Discretize by Fre.. .

exa exa

ori

pre

Nominal to Bino.. .

exa exa

ori

pre

FPGrowth

exa exa

fre

Create Associati. . .

i te ru l

i te

inp

res

res

Figure 4.71: Tutorial process ‘Introduction to the Create Association Rules operator’.

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can view the ExampleSet. As you can see, the ExampleSet has real attributes. Thus the
FP-Growth operator cannot be applied on it directly because the FP-Growth operator requires
all attributes to be binominal. We have to do some preprocessing to mold the ExampleSet into
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desired form. The Discretize by Frequency operator is applied to change the real attributes to
nominal attributes. Then the Nominal to Binominal operator is applied to change these nom-
inal attributes to binominal attributes. Finally, the FP-Growth operator is applied to generate
frequent itemsets. The frequent itemsets generated from the FP-Growth operator are provided
to the Create Association Rules operator. The resultant association rules can be viewed in the
ResultsWorkspace. Run this processwith different values for different parameters to get a better
understanding of this operator.
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FP-Growth

FP-Growth

exa exa

fre

This Operator efficiently calculates all frequently-occurring item-
sets in an ExampleSet, using the FP-tree data structure.

Description
When online shopping, you will sometimes get a suggestion of the following form: “Customers
who bought item X also bought item Y.” This suggestion is an example of an association rule.
To derive it, you first have to know which items on the market most frequently co-occur in cus-
tomers’ shopping baskets, and here the FP-Growth algorithm has a role to play.
The FP-Growth algorithm is an efficient algorithm for calculating frequently co-occurring

items in a transaction database. To understand how it works, let’s start with some terminol-
ogy, using a customer transaction as an example:

• item - any object that is sold on the market

• basket - a container for one or more items selected by the customer

• itemset - any subset of items that are sold together, in the same shopping basket

• transaction - the complete set of items in an individual shopping basket, at themoment of
purchase

• transaction database - the complete set of shopping baskets / transactions recorded by the
merchant

Here, the words “basket” and “transaction” are used interchangably, because we identify the
customer’s shopping basket with the items that were purchased. Tomake these definitions con-
crete, consider the following transaction database:

• transaction1 = (product1, product2, product7)

• transaction2 = (product2, product5, product7)

• transaction3 = (product6, product7, product8, product9)

• transaction4 = (product1, product3, product4, product6, product7)

Nine distinct items are for sale, and there are four baskets / transactions, with a varying num-
ber of items. The item appearing most frequently, product7, appears four times in the transac-
tions database. Each of the following itemsets occurs twice: (product1, product7), (product2,
product7), (product6, product7).
An FP-tree data structure can be efficiently created, compressing the data so much that, in

many cases, even large databases will fit into main memory. In the example above, the FP-tree
would have product7, the most frequently occurring product, next to the root, with branches
from product7 to product1, product2, and product6. If we insist that a product must appear
more than once in the transaction database, then the remaining products are excluded from the
FP-tree. The transaction database might have started out as a 4 x 9 (transactions x products)
data table, with many zero entries, but now it is reduced to a minimalistic tree that captures
only the relevant frequency data.
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Even with an efficient tree structure, the number of itemsets considered by the algorithm can
grow very large. With the help of the parameter max number of itemsets, you can if necessary
reduce runtime and memory.
Remember that online shopping is merely an example; the FP-Growth algorithm can be ap-

plied to any problem that can be formulated in terms of items, itemsets, and baskets / transac-
tions. The typical setting for the algorithm is a large transaction database (many baskets), with
only a small number of items in each basket – small compared to the set of all items.

• support = (Number of times an item or itemset appears in the database) / (Number of bas-
kets in the database)

In general, the concept of “minimum support” creates a cutoff, defining what is meant by fre-
quent or not-so-frequent occurrences of an itemset. If an item or an itemset appears in only a
few baskets, it is excluded, via the parameters min support or min frequency. The exclusion of
infrequently-occurring items and itemsets helps to compress the data and improves the statis-
tical significance of the results. On the other hand, if the value formin support ormin frequency
is set too high, the algorithm may find zero itemsets. Hence, this Operator provides two major
modes, via the checkbox find min number of itemsets:
1. if unchecked, with a fixed minimum support value, and
2. if checked, with a dynamic minimum support value, to ensure that the result includes a

minimum number of itemsets.
FP-Growth supports several different formats for the input data. Please note the following

requirements:

• in the ExampleSet, one transaction = one row. For a discussion of the columns, see below.

• all the item values must be nominal

• a transaction ID is optional and, if present, it should have the “id” role, so that it is not
identified as an item.

For the columns, the three available input formats are illustrated in the second tutorial, to-
gether with necessary pre-processing. Here’s the summary:

• item list in a column: All the items belonging to a transaction appear in a single column,
separated by item separators, in a CSV-like format. As with CSV files, the items can be
quoted, and escape characters are available. You can trim item names.

• items in separate columns: All the items belonging to a transaction appear in separate
columns. For each transaction, the first item name appears in the first column, the second
item name in the second column, etc. The number of columns corresponds to the basket
with the maximum number of items. Missing values indicate no item. You can trim item
names.

• items in dummy coded columns: Every item in the set of all items has its own column, and
the itemname is the columnname. For each transaction, the binominal values (true/false)
indicate whether the item can be found in the basket. If your data is binominal but does
not identify the values as true/false, you may have to set the positive value parameter.

Input Ports
example set (exa) This input port expects an ExampleSet. As discussed in detail in the de-

scription, this Operator supports several different formats for the input data.
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Output Ports
example set (exa) TheExampleSet thatwas given as input is passed throughwithout changes.

frequent sets (fre) The frequently-occurring itemsets are delivered through this port. Oper-
ators such as Create Association Rules can use these frequently-occuring itemsets to gen-
erate association rules.

Parameters
input format See the second tutorial for examples. As discussed in detail in the description,

this Operator supports several different formats for the input data.

• item list in a column All the items belonging to a transaction appear in a single
column, separated by item separators, in a CSV-like format.

• items in separate columns All the items belonging to a transaction appear in sepa-
rate columns, with the first item name appearing in the first column, the second item
name in the second column, etc.

• items in dummy coded columns Every item in the set of all items has its own col-
umn, and the item name is the column name. For each transaction, the binominal
values (true/false) indicate whether the item can be found in the basket.

item separators Thisparameterdefines the itemseparator. It canalsobeprovidedas a regular
expression.

use quotes Check this parameter to define a quotes character. As in CSV files, if item separa-
tors are likely to appear in the item name, quotes can be used to prevent confusion. For
example if (,) is the item separator and (”) is the quotes character, then the row (a,b,c,d)
will be interpreted as 4 items. On the other hand, (”a,b,c,d”) will be interpreted as a single
item, with value a,b,c,d.

quotes character Thisparameterdefines thequotes characterand isonlyavailable ifusequotes
is checked.

escape character This parameter defines the escape character, used to escape the quotes char-
acter or the item separator. For example, if (”) is the quotes character and (’\’) is the escape
character, then (”yes”) is interpreted as (yes) and (\”yes\”) is interpreted as (”yes”). If (’| ’)
is the item separator and (’\’) is the escape character, then a row (a\|b|c) is interpreted as
two items, (a|b) and (c).

trim item names If this parameter is checked,whitespaceat thebeginningand theendof item
names is deleted.

positive value In the case of items in dummy coded columns, with binominal Attributes, this
parameter determines which value should be treated as positive, and hence which items
belong to a transaction. If this parameter is left blank, the positive value is inferred from
the ExampleSet.

min requirement This parametermakes available two differentmethods for defining a cutoff,
eliminating infrequently-occurring itemsets.

• support The minimum support value (ratio of occurrences to ExampleSet size)

• frequency The minimum frequency (number of occurrences)
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min support Minimum support = (number of occurrences of an itemset) / (size of the Exam-
pleSet)

Decrease this value to increase the number of itemsets in the result.

min frequency Minimum frequency = number of occurrences of an itemset

Decrease this value to increase the number of itemsets in the result.

min items per itemset The lower bound for the size of an itemset.

max items per itemset The upper bound for the size of an itemset (0: no upper bound).

max number of itemsets The upper bound for the number of itemsets (0: no upper bound).
If you run out of memory, either decrease this value or increase the value for min support
or min frequency.

find min number of itemsets If this parameter is checked, the results will contain at least a
minimum number of itemsets, those with highest support. The minimum support value is
automatically decreased until the minimum number of itemsets is found.

min number of itemsets This parameter is only available when find min number of itemsets
is checked. This parameter specifies the minimum number of itemsets that should be in-
cluded in the results.

max number of retries This parameter is only available when find min number of itemsets is
checked. When automatically decreasing the value for minimum support / minimum fre-
quency, this parameter determines how many times the Operator may decrease the value
before giving up. Increase this number to get more results.

requirement decrease factor This parameter is only available when findmin number of item-
sets is checked. Whenautomatically decreasing the value forminimumsupport /minimum
frequency, thismultiplicative factor determines thenewcutoff value. A lower value results
in fewer steps to find the desired number of itemsets.

must contain list Thisparameter specifies items thatmustbe included in the frequently-occurring
itemsets, if any, via a list of exact item names.

must contain regexp This parameter specifies items thatmust be included in the frequently-
occurring itemsets, if any, via a regular expression.

Tutorial Processes

Introduction to the FP-Growth Operator

The process shows a market basket analysis. A data set containing transactions is loaded using
the Retrieve Operator. A breakpoint is inserted here so that you can view the ExampleSet. We
have to do some preprocessing using the Aggregate Operator to mold the ExampleSet into an
acceptable input format. A breakpoint is inserted before the FP-GrowthOperator so that you can
view the input data. The FP-Growth Operator is applied to generate frequent itemsets. Finally,
the Create Association Rules Operator is used to create rules from the frequent item sets. The
frequent itemsets and the association rules can be viewed in the Results View. Run this process
with different values of the parameters to get a better understanding of this Operator.
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Process

MARKET BASKET ANALYSIS 
Model associations between products by determining sets of items frequently purchased together and building association rules to derive 
recommendations.

Step 1: 
Load transaction data containing a transaction id, a product id and a quantifier. The data 
denotes how many times a certain product has been purchased as part of a transactions.

 
 
 
 
 
 
 
 
Step 2: 
Edit, transform & load (ETL) - Aggregate transaction data via concatenation so that the 
products in a transaction are in one entry, separated by the pipe symbol. 

Step 3: 
Using FP-Growth, determine frequent item 
sets. A frequent item sets denotes that the 
items (products) in the set have been 
purchased together frequently, i.e. in a certain 
ratio of transactions. This ratio is given by the 
support of the item set.
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for product recommendations depending on 
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Figure 4.72: Tutorial process ‘Introduction to the FP-Growth Operator’.

The input formats of the FP-Growth Operator

Data is loaded and transformed to three different input formats. A breakpoint is inserted be-
fore the FP-Growth Operators so that you can see the input data in each of these formats. The
FP-Growth Operator is used and the resulting itemsets can be viewed in the Results View. The
results are all the same because the input data is the same, despite the difference in formats.
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4.3. Associations

Process
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Figure 4.73: Tutorial process ‘The input formats of the FP-Growth Operator’.

Generalized Sequential Patterns

GSP

exa exa

pat

This operator searches sequential patterns in a set of transactions
using the GSP (Generalized Sequential Pattern) algorithm. GSP is
a popular algorithm used for sequence mining.

Description

This operator searches sequential patterns in a set of transactions. The ExampleSet must con-
tain one attribute for the time and one attribute for the customer. Moreover, each transaction
must be encodedas a single example. The timeandcustomer attributes are specified through the
time attribute and customer id parameters respectively. This pair of attributes is used for generat-
ing one sequence per customer containing every transaction ordered by the time of each trans-
action. The algorithm then searches sequential patterns in the form of: If a customer bought
item ‘a’ and item ‘c’ in one transaction, he bought item ‘b’ in the next. This pattern is repre-

605



4. Modeling

sented in this form: <a, c> then<b>. Theminimal support describes howmany customermust
support such a pattern for regarding it as frequent. Infrequent patterns will be dropped. A cus-
tomer supports such a pattern, if there are some parts of his sequence that includes that pattern.
The above pattern would be supported by a customer, for example, with transactions: <s, g>
then <a, s, c> then <b> then <f, h>. The minimum support criteria is specified through the
min support parameter.
The min gap, max gap and window size parameters determine how transactions are handled.

For example, if the above customer forgot to buy item ‘c’, and had to return 5 minutes later to
buy it, then his transactions would look like: <s, g> then <a, s> then <c> then <b> then <f,
h>. This would not support the pattern <a, c> then <b>. To avoid this problem, the window
size determines, how long a subsequent transaction is treated as the same transaction. If the
window size is larger than 5 minutes then <c> would be treated as being part of the second
transaction and hence this customer would support the above pattern. The max gap parameter
causes a customers sequence not to support a pattern, if the transactions containing this pattern
are too widely separated in time. The min gap parameter does the same if they are too near.
This technique overcomes some crucial drawbacks of existing mining methods, for example:

• absence of time constraints: This drawback is overcome by the min gap and max gap pa-
rameters.

• rigid definition of a transaction: This drawback is overcome by the sliding time window.

Please note that all attributes (except customer and time attributes) of the given ExampleSet
should be binominal, i.e. nominal attributes with only two possible values. If your ExampleSet
does not satisfy this condition, you may use appropriate preprocessing operators to transform
it into the required form. The discretization operators can be used for changing the value of
numerical attributes to nominal attributes. Then the Nominal to Binominal operator can be
used for transforming nominal attributes into binominal attributes.
Please note that the sequential patterns aremined for the positive entries in your ExampleSet,

i.e. for those nominal values which are defined as positive in your ExampleSet. If your data does
not specify the positive entries correctly, you may set them using the positive value parameter.
This only works if all your attributes contain this value.

Input Ports
example set (exa) This input port expects an ExampleSet. Pleasemake sure that all attributes

(except customer and time attributes) of the ExampleSet are binominal.

Output Ports
example set (exa) The ExampleSet that was given as input is passed without changing to the

output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

patterns (pat) The GSP algorithm is applied on the given ExampleSet and the resultant set of
sequential patterns is delivered through this port.

Parameters
customer id (string) This parameter specifies the name of the attribute that will be used for

identifying the customers.
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time attribute (string) Thisparameter specifies thenameof thenumerical attribute that spec-
ifies the time of a transaction.

min support (real) Prune patterns that are supported by less thanmin support percentage of
the customers.

window size (real) The time window within successive transactions will be additional han-
dled as a single transaction.

max gap (real) Themax gap parameter causes a customers sequence not to support a pattern,
if the transactions containing this pattern are too widely separated in time.

min gap (real) Themin gap parameter causes a customers sequence not to support a pattern,
if the transactions containing this pattern are too near in time.

positive value (string) This parameter determines which value of the binominal attributes
should be treated as positive. The attributes with this value in an example are considered
to be part of that transaction.

Tutorial Processes

Introduction to the GSP operator

Process

Subprocess

in ou t

ou t

GSP (2)

exa exa

pat

inp res

res

Figure 4.74: Tutorial process ‘Introduction to the GSP operator’.

The ExampleSet expected by the GSP operator should meet the following criteria: It should
have an attribute that can be used for identifying the customers.It should have a numerical at-
tribute that represents the time of the transaction.All other attributes are used for representing
items of transactions. These attributes should be binominal.
This Example Process starts with the Subprocess operator. A sequence of operators is applied

in the subprocess to generate an ExampleSet that satisfies all the above mentioned conditions.
A breakpoint is inserted after the Subprocess operator so that you can have a look at the Exam-
pleSet. The Customer attribute represents the customers, this ExampleSet has five. The Time
attribute represents the time of transaction. For simplicity the Time Attribute consists of 20
days. In real scenarios unix time should be used. There are 20 binominal attributes in the Ex-
ampleSet that represent items that the customer may buy in a transaction. In this ExampleSet,
value ‘true’ for an item in an examplemeans that this itemwas bought in this transaction (repre-
sented by the current example). The GSP operator is applied on this ExampleSet. The customer
id and time attribute parameters are set to ‘Customer’ and ‘Time’ respectively. The positive
value parameter is set to ‘true’. The min support parameter is set 0.9. The resultant set of se-
quential patterns can be seen in the Results Workspace.
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Unify Item Sets

Unify I tem Sets

f re

f re

f re

f re

f re

f re

Compares sets of frequent item sets and removes common not
unique sets.

Description
This operator compares a number of FrequentItemSet sets and removes every not unique Fre-
quentItemSet.

Input Ports
frequent item sets (fre) Expects at least two FrequentItemSets.

Output Ports
frequent item sets (fre) Same number as input ports. Contains only itemsets that are unique

across all input ports.
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4.4 Correlations
ANOVA Matrix

ANOVA Matrix

exa exa

ano

This operator performs an ANOVA significance test for all numer-
ical attributes based on the groups defined by all the nominal at-
tributes. ANOVA is a general technique that can be used to test the
hypothesis that the means among two or more groups are equal,
under the assumption that the sampled populations are normally
distributed.

Description

The ANalysis Of VAriance (ANOVA) is a statistical model in which the observed variance in a
particular variable is partitioned into components attributable to different sources of variation.
In its simplest form, ANOVA provides a statistical test of whether or not the means of several
groups are all equal, and therefore generalizes a t-test to more than two groups. Doingmultiple
two-sample t-tests would result in an increased chance of committing a type I error. For this
reason, ANOVA is useful in comparing two, three, ormoremeans. ‘False positive’ or Type I error
is defined as the probability that a decision to reject the null hypothesis will be made when it
is in fact true and should not have been rejected. In the typical application of ANOVA, the null
hypothesis is that all groups are simply random samples of the same population. This implies
that all treatments have the same effect (perhaps none). Rejecting the null hypothesis implies
that different treatments result in altered effects.

Differentiation

• Grouped ANOVA The Grouped ANOVA operator performs ANOVA significance test for
theuser-specifiedanovaattribute (numerical) basedon thegroupsdefinedbyuser-specified
attribute (nominal). See page 618 for details.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input. The ExampleSet should have both nominal and numerical attributes because this
operator performs an ANOVA significance test for all numerical attributes based on the
groups defined by all the nominal attributes.

Output Ports

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

anova (ano) The ANOVA significance test for all numerical attributes is performed based on
the groups defined by all the nominal attributes. The resultant ANOVAmatrix is returned
from this port.
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Parameters
significance level (real) This parameter specifies the significance level for the ANOVA calcu-

lation.

only distinct (boolean) This parameter indicates if only rows with distinct values of the ag-
gregation attribute should be used for the calculation of the aggregation function.

Related Documents
• Grouped ANOVA (page 618)

Tutorial Processes

ANOVA matrix of the Golf data set

Process

Golf

out

ANOVA Matrix

exa exa

ano

inp

res

res

Figure 4.75: Tutorial process ‘ANOVA matrix of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can view the ExampleSet. You can see that the ExampleSet has both nominal and numerical
attributes. The ANOVA Matrix operator is applied on this ExampleSet. This operator performs
an ANOVA significance test for all numerical attributes based on the groups defined by all the
nominal attributes. The resultant ANOVA matrix can be viewed in the Results Workspace.
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Correlation Matrix

Correlat ion Matrix

exa exa

m a t

wei

This Operator determines correlation between all Attributes and
it can produce a weights vector based on these correlations. Cor-
relation is a statistical technique that can show whether and how
strongly pairs of Attributes are related.

Description
Acorrelation is anumberbetween -1and+1 thatmeasures thedegreeof associationbetween two
Attributes (call themX andY). A positive value for the correlation implies a positive association.
In this case largevaluesofX tend tobeassociatedwith largevaluesofYandsmall valuesofX tend
to be associated with small values of Y. A negative value for the correlation implies a negative
or inverse association. In this case large values of X tend to be associated with small values of
Y and vice versa.
Suppose we have two Attributes X and Y, with means X’ and Y’ respectively and standard de-

viations S(X) and S(Y) respectively. The correlation is computed as summation from 1 to n of
the product (X(i)-X’).(Y(i)-Y’) and then dividing this summation by the product (n-1).S(X).S(Y)
where n is total number of Examples and i is the increment variable of summation. There can
be other formulas and definitions but let us stick to this one for simplicity.
As discussed earlier a positive value for the correlation implies a positive association. Suppose

that an X valuewas above average, and that the associated Y value was also above average. Then
the product (X(i)-X’).(Y(i)-Y’) would be the product of two positive numbers which would be
positive. If the X value and the Y value were both below average, then the product above would
be of two negative numbers, which would also be positive. Therefore, a positive correlation is
evidence of a general tendency that large values of X are associated with large values of Y and
small values of X are associated with small values of Y.
As discussed earlier a negative value for the correlation implies a negative or inverse associ-

ation. Suppose that an X value was above average, and that the associated Y value was instead
below average. Then the product (X(i)-X’).(Y(i)-Y’)would be the product of a positive and a neg-
ative number which would make the product negative. If the X value was below average and the
Y value was above average, then the product above would also be negative. Therefore, a nega-
tive correlation is evidence of a general tendency that large values of X are associated with small
values of Y and small values of X are associated with large values of Y.
This Operator can be used for creating a correlation matrix that shows correlations of all the

Attributes of the input ExampleSet. The Attribute weights vector; based on the correlations can
also be returned by this Operator. Using this weights vector, highly correlated Attributes can be
removed from the ExampleSet with the help of the Select by Weights Operator. Highly corre-
lated Attributes can be more easily removed by simply using the Remove Correlated Attributes
Operator. Correlated Attributes are usually removed because they are similar in behavior and
only have little influence when calculating predictions. They may also hamper run time and
memory usage.

Input Ports
example set (exa) This input port expects an ExampleSet onwhich the correlationmatrix will

be calculated.
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Output Ports
example set (exa) TheExampleSet, thatwasgivenas input ispassed throughwithout changes.

matrix (mat) The correlations of all Attributes of the input ExampleSet are calculated and the
resultant correlation matrix is returned from this port. The correlation for nominal At-
tributes is notwell defined and results in amissing value. WhenAttributes containmissing
values, only pairwise complete tuples are used for calculating the correlation.

weights (wei) The Attribute weights vector based on the correlations of the Attributes is de-
livered through this output port.

Parameters
attribute filter type This parameter allows you to select the Attribute selection filter; the

method you want to use for selecting Attributes. It has the following options:

• all This option selects all the Attributes of the ExampleSet, no Attributes are re-
moved. This is the default option.

• single This option allows the selection of a single Attribute. The required Attribute
is selected by the attribute parameter.

• subset This option allows the selection of multiple Attributes through a list (see pa-
rameter attributes). If the meta data of the ExampleSet is known all Attributes are
present in the list and the required ones can easily be selected.

• regular_expression This option allows you to specify a regular expression for theAt-
tribute selection. The regular expressionfilter is configured by theparameters regular
expression, use except expression and except expression.

• value_type This option allows selection of all the Attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to thenumeric type. The value typefilter is configured by theparameters value
type, use value type exception, except value type.

• block_type This option allows the selection of all the Attributes of a particular block
type. It should be noted that block types may be hierarchical. For example value-
_series_start and value_series_end block types both belong to the value_series block
type. The block type filter is configured by the parameters block type, use block type
exception, except block type.

• no_missing_values This option selects all Attributes of the ExampleSetwhich donot
contain a missing value in any Example. Attributes that have even a single missing
value are removed.

• numeric_value_filter All numeric Attributes whose Examples all match a given nu-
meric condition are selected. The condition is specified by the numeric condition pa-
rameter. Please note that all nominal Attributes are also selected irrespective of the
given numerical condition.

attribute The required Attribute can be selected from this option. The Attribute name can be
selected from the drop down box of the parameter if the meta data is known.

attributes The required Attributes can be selected from this option. This opens a newwindow
with two lists. All Attributes are present in the left list. They can be shifted to the right
list, which is the list of selected Attributes that will make it to the output port.
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regular expression Attributes whose names match this expression will be selected. The ex-
pression can be specified through the edit and preview regular expressionmenu. This menu
gives a good idea of regular expressions and it also allows you to try different expressions
and preview the results simultaneously.

use except expression If enabled, an exception to the first regular expression can be speci-
fied. This exception is specified by the except regular expression parameter.

except regular expression This option allows you to specify a regular expression. Attributes
matching this expression will be filtered out even if they match the first expression (ex-
pression that was specified in regular expression parameter).

value type This option allows to select a type of Attribute. One of the following types can be
chosen: nominal, numeric, integer, real, text, binominal, polynominal, file_path, date-
_time, date, time.

use value type exception If enabled, an exception to the selected type can be specified. This
exception is specified by the except value type parameter.

except value type The Attributes matching this type will be removed from the final output
even if theymatched the before selected type, specified by the value typeparameter. One of
the following types can be selected here: nominal, numeric, integer, real, text, binominal,
polynominal, file_path, date_time, date, time.

block type This option allows to select a block type ofAttribute. One of the following types can
be chosen: single_value, value_series, value_series_start, value_series_end, value_matrix,
value_matrix_start, value_matrix_end, value_matrix_row_start.

use block type exception If enabled, an exception to the selected block type can be specified.
This exception is specified by the except block type parameter.

except block type TheAttributesmatching this block typewill be removed from the final out-
put even if they matched the before selected type by the block type parameter. One of the
following block types can be selected here: single_value, value_series, value_series_start,
value_series_end, value_matrix, value_matrix_start, value_matrix_end, value_matrix_row-
_start.

numeric condition The numeric condition used by the numeric condition filter type. A nu-
meric Attribute is kept if all Examplesmatch the specified condition for this Attribute. For
example the numeric condition ‘> 6’ will keep all numeric Attributes having a value of
greater than 6 in every Example. A combination of conditions is possible: ‘> 6 && < 11’
or ‘<= 5 || < 0’. But && and || cannot be used together in one numeric condition. Condi-
tions like ‘(> 0 &&< 2) || (>10 &&< 12)’ are not allowed because they use both && and
||. Nominal Attributes are always kept, regardless of the specified numeric condition.

include special attributes Special Attributes are Attributes with special roles. These are: id,
label, prediction, cluster,weightandbatch. Alsocustomroles canbeassigned toAttributes.
By default all special Attributes are delivered to the output port irrespective of the condi-
tions in the Select Attribute Operator. If this parameter is set to true, special Attributes
are also tested against conditions specified in the Select Attribute Operator and only those
Attributes are selected that match the conditions.

invert selection If this parameter is set to true the selection is reversed. In that case all At-
tributes matching the specified condition are removed and the other Attributes remain
in the output ExampleSet. Special Attributes are kept independent of the invert selection
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parameter as along as the include special attributes parameter is not set to true. If so the
condition is also applied to the special Attributes and the selection is reversed if this pa-
rameter is checked.

normalize weights (boolean) Thisparameter indicates if theweightsof the resultantAttribute
weights vector should be normalized. If set to true, all weights are normalized such that
the minimum weight is 0 and the maximum weight is 1.

squared correlation (boolean) This parameter indicates if the squared correlation should be
calculated. If set to true, the correlation matrix shows squares of correlations instead of
simple correlations.

Tutorial Processes

Correlation matrix of the Golf data set

Process
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Figure 4.76: Tutorial process ‘Correlation matrix of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve Operator. A breakpoint is inserted here so
that you can view the ExampleSet. As you can see, the ExampleSet has 4 regular Attributes i.e.
‘Outlook’, ‘Temperature’, ‘Humidity’ and ‘Wind’ and the label Attribute ‘Play’.
All Attributeswith only twonominal values are converted to binominal Attributes usingNom-

inal to Binominal. Then the Correlation Matrix Operator is applied on the result. The weights
vector generated by this Operator is provided to the Select by Weights Operator along with the
data set. The parameters of the Select byWeights Operator are adjusted such that the Attributes
with weights greater than 0.5 are selected and all other Attributes are removed. This is why the
resultant ExampleSet only has the ‘Play’ and the ‘Temperature’ Attribute.
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4.4. Correlations

The correlation matrix, weights vector and the resultant ExampleSet can be viewed in the
Results Workspace. For the correlation matrix you can see that Outlook is a nominal Attribute,
so no correlation can be calculated with it. The correlation of an Attribute to its self is always
one, so the diagonal entries are all 1.
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4. Modeling

Covariance Matrix

Covariance Matrix

exa exa

cov

This operator calculates the covariance between all attributes of
the input ExampleSet and returns a covariance matrix giving a
measure of how much two attributes change together.

Description

Covariance is ameasure of howmuch two attributes change together. If the greater values of one
attributemainly correspondwith thegreater values of theother attribute, and the sameholds for
the smaller values, i.e. the attributes tend to show similar behavior, the covariance is a positive
number. In the opposite case, when the greater values of one attributemainly correspond to the
smaller values of the other, i.e. the attributes tend to show opposite behavior, the covariance
is negative. The sign of the covariance therefore shows the tendency in the linear relationship
between the variables. For two attributes x and y having means E{x} and E{y}, the covariance is
defined as:
Cov(x,y) = E{[ x - E(x) ][ y - E(y) ]}
The covariance calculation beginswith pairs of x and y, takes their differences from theirmean

values andmultiplies thesedifferences together. For instance, if for x1 and y1 this product is pos-
itive, for that pair of data points the values of x and y have varied together in the same direction
from their means. If the product is negative, they have varied in opposite directions. The larger
the magnitude of the product, the stronger the strength of the relationship. The covariance is
defined as the mean value of this product, calculated using each pair of data points x(i) and y(i).
If the covariance is zero, then the cases in which the product was positive were offset by those
in which it was negative, and there is no linear relationship between the two attributes.
The value of the covariance is interpreted as follows:

• Positive covariance: indicates that higher than average values of one attribute tend to be
paired with higher than average values of the other attribute.

• Negative covariance: indicates that higher than average values of one attribute tend to be
paired with lower than average values of the other attribute.

• Zero covariance: if the two attributes are independent, the covariance will be zero. How-
ever, a covariance of zero does not necessarily mean that the variables are independent.
A nonlinear relationship can exist that still would result in a covariance value of zero.

Because the number representing covariance depends on the units of the data, it is difficult
to compare covariances among data sets having different scales. A value that might represent
a strong linear relationship for one data set might represent a very weak one in another.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input.
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4.4. Correlations

Output Ports
example set (exa) The ExampleSet that was given as input is passed without changing to the

output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

covariance (cov) The covariances of all attributes of the input ExampleSet are calculated and
the resultant covariance matrix is returned from this port.

Tutorial Processes

Covariance matrix of the Polynomial data set

Process

Polynomial

out

Covariance Matrix

exa exa

cov

inp

res

res

Figure 4.77: Tutorial process ‘Covariance matrix of the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can view the ExampleSet. As you can see that the ExampleSet has 5 real attributes.
The Covariance Matrix operator is applied on this ExampleSet. The resultant covariance matrix
can be viewed in the Results Workspace.
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4. Modeling

Grouped ANOVA

Grouped ANOVA

exa sig

exa

This operator performs an ANOVA significance test for the user-
specified attribute (numerical) based on the groups defined by the
user-specified attribute (nominal). ANOVA is a general technique
that can be used to test the hypothesis that the means among two
or more groups are equal, under the assumption that the sampled
populations are normally distributed.

Description
The Grouped ANOVA operator creates groups of the input ExampleSet based on the grouping
attribute which is specified by the group by attribute parameter. For each of the groups themean
and variance of the anova attribute is calculated and an ANalysis Of VAriance (ANOVA) is per-
formed. The anova attribute is specified by the anova attribute parameter. It is important to note
that the grouping attribute should be nominal and the anova attribute should be numerical. The
result of this operator is a significance test result for the specified significance level (specified
by the significance level parameter) indicating if the values for the attribute are significantly dif-
ferent between the groups defined by the grouping attribute.
ANalysis Of VAriance (ANOVA) is a statistical model in which the observed variance in a par-

ticular variable is partitioned into components attributable to different sources of variation. In
its simplest form,ANOVAprovides a statistical test ofwhether ornot themeansof several groups
are all equal, and therefore generalizes a t-test to more than two groups. Doing multiple two-
sample t-tests would result in an increased chance of committing a Type I error. For this reason,
ANOVA is useful in comparing two, three, or more means. ‘False positive’ or a Type I error is
defined as the probability that a decision to reject the null hypothesis will be made when it is
in fact true and should not have been rejected. In the typical application of ANOVA, the null
hypothesis is that all groups are simply random samples of the same population. This implies
that all treatments have the same effect (perhaps none). Rejecting the null hypothesis implies
that different treatments result in altered effects.

Differentiation
• ANOVAMatrixTheANOVAMatrix operator performsANOVA significance test for all nu-
merical attributes based on the groups defined by all the nominal attributes. See page 609
for details.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input. The ExampleSet should have both nominal and numerical attributes because this
operator performs an ANOVA significance test for a specified numerical attribute based on
the groups defined by a specified nominal attribute.

Output Ports
significance (sig) The ANOVA test is performed and the ANOVA significance test result is re-

turned from this port.
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example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
anova attribute (string) The ANOVA is calculated for the attribute specified by this parame-

ter based on the groups defined by the group by attribute parameter. It is compulsory that
this attribute should be numerical.

group by attribute (string) Grouping is performed by the values of the attribute specified by
this parameter. It is compulsory that this attribute should be nominal.

significance level (real) This parameter specifies the significance level for the ANOVA calcu-
lation.

only distinct (boolean) This parameter indicates if only rows with distinct values of the ag-
gregation attribute should be used for the calculation of the aggregation function.

Related Documents
• ANOVA Matrix (page 609)

Tutorial Processes

Grouped ANOVA of the Golf data set

Process

Golf

out

Grouped ANOVA

exa sig
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res

res

Figure 4.78: Tutorial process ‘Grouped ANOVA of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can view the ExampleSet. You can see that the ExampleSet has both nominal and numerical
attributes. The Grouped ANOVA operator is applied on this ExampleSet. The anova attribute
and group by attribute parameter are set to ‘Humidity’ and ‘Play’ respectively. This operator
performs an ANOVA significance test for the ‘Humidity’ attribute based on the groups defined
by the ‘Play’ attribute. The result of the ANOVA significance test can be viewed in the Results
Workspace.
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4. Modeling

Mutual Information Matrix

Mutual  Informat i . . .

exa exa

m a t

This operator calculates the mutual information between all at-
tributes of the input ExampleSet and returns a mutual informa-
tionmatrix. Mutual informationof twoattributes is aquantity that
measures the mutual dependence of the two attributes.

Description
Mutual information is one of many quantities that measures how much one attribute tells us
about another. It is a dimensionless quantity, and can be thought of as the reduction in uncer-
tainty about one attribute given the knowledge of another. High mutual information indicates
a large reduction in uncertainty; low mutual information indicates a small reduction; and zero
mutual information between two attribute means the variables are independent.
This operator calculates the mutual information matrix between all attributes of the input

ExampleSet. Pleasenote that this simple implementationperformsadata scan for eachattribute
combination and might therefore take some time for non-memory tables.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
example set (exa) The ExampleSet that was given as input is passed after somemodifications

to the output through this port. Please note that this ExampleSet is not exactly the same
as the input ExampleSet.

matrix (mat) The mutual information of all attributes of the input ExampleSet are calculated
and the resultant matrix is returned from this port.

Parameters
number of bins (integer) This parameter specifies the number of bins to be used for numer-

ical attributes.

Tutorial Processes

Mutual information matrix of the Polynomial data set

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so
that you can view the ExampleSet. You can see that the ExampleSet has 5 real attributes. The
Mutual InformationMatrix operator is applied on this ExampleSet. The resultant matrix can be
viewed in the Results Workspace.
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Figure 4.79: Tutorial process ‘Mutual information matrix of the Polynomial data set’.

4.5 Similarities
Cross Distances

Cross Distances

req

ref

res

req

ref

This operator calculates the distance between each example of a
‘request set’ ExampleSet to each example of a ‘reference set’ Ex-
ampleSet. This operator is also capable of calculating similarity
instead of distance.

Description

TheCrossDistances operator takes twoExampleSets as input i.e. the ‘reference set’ and ‘request
set’ ExampleSets. It creates an ExampleSet that contains the distance between each example of
the ‘request set’ ExampleSet to each example of the ‘reference set’ ExampleSet. Please note that
both input ExampleSets should have the same attributes and in the same order. This operator
will not work properly if the order of the attributes is different. This operator is also capable of
calculating similarity insteadof distance. If the compute similaritiesparameter is set to true, sim-
ilarities are calculated insteadofdistances. Pleasenote thatboth inputExampleSets shouldhave
id attributes. If id attributes are not present, this operator automatically creates id attributes for
such ExampleSets. Themeasure to use for calculating the distances can be specified through the
parameters. Four type of measures are provided: mixed measures, nominal measures, numerical
measures and Bregman divergences.
If data is imported from two different sources that are supposed to represent the same data

but which have columns in different orders, the Cross Distances operator will not behave as ex-
pected. It is possible to work round this by using the Generate Attributes operator to recreate
attributes in both ExampleSets in the same order.
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Input Ports
request set (req) This input port expects an ExampleSet. This ExampleSet will be used as the

‘request set’. Please note that both input ExampleSets ( ‘request set’ and ‘reference set’)
shouldhave the sameattributes and in the sameorder. This operatorwill notworkproperly
if the order of the attributes is different. Also note that both input ExampleSets should
have id attributes. If id attributes are not present, this operator automatically creates id
attributes for such ExampleSets.

reference set (ref) This inputport expects anExampleSet. ThisExampleSetwill beusedas the
‘reference set’. Please note that both input ExampleSets ( ‘request set’ and ‘reference set’)
should have same attributes and in the same order. This operator will not work properly
if the order of the attributes is different. Also note that both input ExampleSets should
have id attributes. If id attributes are not present, this operator automatically creates id
attributes for such ExampleSets.

Output Ports
result set (res) An ExampleSet that contains the distance (or similarity, if the compute simi-

larities parameter is set to true) between each example of the ‘request set’ ExampleSet to
each example of the ‘reference set’ ExampleSet is delivered through this port.

request set (req) The ‘request set’ ExampleSet that was provided at the request set input port
is delivered through this port. If the input ExampleSet had an id attribute then the Exam-
pleSet is delivered without any modification. Otherwise an id attribute is automatically
added to the input ExampleSet.

reference set (ref) The ‘reference set’ ExampleSet that was provided at the reference set input
port is delivered through this port. If the input ExampleSet had an id attribute then the Ex-
ampleSet is deliveredwithout anymodification. Otherwise an id attribute is automatically
added to the input ExampleSet.

Parameters
measure types (selection) This parameter is used for selecting the typeofmeasure tobeused

for calculating distances (or similarity).The following options are available: mixed mea-
sures, nominal measures, numerical measures and Bregman divergences.

mixed measure (selection) This parameter is available when the measure type parameter is
set to ‘mixed measures’. The only available option is the ‘Mixed Euclidean Distance’

nominal measure (selection) This parameter is available when the measure type parameter
is set to ‘nominalmeasures’. This option cannot be applied if the input ExampleSet hasnu-
merical attributes. If the input ExampleSet has numerical attributes the ‘numerical mea-
sure’ option should be selected.

numerical measure (selection) This parameter is available when the measure type parame-
ter is set to ‘numerical measures’. This option cannot be applied if the input ExampleSet
has nominal attributes. If the input ExampleSet has nominal attributes the ‘nominalmea-
sure’ option should be selected.

divergence (selection) This parameter is available when themeasure type parameter is set to
‘bregman divergences’.
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kernel type (selection) This parameter is available onlywhen the numericalmeasureparame-
ter is set to ‘Kernel EuclideanDistance’. The type of the kernel function is selected through
this parameter. Following kernel types are supported:

• dot The dot kernel is defined byk(x,y)=x*y i.e.it is inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2) where g is the gamma that is
specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in theperformanceof the kernel, and shouldbe carefully tuned to theprob-
lem at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of the polynomial and it is specified by the kernel degree parameter. The Polyno-
mial kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• sigmoid This is the sigmoid kernel. Please note that the sigmoid kernel is not valid
under some parameters.

• anova This is the anova kernel. It has adjustable parameters gamma and degree.

• epachnenikov The Epanechnikov kernel is this function (3/4)(1-u2) for u between -1
and1 and zero foruoutside that range. It has twoadjustable parameters kernel sigma1
and kernel degree.

• gaussian_combination This is the gaussian combination kernel. It has adjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVM kernel parameter gamma. This parameter is available
when only the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This parameter is available
only when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This parameter is available
only when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the SVM kernel parameter sigma3. This parameter is available
only when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This parameter is available only
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This parameter is available
only when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to polynomial, anova or epachnenikov.
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kernel a (real) This is the SVM kernel parameter a. This parameter is available only when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This parameter is available only when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

only top k (boolean) This parameter indicates if only the k nearest to each request example
should be calculated.

k (integer) This parameter is only available when the only top k parameter is set to true. It
determines how many of the nearest examples should be shown in the result.

search for (selection) This parameter is only available when the only top k parameter is set to
true. It determines if the nearest or the farthest distances should be selected.

compute similarities (boolean) If this parameter is set true, similarities are computed in-
stead of distances. All measures will still be usable, but measures that are not originally
distanceor respective similaritymeasure are transformed tomatchoptimizationdirection.

Tutorial Processes

Introduction to the Cross Distances operator

Process

Subprocess

in ou t

ou t

ou t

Cross Distances

req

ref

res

req

ref

inp

res

res

Figure 4.80: Tutorial process ‘Introduction to the Cross Distances operator’.

This Example Process starts with a Subprocess operator. This subprocess generates the ‘re-
quest set’ ExampleSet and the ‘reference set’ ExampleSet. A breakpoint is inserted here so that
you can have a look at the ExampleSets before application of the Cross Distances operator. You
can see that the ‘request set’ has only 1 example with id ‘id_1’. The ‘reference set’ has just two
examples with ids ‘id_1’ and ‘id_2’. Both ExampleSets have three attributes in the same order.
It is very important that both ExampleSets should have the same attributes and in the same or-
der otherwise the Cross Distances operator will not behave as expected. The Cross Distances
operator is applied on these ExampleSets. The resultant ExampleSet that contains the distance
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between each example of the ‘request set’ ExampleSet to each example of the ‘reference set’ Ex-
ampleSet is calculated by the Cross Distance operator. The resultant ExampleSet can be viewed
in the Results Workspace.
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Data to Similarity

Data to Similari ty

exa sim

exa

This operatormeasures the similarity of each example of the given
ExampleSet with every other example of the same ExampleSet.

Description

The Data to Similarity operator calculates the similarity among examples of an ExampleSet.
Same comparisons are not repeated again e.g. if example x is compared with example y to com-
pute similarity then example ywill not be compared again with example x to compute similarity
because the resultwill be the same. Thus if there aren examples in theExampleSet, this operator
does not return n^2 similarity comparisons. Instead it returns (n)(n-1)/2 similarity comparisons.
This operator providesmany differentmeasures for similarity computation. Themeasure to use
for calculating the similarity can be specified through the parameters. Four types of measures
are provided: mixed measures, nominal measures, numerical measures and Bregman divergences.
The behavior of this operator can be considered close to a certain scenario of the Cross Dis-

tances operator, if the same ExampleSet is provided at both inputs of the Cross Distances oper-
ator and the compute similarities parameter is also set to true. In this case the Cross Distances
operator behaves similar to the Data to Similarity operator. There are a few differences though
e.g. in this scenario examples are also comparedwith themselves and secondly the signs (i.e.+ive
or -ive) of the results are also different.

Differentiation

• Data to Similarity Data The Data to Similarity Data operator calculates the similarity
amongall examples of anExampleSet. Evenexamples are compared to themselves. Thus if
there are n examples in the ExampleSet, this operator returns n^2 similarity comparisons.
The Data to Similarity Data operator returns an ExampleSet which is merely a view, so
there should be no memory problems. See page 629 for details.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports

similarity (sim) A similarity measure object that contains the calculated similarity between
each example of the given ExampleSet with every other example of the same ExampleSet
is delivered through this port.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.
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Parameters
measure types (selection) This parameter is used for selecting the typeofmeasure tobeused

for calculating similarity. following options are available: mixed measures, nominal mea-
sures, numerical measures and Bregman divergences.

mixed measure (selection) This parameter is available if the measure type parameter is set
to ‘mixed measures’. The only available option is the ‘Mixed Euclidean Distance’

nominal measure (selection) This parameter is available if themeasure type parameter is set
to ‘nominal measures’. This option cannot be applied if the input ExampleSet has numer-
ical attributes. In this case the ‘numerical measure’ option should be selected.

numerical measure (selection) This parameter is available if themeasure type parameter is
set to ‘numerical measures’. This option cannot be applied if the input ExampleSet has
nominal attributes. In this case the ‘nominal measure’ option should be selected.

divergence (selection) Thisparameter is available if themeasure typeparameter is set to ‘breg-
man divergences’.

kernel type (selection) This parameter is only available if the numerical measure parameter
is set to ‘Kernel Euclidean Distance’. The type of the kernel function is selected through
this parameter. Following kernel types are supported:

• dot The dot kernel is defined byk(x,y)=x*y i.e.it is the inner product ofx and y.

• radial The radial kernel is defined by exp(-g ||x-y||^2) where g is the gamma that is
specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in theperformanceof the kernel, and shouldbe carefully tuned to theprob-
lem at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of the polynomial and it is specified by the kernel degree parameter. The Polyno-
mial kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• sigmoid This is the sigmoid kernel. Please note that the sigmoid kernel is not valid
under some parameters.

• anova This is the anova kernel. It has the adjustable parameters gamma and degree.

• epachnenikov The Epanechnikov kernel is this function (3/4)(1-u2) for u between -1
and 1 and zero for u outside that range. It has the two adjustable parameters kernel
sigma1 and kernel degree.

• gaussian_combinationThis is thegaussiancombinationkernel. Ithas theadjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has the adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVMkernel parameter gamma. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to radial or anova.
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kernel sigma1 (real) This is the SVM kernel parameter sigma1. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel sigma3 (real) This is the SVM kernel parameter sigma3. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

Related Documents
• Data to Similarity Data (page 629)

Tutorial Processes

Introduction to the Data to Similarity operator

Process

Golf

out

Data to Similari ty

exa sim

exa

inp res

res

Figure 4.81: Tutorial process ‘Introduction to the Data to Similarity operator’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look the ExampleSet. You can see that the ExampleSet has 14 examples. The
Data to Similarity operator is applied on it to compute the similarity of examples. As there are
14 examples in the given ExampleSet, there will be 91 (i.e. (14)(14-1)/2) similarity comparisons
in the resultant similarity measure object which can be seen in the Results Workspace.

628



4.5. Similarities

Data to Similarity Data

Data to Similari t . . .

exa sim
This operatormeasures the similarity of each example of the given
ExampleSet with every other example of the same ExampleSet and
returns a similarity ExampleSet.

Description
The Data to Similarity Data operator calculates the similarity among all examples of an Exam-
pleSet. Examples are even compared to themselves. Thus if there are n examples in the Exam-
pleSet, this operator returns n^2 similarity comparisons. This operator provides many different
measures for similarity computation. The measure to use for calculating the similarity can be
specified through the parameters. Four types of measures are provided: mixed measures, nomi-
nal measures, numerical measures and Bregman divergences. Please note that the data set created
by this operator is merely a view, so there should be no memory problems.
The behavior of this operator can be considered close to a certain scenario of the Cross Dis-

tances operator, if the same ExampleSet is provided at both inputs of the Cross Distances oper-
ator and the compute similarities parameter is also set to false. In this case the Cross Distances
operator behaves similar to the Data to Similarity Data operator. Besides sorting order, there is
no major difference between these two scenarios.

Differentiation
• Data to Similarity The Data to Similarity operator calculates the similarity among ex-
amples of an ExampleSet. Same comparisons are not repeated again e.g. if example x is
comparedwith example y to compute similarity then example ywill not be compared again
with example x to compute similarity because the result will be the same. Thus if there are
n examples in the ExampleSet, this operator does not return n^2 similarity comparisons.
Instead it returns (n)(n-1)/2 similarity comparisons. Moreover, this operator returns a sim-
ilarity measure object instead of an ExampleSet. See page 626 for details.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
similarity example set (sim) A similarity ExampleSet that contains the calculated similari-

ties is delivered through this port.

Parameters
measure types (selection) This parameter is used for selecting the typeofmeasure tobeused

for calculating similarity. following options are available: mixed measures, nominal mea-
sures, numerical measures and Bregman divergences.
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mixed measure (selection) This parameter is available if the measure type parameter is set
to ‘mixed measures’. The only available option is the ‘Mixed Euclidean Distance’

nominal measure (selection) This parameter is available if themeasure type parameter is set
to ‘nominal measures’. This option cannot be applied if the input ExampleSet has numer-
ical attributes. In this case the ‘numerical measure’ option should be selected.

numerical measure (selection) This parameter is available if themeasure type parameter is
set to ‘numerical measures’. This option cannot be applied if the input ExampleSet has
nominal attributes. In this case the ‘nominal measure’ option should be selected.

divergence (selection) Thisparameter is available if themeasure typeparameter is set to ‘breg-
man divergences’.

kernel type (selection) This parameter is only available if the numerical measure parameter
is set to ‘Kernel Euclidean Distance’. The type of the kernel function is selected through
this parameter. Following kernel types are supported:

• dot The dot kernel is defined byk(x,y)=x*y i.e.it is the inner product ofx and y.
• radial The radial kernel is defined by exp(-g ||x-y||^2) where g is the gamma that is
specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in theperformanceof the kernel, and shouldbe carefully tuned to theprob-
lem at hand.

• polynomial The polynomial kernel is defined by k(x,y)=(x*y+1)^d where d is the de-
gree of the polynomial and it is specified by the kernel degree parameter. The Polyno-
mial kernels are well suited for problems where all the training data is normalized.

• neural The neural kernel is defined by a two layered neural net tanh(a x*y+b) where
a is alpha and b is the intercept constant. These parameters can be adjusted using the
kernel a and kernel b parameters. A common value for alpha is 1/N, where N is the
data dimension. Note that not all choices of a and b lead to a valid kernel function.

• sigmoid This is the sigmoid kernel. Please note that the sigmoid kernel is not valid
under some parameters.

• anova This is the anova kernel. It has the adjustable parameters gamma and degree.
• epachnenikov The Epanechnikov kernel is this function (3/4)(1-u2) for u between -1
and 1 and zero for u outside that range. It has the two adjustable parameters kernel
sigma1 and kernel degree.

• gaussian_combinationThis is thegaussiancombinationkernel. It has theadjustable
parameters kernel sigma1, kernel sigma2 and kernel sigma3.

• multiquadric Themultiquadric kernel is defined by the square root of ||x-y||^2 + c^2.
It has the adjustable parameters kernel sigma1 and kernel sigma shift.

kernel gamma (real) This is the SVMkernel parameter gamma. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to radial or anova.

kernel sigma1 (real) This is the SVM kernel parameter sigma1. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to epachnenikov, gaussian combination or multiquadric.

kernel sigma2 (real) This is the SVM kernel parameter sigma2. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.
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kernel sigma3 (real) This is the SVM kernel parameter sigma3. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to gaussian combination.

kernel shift (real) This is the SVM kernel parameter shift. This parameter is only available
when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel
type parameter is set to multiquadric.

kernel degree (real) This is the SVM kernel parameter degree. This parameter is only avail-
able when the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the
kernel type parameter is set to polynomial, anova or epachnenikov.

kernel a (real) This is the SVM kernel parameter a. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

kernel b (real) This is the SVM kernel parameter b. This parameter is only available when
the numerical measure parameter is set to ‘Kernel Euclidean Distance’ and the kernel type
parameter is set to neural.

Related Documents
• Data to Similarity (page 626)

Tutorial Processes

Introduction to the Data to Similarity Data operator

Process
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out

Data to Similari t . . .

exa siminp res

res

Figure 4.82: Tutorial process ‘Introduction to the Data to Similarity Data operator’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so
that you can have a look at the ExampleSet which has 14 examples. The Data to Similarity Data
operator is applied on it to compute the similarity of examples. As there are 14 examples in
the given ExampleSet, there will be 196 (i.e. 14 x 14) similarity comparisons in the resultant
similarity ExampleSet which can be seen in the Results Workspace.
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Similarity to Data

Similari ty to Data

s im

exa

exa This operator calculates an ExampleSet from the given similarity
measure.

Description
The Similarity to Data operator calculates an ExampleSet from the given SimilarityMeasure Ob-
ject. TheExampleSet canbe in formofa long tableor amatrix. Thisbehavior canbecontrolledby
the table type parameter. A similaritymeasure object contains the calculated similarity between
each example of an ExampleSet with every other example of the same ExampleSet. Operators
like the Data to Similarity operator can generate a similarity measure object.

Input Ports
similarity (sim) This input port expects a similarity measure object. A similarity measure ob-

ject contains the calculated similarity between each example of an ExampleSet with every
other example of the same ExampleSet. The Data to Similarity operator can generate a
similarity measure object.

example set (exa) This input port expects an ExampleSet. It is the output of the Data to Sim-
ilarity operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports
example set (exa) An ExampleSet is calculated from the given similarity measure and it is re-

turned from this port.

Parameters
table type (selection) This parameter indicates if the resulting table shouldhave amatrix for-

mat or a long table format.

Tutorial Processes

Introduction to the Similarity to Data operator

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you canhave a look the ExampleSet. You can see that the ExampleSet has 14 examples. TheData
to Similarity operator is applied on it to compute the similarity of examples. As there are 14 ex-
amples in the given ExampleSet, therewill be 91 (i.e. (14)(14-1)/2) similarity comparisons in the
resultant similarity measure object. A breakpoint is inserted here so that you can have a look at
this SimilarityMeasure Object. The Similarity to Data operator is applied on this SimilarityMea-
sure Object to calculate an ExampleSet. The table type parameter is set to ‘matrix’, therefore
the resultant ExampleSet is in the form of a matrix. It can be seen in the Results Workspace.
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Figure 4.83: Tutorial process ‘Introduction to the Similarity to Data operator’.

4.6 Feature Weights
Data to Weights

Data to Weights

exa wei

exa

This operator simply generates an attribute weights vector with
weight 1.0 for each input attribute.

Description

The Data to Weights operator creates a new attribute weights IOObject from the given Example-
Set. The result is a vector of attribute weights containing the weight 1.0 for each attribute of the
input ExampleSet.

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator
in the attached Example Process.

Output Ports

weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

normalize weights (boolean) This parameter indicates if the calculated weights should be
normalized or not. If set to true, all weights are normalized in range from 0 to 1.
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sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

Tutorial Processes

Generating a weight vector with weight 1.0 for all the attributes

Process

Golf

out

Data to Weights

exa wei

exa

inp

res

res

Figure 4.84: Tutorial process ‘Generating a weight vector with weight 1.0 for all the attributes’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Data to Weights operator is
applied on it to generate the weights of the attributes. All parameters are used with default
values. The normalize weights parameter is set to true, the sort weights parameter is set to true
and the sort direction parameter is set to ‘ascending’. Run the process and see the results of this
process in the Results Workspace. You can see that all attributes have been assigned to weight
1.0.
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Weight by Chi Squared Statistic

Weight by Chi Sq.. .

exa wei

exa

This operator calculates the relevance of the attributes by com-
puting for each attribute of the input ExampleSet the value of the
chi-squared statistic with respect to the class attribute.

Description

TheWeight by Chi Squared Statistic operator calculates the weight of attributes with respect to
the class attribute by using the chi-squared statistic. The higher the weight of an attribute, the
more relevant it is considered. Please note that the chi-squared statistic can only be calculated
for nominal labels. Thus this operator can be applied only on ExampleSets with nominal label.
The chi-square statistic is a nonparametric statistical technique used to determine if a dis-

tribution of observed frequencies differs from the theoretical expected frequencies. Chi-square
statistics use nominal data, thus instead of using means and variances, this test uses frequen-
cies. The value of the chi-square statistic is given by
X2 = Sigma [ (O-E)2/ E ]
where X2 is the chi-square statistic, O is the observed frequency and E is the expected fre-

quency. Generally the chi-squared statistic summarizes the discrepancies between the expected
number of times each outcome occurs (assuming that the model is true) and the observed num-
ber of times each outcome occurs, by summing the squares of the discrepancies, normalized by
the expected numbers, over all the categories.

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator
in the attached Example Process.

Output Ports

weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.
The attributes with higher weight are considered more relevant.

example set (exa) ExampleSet that was given as input is passed without changing to the out-
put through this port. This is usually used to reuse the same ExampleSet in further oper-
ators or to view the ExampleSet in the Results Workspace.

Parameters

normalize weights (boolean) This parameter indicates if the calculated weights should be
normalized or not. If set to true, all weights are normalized in range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.
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sort direction (selection) This parameter is available only when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

number of bins (integer) This parameter specifies the number of bins used for discretization
of numerical attributes before the chi-squared test can be performed.

Tutorial Processes

Calculating the weights of the attributes of the Golf data set
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Figure 4.85: Tutorial process ‘Calculating the weights of the attributes of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Weight by Chi Squared Statis-
tic operator is applied on it to calculate the weights of the attributes. All parameters are used
with default values. The normalize weights parameter is set to true, thus all the weights will
be normalized in range 0 to 1. The sort weights parameter is set to true and the sort direction
parameter is set to ‘ascending’, thus the results will be in ascending order of the weights. You
can verify this by viewing the results of this process in the Results Workspace.
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Weight by Component Model

Weight by Comp.. .

exa

mod

wei

exa

mod

This operator creates attribute weights of the ExampleSet by us-
ing a component created by operators like the PCA, GHA or ICA. If
themodel given to this operator is PCA then this operator behaves
exactly as the Weight by PCA operator.

Description
The Weight by Component Model operator always comes after operators like the PCA, GHA or
ICA. The ExampleSet and Preprocessing model generated by these operators is connected to
the ExampleSet and Model ports of the Weight by Component Model operator. The Weight by
Component Model operator then generates attribute weights of the original ExampleSet using
a component created by the previous operator (i.e. PCA, GHA, ICA etc). The component is spec-
ified by the component number parameter. If the normalize weights parameter is not set to true
exact values of the selected component are used as attribute weights. The normalize weights
parameter is usually set to true to spread the weights between 0 and 1.
The attribute weights reflect the relevance of the attributes with respect to the class attribute.

The higher the weight of an attribute, the more relevant it is considered.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the PCA operator

in the attached Example Process.

model (mod) This input port expects a model. Usually the Preprocessing model generated by
the operators like PCA, GHA or ICA is provided here.

Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

model (mod) Themodel thatwasgivenas input ispassedwithout changing to theoutput through
this port.

Parameters
normalize weights (boolean) This parameter indicates if the calculated weights should be

normalized or not. If set to true, all weights are normalized in range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.
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sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

component number (integer) This parameter specifies the number of the component that
should be used as attribute weights.

Tutorial Processes

Calculating the attribute weights of the Sonar data set by PCA
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Figure 4.86: Tutorial process ‘Calculating the attribute weights of the Sonar data set by PCA’.

The ‘Sonar’ data set is loaded using the Retrieve operator. The PCA operator is applied on
it. The dimensionality reduction parameter is set to ‘none’. A breakpoint is inserted here so
that you can have a look at the components created by the PCA operator. Have a look at the
EigenVectors generated by the PCA operator especially ‘PC1’ because it will be used as weights
by using the Weight by Component Model operator. The Weight by Component Model operator
is applied next. The ExampleSet and Model ports of the PCA operator are connected to the cor-
responding ports of the Weight by Component Model operator. The normalize weights and sort
weights parameters are set to false, thus all the weights will be exactly the same as the selected
component. The component number parameter is set to 1, thus ‘PC1’ will be used as attribute
weights. The weights can be seen in the Results Workspace. You can see that these weights are
exactly the same as the values of ‘PC1’.
In the second operator chain the Weight by PCA operator is applied on the ‘Sonar’ data set.

The parameters of theWeight by PCA operator are set exactly the same as the parameters of the
Weight by ComponentModel operator. As it can be seen in the ResultsWorkspace, exactly same
weights are generated here.
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Weight by Correlation

Weight by Correl . . .

exa wei

exa

This operator calculates the relevance of the attributes by comput-
ing the value of correlation for each attribute of the input Exam-
pleSet with respect to the label attribute. This weighting scheme
is based upon correlation and it returns the absolute or squared
value of correlation as attribute weight.

Description

The Weight by Correlation operator calculates the weight of attributes with respect to the label
attribute by using correlation. The higher the weight of an attribute, themore relevant it is con-
sidered. Please note that theWeight byCorrelationoperator canbe applied only onExampleSets
with numerical or binominal label. It cannot be applied on Polynominal attributes because the
polynominal classesprovideno informationabout their ordering, therefore theweights aremore
or less random depending on the internal numerical representation of the classes. Binominal
labels work because of the representation as 0 and 1, as do numerical ones.
A correlation is a number between -1 and +1 that measures the degree of association between

two attributes (call them X and Y). A positive value for the correlation implies a positive associ-
ation. In this case large values of X tend to be associated with large values of Y and small values
of X tend to be associated with small values of Y. A negative value for the correlation implies a
negative or inverse association. In this case large values of X tend to be associated with small
values of Y and vice versa.
Suppose we have two attributes X and Y, with means X’ and Y’ and standard deviations S(X)

and S(Y) respectively. The correlation is computed as summation from 1 to n of the product
(X(i)-X’).(Y(i)-Y’) and then dividing this summation by the product (n-1).S(X).S(Y) where n is
the total number of examples and i is the increment variable of summation. There can be other
formulas and definitions but let us stick to this one for simplicity.
As discussed earlier a positive value for the correlation implies a positive association. Suppose

that an X valuewas above average, and that the associated Y value was also above average. Then
the product (X(i)-X’).(Y(i)-Y’) would be the product of two positive numbers which would be
positive. If the X value and the Y value were both below average, then the product above would
be of two negative numbers, which would also be positive. Therefore, a positive correlation is
evidence of a general tendency that large values of X are associated with large values of Y and
small values of X are associated with small values of Y.
As discussed earlier a negative value for the correlation implies a negative or inverse associ-

ation. Suppose that an X value was above average, and that the associated Y value was instead
below average. Then the product (X(i)-X’).(Y(i)-Y’)would be the product of a positive and a neg-
ative number which would make the product negative. If the X value was below average and the
Y value was above average, then the product above would also be negative. Therefore, a nega-
tive correlation is evidence of a general tendency that large values of X are associated with small
values of Y and small values of X are associated with large values of Y.

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator
in the attached Example Process.
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Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
normalize weights (boolean) This parameter indicates if the calculated weights should be

normalized or not. If set to true, all weights are normalized in range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

squared correlation (boolean) This parameter indicates if the squared correlation should be
calculated instead of simple correlation. If set to true, the attribute weights are calculated
as squares of correlations instead of simple correlations.

Tutorial Processes

Calculating the attribute weights of the Polynomial data set

Process

Polynomial

out

Weight by Correl . . .

exa wei

exa

inp

res

res

Figure 4.87: Tutorial process ‘Calculating the attribute weights of the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Weight by Correlation
operator is applied on it to calculate the weights of the attributes. All parameters are used with
default values. The normalize weights parameter is set to true, thus all the weights will be nor-
malized in range0 to1. The sortweights parameter is set to true and the sort directionparameter
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is set to ‘ascending’, thus the results will be in ascending order of theweights. You can verify this
by viewing the results of this process in the ResultsWorkspace. Now set the squared correlation
parameter to true and run the process again. You will see that these weights are the squares of
the previous weights.
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Weight by Deviation

Weight  by Deviat . . .

exa wei

exa

This operator calculates the relevance of attributes of the given
ExampleSet based on the (normalized) standard deviation of the
attributes.

Description
The Weight by Deviation operator calculates the weight of attributes with respect to the label
attribute based on the (normalized) standard deviation of the attributes. The higher the weight
of an attribute, the more relevant it is considered. The standard deviations can be normalized
by average, minimum, or maximum of the attribute. Please note that this operator can be only
applied on ExampleSets with numerical label.
Standard deviation shows howmuch variation or dispersion exists from the average (mean, or

expected value). A low standard deviation indicates that the data points tend to be very close to
the mean, whereas high standard deviation indicates that the data points are spread out over a
large range of values. The standard deviation is a measure of how spread out numbers are. The
formula is simple: it is the square root of the Variance.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator

in the attached Example Process.

Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
normalize weights (boolean) This parameter indicates if the calculated weights should be

normalized or not. If set to true, all weights are normalized in the range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

normalize (selection) This parameter indicates if the standard deviation should be divided by
the minimum, maximum, or average of the attribute.
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Tutorial Processes

Calculating the attribute weights of the Polynomial data set
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Figure 4.88: Tutorial process ‘Calculating the attribute weights of the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can also see the standard deviation of all
attributes in the ‘Statistics’ column in the Meta Data View. The Weight by Deviation operator
is applied on this ExampleSet to calculate the weights of the attributes. The normalize weights
parameter is set to false, thus the weights will not be normalized. The sort weights parameter
is set to true and the sort direction parameter is set to ‘ascending’, thus the results will be in
ascending order of the weights. You can verify this by viewing the results of this process in the
Results Workspace. You can also see that these weights are exactly the same as the standard
deviations of the attributes.
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Weight by Gini Index

Weight by Gini In. . .

exa wei

exa

This operator calculates the relevanceof the attributes of the given
ExampleSet based on the Gini impurity index.

Description
The Weight by Gini Index operator calculates the weight of attributes with respect to the label
attribute by computing the Gini index of the class distribution, if the given ExampleSet would
have been split according to the attribute. Gini Index is ameasure of impurity of an ExampleSet.
The higher the weight of an attribute, the more relevant it is considered. Please note that this
operator can be only applied on ExampleSets with nominal label.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator

in the attached Example Process.

Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

example set (exa) ExampleSet that was given as input is passed without changing to the out-
put through this port. This is usually used to reuse the same ExampleSet in further oper-
ators or to view the ExampleSet in the Results Workspace.

Parameters
normalize weights (boolean) This parameter indicates if the calculated weights should be

normalized or not. If set to true, all weights are normalized in range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

Tutorial Processes

Calculating the attribute weights of the Golf data set

The ‘Golf’ data set is loaded using the Retrieve operator. The Weight by Gini Index operator
is applied on it to calculate the weights of the attributes. All parameters are used with default
values. The normalize weights parameter is set to true, thus all the weights will be normalized
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Figure 4.89: Tutorial process ‘Calculating the attribute weights of the Golf data set’.

in range 0 to 1. The sort weights parameter is set to true and the sort direction parameter is set
to ‘ascending’, thus the results will be in ascending order of the weights. You can verify this by
viewing the results of this process in the Results Workspace.
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Weight by Information Gain

Weight by Inform.. .

exa wei

exa

This operator calculates the relevance of the attributes based on
information gain and assigns weights to them accordingly.

Description

TheWeight by Information Gain operator calculates the weight of attributes with respect to the
class attribute by using the information gain. The higher the weight of an attribute, the more
relevant it is considered. Please note that this operator can be applied only on ExampleSets with
nominal label.
Although informationgain isusually agoodmeasure fordeciding the relevanceof anattribute,

it is not perfect. A notable problem occurs when information gain is applied to attributes that
can take on a large number of distinct values. For example, suppose some data that describes
the customers of a business. When information gain is used to decide which of the attributes
are the most relevant, the customer’s credit card number may have high information gain. This
attribute has a high information gain, because it uniquely identifies each customer, but we may
not want to assign high weights to such attributes.
Information gain ratio is sometimes used instead. This method biases against considering

attributes with a large number of distinct values. However, attributes with very low informa-
tion values then appear to receive an unfair advantage. The Weight by Information Gain Ratio
operator uses information gain ratio for generating attribute weights.

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator
in the attached Example Process.

Output Ports

weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.
The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

normalize weights (boolean) This parameter indicates if the calculated weights should be
normalized or not. If set to true, all weights are normalized in range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.
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sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

Tutorial Processes

Calculating the weights of the attributes of the Golf data set

Process

Golf

out

Weight by Infor. . .

exa wei

exa
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res

res

Figure 4.90: Tutorial process ‘Calculating the weights of the attributes of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. TheWeight by Information Gain op-
erator is applied on it to calculate the weights of the attributes. All parameters are used with
default values. The normalize weights parameter is set to true, thus all the weights will be nor-
malized in range0 to1. The sortweights parameter is set to true and the sort directionparameter
is set to ‘ascending’, thus the results will be in ascending order of the weights. You can verify
this by viewing the results of this process in the Results Workspace.
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Weight by Information Gain Ratio

Weight by Inform.. .

exa wei

exa

This operator calculates the relevance of the attributes based on
the information gain ratio and assigns weights to them accord-
ingly.

Description
TheWeight by Information Gain Ratio operator calculates the weight of attributes with respect
to the label attribute by using the information gain ratio. The higher the weight of an attribute,
the more relevant it is considered. Please note that this operator can be only applied on Exam-
pleSets with nominal label.
Information gain ratio is used because it solves the drawback of information gain. Although

information gain is usually a good measure for deciding the relevance of an attribute, it is not
perfect. Anotableproblemoccurswhen informationgain is applied toattributes that can takeon
a large number of distinct values. For example, suppose some data that describes the customers
of a business. When information gain is used to decide which of the attributes are the most rel-
evant, the customer’s credit card number may have high information gain. This attribute has a
high information gain, because it uniquely identifies each customer, but wemay not want to as-
sign highweights to such attributes. TheWeight by InformationGain operator uses information
gain for generating attribute weights.
Information gain ratio is sometimes used instead of information gain. Information gain ratio

biases against considering attributes with a large number of distinct values. However, attributes
with very low information values then appear to receive an unfair advantage.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator

in the attached Example Process.

Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

example set (exa) ExampleSet that was given as input is passed without changing to the out-
put through this port. This is usually used to reuse the same ExampleSet in further oper-
ators or to view the ExampleSet in the Results Workspace.

Parameters
normalize weights (boolean) This parameter indicates if the calculated weights should be

normalized or not. If set to true, all weights are normalized in range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.
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sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

Tutorial Processes

Calculating the weights of the attributes of the Golf data set
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Weight by Infor. . .
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Figure 4.91: Tutorial process ‘Calculating the weights of the attributes of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Weight by Information Gain
Ratio operator is applied on it to calculate the weights of the attributes. All parameters are used
with default values. The normalize weights parameter is set to true, thus all the weights will
be normalized in range 0 to 1. The sort weights parameter is set to true and the sort direction
parameter is set to ‘ascending’, thus the results will be in ascending order of the weights. You
can verify this by viewing the results of this process in the Results Workspace.
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Weight by PCA

Weight by PCA

exa wei

exa

This operator creates attributeweights of the ExampleSet by using
a component createdby thePCA.This operator behaves exactly the
same way as if a PCA model is given to the Weight by Component
Model operator.

Description

TheWeight byPCAoperator generates attributeweights of the givenExampleSet using a compo-
nent created by the PCA. The component is specified by the component number parameter. If the
normalize weights parameter is not set to true, exact values of the selected component are used
as attributeweights. The normalize weights parameter is usually set to true to spread theweights
between 0 and 1. The attribute weights reflect the relevance of the attributes with respect to the
class attribute. The higher the weight of an attribute, the more relevant it is considered.
Principal Component Analysis (PCA) is a mathematical procedure that uses an orthogonal

transformation to convert a set of observations of possibly correlated attributes into a set of
values of uncorrelated attributes called principal components. The number of principal compo-
nents is less than or equal to the number of original attributes. This transformation is defined
in such a way that the first principal component’s variance is as high as possible (accounts for
as much of the variability in the data as possible), and each succeeding component in turn has
the highest variance possible under the constraint that it should be orthogonal to (uncorrelated
with) the preceding components.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process.

Output Ports

weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.
The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

normalize weights (boolean) This parameter indicates if the calculated weights should be
normalized or not. If set to true, all weights are normalized in the range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

650



4.6. Feature Weights

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

component number (integer) This parameter specifies the number of the component that
should be used as attribute weights.

Tutorial Processes

Calculating the attribute weights of the Sonar data set by PCA

Root
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Figure 4.92: Tutorial process ‘Calculating the attribute weights of the Sonar data set by PCA’.

The ‘Sonar’ data set is loaded using the Retrieve operator. The PCA operator is applied on
it. The dimensionality reduction parameter is set to ‘none’. A breakpoint is inserted here so
that you can have a look at the components created by the PCA operator. Have a look at the
EigenVectors generated by the PCA operator especially ‘PC1’ because it will be used as weights
by using the Weight by Component Model operator. The Weight by Component Model operator
is applied next. The ExampleSet and Model ports of the PCA operator are connected to the cor-
responding ports of theWeight by Component Model operator. The normalize weights and sort
weights parameters are set to false, thus all the weights will be exactly the same as the selected
component. The component number parameter is set to 1, thus ‘PC1’ will be used as attribute
weights. The weights can be seen in the Results Workspace. You can see that these weights are
exactly the same as the values of ‘PC1’.
In the second operator chain the Weight by PCA operator is applied on the ‘Sonar’ data set to

perform exactly the same task. The parameters of the Weight by PCA operator are set exactly
the same as the parameters of the Weight by Component Model operator. As it can be seen in
the Results Workspace, exactly same weights are generated here.
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Weight by Relief

Weight by Rel ief

exa wei

exa

This operator calculates the relevance of the attributes by Relief.
The key idea of Relief is to estimate the quality of features accord-
ing to how well their values distinguish between the instances of
the same and different classes that are near each other.

Description
Relief is considered one of the most successful algorithms for assessing the quality of features
due to its simplicity and effectiveness. The key idea of Relief is to estimate the quality of features
according to how well their values distinguish between the instances of the same and different
classes that are near each other. Reliefmeasures the relevance of features by sampling examples
and comparing the value of the current feature for the nearest example of the same and of a dif-
ferent class. This version also works for multiple classes and regression data sets. The resulting
weights are normalized into the interval between 0 and 1 if the normalize weights parameter is
set to true.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator

in the attached Example Process.

Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
normalize weights (boolean) This parameter indicates if the calculated weights should be

normalized or not. If set to true, all weights are normalized in range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

number of neighbors (integer) Thisparameter specifies thenumberofnearestneighbors for
relevance calculation.

sample ratio (real) This parameter specifies the ratio of examples to be used for determining
the weights.
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use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomizing examples of a subset. Using the same value of the local random seed
will produce the same sample. Changing the value of this parameter changes the way ex-
amples are randomized, thus the sample will have a different set of examples.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Calculating the attribute weights of the Polynomial data set
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Polynomial

out

Weight by Rel ief

exa wei
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res

res

Figure 4.93: Tutorial process ‘Calculating the attribute weights of the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. TheWeight by Relief operator
is applied on it to calculate the weights of the attributes. All parameters are used with default
values. The normalize weights parameter is set to true, thus all the weights will be normalized
in range 0 to 1. The sort weights parameter is set to true and the sort direction parameter is set
to ‘ascending’, thus the results will be in ascending order of the weights. You can verify this by
viewing the results of this process in the Results Workspace.
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Weight by Rule

Weight by Rule

exa wei

exa

This operator calculates the relevanceof the attributes of the given
ExampleSet by constructinga single rule for eachattribute andcal-
culating the errors.

Description
TheWeight byRuleoperator calculates theweight of attributeswith respect to the label attribute
by constructing a single rule for each attribute and calculating the errors. The higher the weight
of an attribute, the more relevant it is considered. Please note that this operator can be only
applied on ExampleSets with nominal label.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator

in the attached Example Process.

Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
normalize weights (boolean) This parameter indicates if the calculated weights should be

normalized or not. If set to true, all weights are normalized in range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

Tutorial Processes

Calculating the attribute weights of the Golf data set

The ‘Golf’ data set is loaded using the Retrieve operator. TheWeight by Rule operator is applied
on it to calculate the weights of the attributes. All parameters are used with default values. The
normalizeweights parameter is set to true, thus all theweightswill benormalized in range 0 to 1.
The sort weights parameter is set to true and the sort direction parameter is set to ‘ascending’,
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Figure 4.94: Tutorial process ‘Calculating the attribute weights of the Golf data set’.

thus the results will be in ascending order of the weights. You can verify this by viewing the
results of this process in the Results Workspace.
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Weight by SVM

Weight  by SVM

exa wei

exa

This operator calculates the relevance of the attributes by com-
puting for each attribute of the input ExampleSet the weight with
respect to the class attribute. The coefficients of a hyperplane cal-
culated by an SVM (Support Vector Machine) are set as attribute
weights.

Description

The Weight by SVM operator uses the coefficients of the normal vector of a linear SVM as at-
tribute weights. In contrast to most of the SVM based operators available in RapidMiner, this
operator works for multiple classes too. Please note that the attribute values still have to be
numerical. This operator can be applied only on ExampleSets with numerical label. Please use
appropriate preprocessing operators (type conversion operators) in order to ensure this. For
more information about SVM please study the documentation of the SVM operator.

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator
in the attached Example Process.

Output Ports

weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.
The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

normalize weights (boolean) This parameter indicates if the calculated weights should be
normalized or not. If set to true, all weights are normalized in the range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of sorting is spec-
ified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

C (real) This parameter specifies the SVM complexity weighting factor.
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Figure 4.95: Tutorial process ‘Calculating the weights of the attributes of the Polynomial data
set’.

Tutorial Processes

Calculating the weights of the attributes of the Polynomial data set

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Weight by SVM operator
is applied on it to calculate the weights of the attributes. All parameters are used with default
values. The normalize weights parameter is set to true, thus all the weights will be normalized
in the range 0 to 1. The sort weights parameter is set to true and the sort direction parameter is
set to ‘ascending’, thus the results will be in ascending order of the weights. You can verify this
by viewing the results of this process in the Results Workspace.
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Weight by Tree Importance

Weight by Tree I . . .

ran wei

ran

This operator calculates the weight of the attributes by analyzing
the split points of a Random Forest model. The attributes with
higher weight are considered more relevant and important.

Description
This weighting schema will use a given random forest to extract the implicit importance of the
used attributes. Therefore each node of each tree is visited and the benefit created by the re-
spective split is retrieved. This benefit is summed per attribute, that had been used for the split.
The mean benefit over all trees is used as importance.
This algorithm is implemented following the idea from ”A comparison of random forest and

its gini importance with standard chemometric methods for the feature selection and classi-
fication of spectral data” by Menze, Bjoen H et all (2009). It has been extended by additional
criterias for computing the benefit created from a certain split. The original paper only men-
tioned Gini Index, this operator additionally supports the more reliable criterions Information
Gain and Information Gain Ratio.

Input Ports
random forest (ran) The input port expects aRandomForestmodelwhich is a votingmodel of

random trees. It is output of the RandomForest operator in the attached Example Process.

Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

random forest (ran) TheRandomForestmodel thatwasgivenas input ispassedwithout chang-
ing to the output through this port. This is usually used to reuse the samemodel in further
operators or to view the model in the Results Workspace.

Parameters
criterion (selection) This parameter specifies the criterion to be used for weighting the at-

tributes. It can have one of the following values: information gain, gain ratio, gini index
or accuracy.

normalize weights (boolean) This parameter indicates if the calculated weights should be
normalized or not. If set to true, all weights are normalized in a range from 0 to 1.

Tutorial Processes

Calculating the attribute weights of the Golf data set using Random Forest model

The ’Golf’ data set is loaded using the Retrieve operator. The Random Forest operator is applied
on it to generate a random forest model. A breakpoint is inserted here so that you can have a
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Figure 4.96: Tutorial process ‘Calculating the attribute weights of the Golf data set using Ran-
dom Forest model’.

look at the generated model. The resultant model is provided as input to the Weight by Tree
Importance operator to calculate the weights of the attributes of the ‘Golf’ data set. All param-
eters are used with default values. The normalize weights parameter is set to true, thus all the
weights will be normalized in a range from 0 to 1. You can verify this by viewing the results of
this process in the Results Workspace.
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Weight by Uncertainty

Weight by Uncert . . .

exa wei

exa

This operator calculates the relevanceof attributes of the givenEx-
ampleSet by measuring the symmetrical uncertainty with respect
to the class.

Description

TheWeight by Uncertainty operator calculates the weight of attributes with respect to the label
attribute by measuring the symmetrical uncertainty with respect to the class. The higher the
weight of an attribute, the more relevant it is considered. Please note that this operator can be
only applied on ExampleSets with nominal label. The relevance is calculated by the following
formula:
relevance = 2 * (P(Class) - P(Class | Attribute)) / P(Class) + P(Attribute)

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator
in the attached Example Process.

Output Ports

weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.
The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters

normalize weights (boolean) This parameter indicates if the calculated weights should be
normalized or not. If set to true, all weights are normalized in a range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

normalize (selection) This parameter indicates if the standard deviation should be divided by
the minimum, maximum, or average of the attribute.

number of bins (integer) This parameter specifies the number of bins to be used.
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Tutorial Processes

Calculating the attribute weights of the Golf data set

Process
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Figure 4.97: Tutorial process ‘Calculating the attribute weights of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. TheWeight by Uncertainty operator
is applied on it to calculate the weights of the attributes. All parameters are used with default
values. The normalize weights parameter is set to true, thus all the weights will be normalized
in a range from 0 to 1. The sort weights parameter is set to true and the sort direction parameter
is set to ‘ascending’, thus the results will be in ascending order of the weights. You can verify
this by viewing the results of this process in the Results Workspace.
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Weight by User Specification

Weight by User S.. .

exa wei

exa

This operator assigns user-defined weights to the specified at-
tributes. The attributes can be selected using regular expressions.

Description
TheWeightbyUserSpecificationoperator assignsuser-definedweights to the selectedattributes
of the given ExampleSet. The higher the weight of an attribute, the more relevant it is consid-
ered. Unlikemany other weighting operators, this operator can be applied on ExampleSets with
both nominal or numerical label.
The name regex to weights parameter is used for selecting the attributes and assigning weights

to them. The attributes are selected through regular expressions. Multiple regular expressions
can be used for different attribute selections. Please note that the weights defined in the regu-
lar expression list are set in the order as they are defined in the list, i.e. weights can overwrite
weights set before.
If the distribute weights parameter is set to true, then the weight specified in the name regex

to weights parameter is divided equally into all the attributes that match the regular expression.
Thedefaultweightparameter specifiesweightof all thoseattributes thatdonotmatchany regular
expression. Please Study the attached Example Process for more information.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of theRetrieve operator

in the attached Example Process.

Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

example set (exa) ExampleSet that was given as input is passed without changing to the out-
put through this port. This is usually used to reuse the same ExampleSet in further oper-
ators or to view the ExampleSet in the Results Workspace.

Parameters
normalize weights (boolean) This parameter indicates if the calculated weights should be

normalized or not. If set to true, all weights are normalized in range from 0 to 1.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.
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name regex to weights (list) This parameter is used for selecting the attributes and assign-
ing weights to them. The attributes are selected through regular expressions. Multiple
regular expressions can be used for different attribute selections. Please note that the
weights defined in the regular expression list are set in the order as they are defined in
the list, i.e. weights can overwrite weights set before.

distribute weights (boolean) If this parameter is set to true, theweight specified in the name
regex to weights parameter is split and distributed equally among the attributes matching
the corresponding regular expressions.

default weight (real) This parameter specifies the weight of all those attributes that do not
match any regular expression.

Tutorial Processes

Manually setting the attribute weights of the Golf data set

Process

Golf

out

Weight by User . . .

exa wei

exa

inp

res

res

Figure 4.98: Tutorial process ‘Manually setting the attribute weights of the Golf data set’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Weight by User Specification
operator is applied on it to assign the attribute weights. The normalize weights parameter is set
to false, thus theweightswill notbenormalized. The sortweightsparameter is set to trueand the
sort direction parameter is set to ‘ascending’, thus the results will be in ascending order of the
weights. The name regex to weights parameter is used for assigning weights through regular
expressions. Only one regular expression is defined in this process. This regular expression
selects all those attributes that have the alphabet ‘i’ in their names. Thematching attributes (i.e.
Humidity andWind) are assigned weight 4.0. All those attributes that do not match any regular
expression (i.e.. Temperature and Outlook) are assigned the default weight which is defined by
the default weight parameter. In this process it is set to 1.0. Run the process and you will see
that the attributes that matched the regular expression get corresponding weight (i.e. 4.0) and
the remaining attributes get default weight (i.e. 1.0). Now set the distribute weights parameter
to true and run the process again. Now the weight 4.0 will be equally split into the Wind and
Humidity attributes, thus their weight will be set to 2.0. You can verify this by viewing results
of the process in the Results Workspace.
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Weight by Value Average

Weight by Value . . .

exa wei

exa

This operator uses a corpus of examples to characterize a single
class by setting feature weights.

Description
This operator uses a corpus of examples to characterize a single class by setting feature weights.
Characteristic features receive higher weights than less characteristic features. The weight for
a feature is determined by calculating the average value of this feature for all examples of the
target class.
This operator assumes that the feature values characterize the importance of this feature for

an example (e.g. TFIDF or others). Therefore, this operator is mainly used on textual data based
on TFIDF weighting schemes. To extract such feature values from text collections you can use
the Text plugin.

Input Ports
example set (exa) This input port expects an ExampleSet.

Output Ports
weights (wei) This port delivers theweights of the attributeswith respect to the label attribute.

The attributes with higher weight are considered more relevant.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
normalize weights (boolean) Activates the normalization of all weights.

sort weights (boolean) This parameter indicates if the attributes should be sorted according
to their weights in the results. If this parameter is set to true, the order of the sorting is
specified using the sort direction parameter.

sort direction (selection) This parameter is only available when the sort weights parameter is
set to true. This parameter specifies the sorting order of the attributes according to their
weights.

class to characterize (string) The target class forwhich tofindcharacteristic featureweights.
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Weights to Data

Weights to Data

a t t exa
This operator takes attribute weights as input and delivers an Ex-
ampleSet with attribute names and corresponding weights as out-
put.

Description
The Weights to Data operator takes attribute weights as input and delivers an ExampleSet with
attribute names and corresponding weights as output. The resultant ExampleSet has two at-
tributes ‘Attribute’ and ‘Weight’. The ‘Attribute’ attribute stores the names of attributes and
the ‘Weight’ attribute stores the weight of the corresponding attribute. This ExampleSet has
n number of examples; where n is the number of attributes in the input weights vector. There
are numerous operators that provide attribute weights at ‘Modeling/AttributeWeighting’ in the
Operators Window.

Input Ports
attribute weights (att) This input port expects weights of attributes. It is the output of the

Weight by Chi Squared Statistic operator in the attached Example Process.

Output Ports
example set (exa) The ExampleSet that contains attribute names and corresponding weights

is delivered through this port.

Tutorial Processes

Calculating the weights of the attributes of the Golf data set and storing them in an
ExampleSet

The ‘Golf’ data set is loaded using the Retrieve operator. The Weight by Chi Squared Statistic
operator is applied on it to calculate the weights of the attributes. All parameters are used with
default values. The normalize weights parameter is set to true, thus all the weights will be nor-
malized in range0 to1. The sortweights parameter is set to true and the sort directionparameter
is set to ‘ascending’, thus the results will be in ascending order of the weights. A breakpoint is
inserted here to show the weights produced by the Weight by Chi Squared Statistic operator.
These weights are provided as input to theWeights to Data operator which stores these weights
in form of an ExampleSet. The ExampleSet can be seen in the Results Workspace.
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Figure 4.99: Tutorial process ‘Calculating the weights of the attributes of the Golf data set and
storing them in an ExampleSet’.

4.7 Optimization
4.7.1 Parameters
Clone Parameters

Clone Parameters

t h r t h r

This operator copies parameter values of the specified source pa-
rameters into parameter values of the specified target parameters.
This operator is a more generic form of the Set Parameters oper-
ator. This operator is mostly used for applying an optimal set of
parameters of one operator to another similar operator.

Description

The Clone Parameters operator does not require an input whereas the Set Parameters operator
takes a set of parameters as input. The Clone Parameters operator can be used for assigning
multiple sourceparameters tomultiple target parameters. The source and target parameters can
be specified through thenamemapparameter. Thismenuhas two columns: ‘source’ and ‘target’.
The ‘source’ column is used for specifying the names of the desired parameters whose values
will be copied into the target parameters. The ‘target’ column specifies the names of the target
parameters. Both these columns expect values in ‘operator.parameter’ format where ‘operator’
is the name of the operator and ‘parameter’ is the desired parameter. Multiple parameters can
be specified by adding more rows in the name map parameter.
This operator is a very generic form of the Set Parameters operator. It differs from the Set

Parameters operator because it does not require a ParameterSet as input. It simply reads a pa-
rameter value from a source and uses it to set the parameter value of a target parameter. This
operator is more generic than the Set Parameters operator and could completely replace it. It is
most useful, if you need a parameter which is optimized more than once within the optimiza-
tion loop - the Set Parameters operator cannot be used here. The fact that this operator does
not require an explicit ParameterSet as input and that it does not require the source and target
parameters to be exactly the same, makes this operator a lot more generic and powerful than
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the Set Parameters operator. For more information about the Set Parameters operator please
study its documentation

Differentiation
• Set Parameters The Clone Parameters operator is a very generic form of the Set Param-
eters operator. It differs from the Set Parameters operator because it does not require a
ParameterSet as input. It simply reads a parameter value from a source and uses it to set
the parameter value of a target parameter. This operator is more generic than the Set Pa-
rameters operator and could completely replace it. See page 679 for details.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of this operator is available at the
first through output port.

Output Ports
through (thr) The objects that were given as input are passed without changing to the output

through this port. It is not compulsory to attach this port to any other port. This operator
can have multiple outputs. When one output is connected, another through output port
becomes available which is ready to deliver another output (if any). The order of outputs
remains the same. The object delivered at the first through input port of this operator is
delivered at the first through output port.

Parameters
name map (list) The Clone Parameters operator assigns parameter values of the source to

those of the target of the specified operators which can be specified through the name
map parameter. This menu has two columns: ‘source’ and ‘target’. The ‘source’ column is
used for specifying the names of the desired parameters whose values will be copied into
the target parameters. The ‘target’ column specifies the names of the target parameters.
Both these columns expect values in ‘operator.parameter’ format where ‘operator’ is the
name of the operator and ‘parameter’ is the desired parameter. Multiple parameters can
be specified by adding more rows in the name map parameter.

Related Documents
• Set Parameters (page 679)

Tutorial Processes

Introduction to the Clone Parameters operator

This Example Process highlights the fact that the Clone Parameters operator is a very generic
operator which can be used for assigning any parameter value to any other parameter in the
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Figure 4.100: Tutorial process ‘Introduction to the Clone Parameters operator’.

process. The task performed in this process does not serve any useful purpose. For understand-
ing a useful scenario of this operator please study the Example Process of the Set Parameters
operator.
TheGenerateData operator is used for generating an ExampleSetwith 10 examples (i.e. num-

ber examples parameter = 10). Then the Filter Example Range operator is applied on the ‘Golf’
ExampleSet. Its first example and last example parameters are set to 1. Thus only the first row
of the ‘Golf’ data set shouldmake it to the output. But have a look at the parameters of the Clone
Parameters operator. It assigns the value of the number examples parameter of the Generate
Data operator to the last example parameter of the Filter Example Range operator. Thus the last
example parameter is set to 10 (previously 1). Therefore instead of only 1 row, the first 10 rows
of the ‘Golf’ data set make it to the output. The resultant ExampleSet can be seen in the Results
Workspace. You can see after the execution of the process that the value of the last example
parameter has also been changed from 1 to 10. This is how the Clone Parameters operator can
be used to dynamically copy parameter values.
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Optimize Parameters (Evolutionary)

Optimize Parame. . .

inp per

par

res

This operator finds the optimal values of the selected parameters
of the operators in its subprocess. It uses an evolutionary compu-
tation approach.

Description

This operator finds the optimal values for a set of parameters using an evolutionary approach
which is oftenmore appropriate than a grid search (as in the Optimize Parameters (Grid) opera-
tor) or a greedy search (as in the Optimize Parameters (Quadratic) operator) and leads to better
results. This is a nested operator i.e. it has a subprocess. It executes its subprocess for amultiple
number of times to find optimal values for the specified parameters.
This operator delivers the optimal parameter values through the parameter port which can

also be written into a file with the Write Parameters operator. This parameter set can be read
in another process using the Read Parameters operator. The performance vector for optimal
values of parameters is delivered through the performance port. Any additional results of the
subprocess are delivered through the result ports.
Other parameter optimization schemes are also available in RapidMiner. The Optimize Pa-

rameters (Evolutionary) operator might be useful if the best ranges and dependencies are not
known at all. Another operator which works similar to this parameter optimization operator
is the Loop Parameters operator. In contrast to the optimization operators, this operator sim-
ply iterates through all parameter combinations. This might be especially useful for plotting
purposes.

Differentiation

• Optimize Parameters (Grid) TheOptimize Parameters (Grid) operator executes its sub-
process for all combinations of the selected values of the parameters and then delivers the
optimal parameter values. See page ?? for details.

Input Ports

input (inp) Thisoperator canhavemultiple inputs. Whenone input is connected, another input
port becomes available which is ready to accept another input (if any). The order of inputs
remains the same. The Object supplied at the first input port of this operator is available
at the first input port of the nested chain (inside the subprocess). Do not forget to connect
all inputs in correct order. Make sure that you have connected the right number of ports
at the subprocess level.

Output Ports

performance (per) This port delivers the Performance Vector for the optimal values of the se-
lected parameters. A Performance Vector is a list of performance criteria values.
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parameter (par) Thisportdelivers theoptimal valuesof the selectedparameters. Thisoptimal
parameter set can be written into a file with the Write Parameters operator. The written
parameter set can be read in another process using the Read Parameters operator.

result (res) Anyadditional results of the subprocess aredelivered through the resultports. This
operator can havemultiple outputs. When one result port is connected, another result port
becomes available which is ready to deliver another output (if any). The order of outputs
remains the same. TheObject delivered at thefirst resultport of the subprocess is delivered
at the first result port of the operator. Don’t forget to connect all outputs in correct order.
Make sure that you have connected the right number of ports.

Parameters
edit parameter settings (menu) Theparameters are selected through the edit parameter set-

tings menu. You can select the parameters and their possible values through this menu.
This menu has an Operators window which lists all the operators in the subprocess of this
operator. When you click on any operator in the Operators window, all parameters of that
operator are listed in the Parameters window. You can select any parameter through the
arrow keys of themenu. The selected parameters are listed in the Selected Parameterswin-
dow. Only those parameters should be selected for which you want to find optimal values.
This operator finds optimal values of the parameters in the specified range. The range of
every selected parameter should be specified. When you click on any selected parameter
(parameter in the Selected Parameterswindow) the Grid/Range option is enabled. This op-
tion allows you to specify the range of values of the selected parameters. TheMin andMax
fields are for specifying the lower and upper bounds of the range respectively. The steps
and scale options are disabled for this operator. Note that only numerical parameters are
displayed, since this operator does not support non numerical parameters.

error handling (selection) Thisparameter allowsyou to select themethod forhandlingerrors
occurring during the execution of the inner process. It has the following options:

• fail_on_error In case an error occurs, the execution of the process will fail with an
error message.

• ignore_error In case an error occurs, the error will be ignored and the execution of
the process will continue with the next iteration.

max generations (integer) This parameter specifies the number of generations after which
the algorithm should be terminated.

use early stopping (boolean) This parameter enables early stopping. If not set to true, al-
ways the maximum number of generations are performed.

generations without improval (integer) This parameter is only availablewhen theuse early
stopping parameter is set to true. This parameter specifies the stop criterion for early stop-
ping i.e. it stops after n generations without improvement in the performance. n is spec-
ified by this parameter.

specify population size (boolean) This parameter specifies the size of the population. If it
is not set to true, one individual per example of the given ExampleSet is used.

population size (integer) This parameter is only available when the specify population size
parameter is set to true. This parameter specifies the population size i.e. the number of
individuals per generation.
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keep best (boolean) This parameter specifies if the best individual should survive. This is
also called elitist selection. Retaining the best individuals in a generation unchanged in
the next generation, is called elitism or elitist selection.

mutation type (selection) This parameter specifies the type of the mutation operator.

selection type (selection) This parameter specifies the selection scheme of this evolutionary
algorithms.

tournament fraction (real) This parameter is only available when the selection type param-
eter is set to ‘tournament’. It specifies the fraction of the current population which should
be used as tournament members.

crossover prob (real) Theprobability for an individual to be selected for crossover is specified
by this parameter.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

show convergence plot (boolean) This parameter indicates if a dialog with a convergence
plot should be drawn.

Related Documents
• Optimize Parameters (Grid) (page ??)

• Optimize Parameters (Quadratic) (page 677)

Tutorial Processes

Finding optimal values of parameters of the SVM operator through the Optimize
Parameters (Evolutionary) operator

Process

Weight ing

out

Optimize Parame. . .

inp

inp

per

par

res

res

Write  Parameters

inp th rinp
res

res

res

Figure 4.101: Tutorial process ‘Finding optimal values of parameters of the SVM operator
through the Optimize Parameters (Evolutionary) operator’.
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The ‘Weighting’ data set is loadedusing theRetrieveoperator. TheOptimizeParameters (Evo-
lutionary) operator is applied on it. Have a look at the Edit Parameter Settings parameter of the
Optimize Parameters (Evolutionary) operator. You can see in the Selected Parameters window
that the C and gamma parameters of the SVM operator are selected. Click on the SVM.C pa-
rameter in the Selected Parameters window, you will see that the range of the C parameter is
set from 0.001 to 100000. Now, click on the SVM.gamma parameter in the Selected Parameters
window, you will see that the range of the gamma parameter is set from 0.001 to 1.5. In every
iteration of the subprocess, the value of the C and/or gamma parameters of the SVM(LibSVM)
operator is changed in search of optimal values.
Have a look at the subprocess of the Optimize Parameters (Evolutionary) operator. First the

data is split into two equal partitions using the Split Data operator. The SVM (LibSVM) operator
is applied on one partition. The resultant classificationmodel is applied using two Apply Model
operators on both the partitions. The statistical performance of the SVMmodel on both testing
and training partitions ismeasured using the Performance (Classification) operators. At the end
the Log operator is used to store the required results.
The log parameter of the Log operator stores five things. The iterations of the Optimize Pa-

rameters (Evolutionary) operator are counted by the apply-count of the SVM operator. This is
stored in a column named ‘Count’.The value of the classification error parameter of the Per-
formance (Classification) operator that was applied on the Training partition is stored in a col-
umn named ‘Training Error’. The value of the classification error parameter of the Performance
(Classification) operator that was applied on the Testing partition is stored in a column named
‘Testing Error’. The value of the C parameter of the SVM (LibSVM) operator is stored in a column
named ‘SVM C’.The value of the gamma parameter of the SVM (LibSVM) operator is stored in a
column named ‘SVM gamma’. Also note that the stored information will be written into a file
as specified in the filename parameter.
At the endof the process, theWrite Parameters operator is used forwriting the optimal param-

eter set in a file. This file can be read using the Read Parameters operator to use these parameter
values in another process.
Run the process and turn to the Results Workspace. You can see that the optimal parameter

set has the following values: SVM.C = 56462 and SVM.gamma = 0.115 approximately. Now have
a look at the values saved by the Log operator to verify these values. Switch to Table View to see
the stored values in tabular form. You can see that the minimum Testing Error is 0.064 (in 20th
iteration). The values of the C and gamma parameters for this iteration are the same as given
in the optimal parameter set.
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Optimize Parameters (Grid)

Optimize Parame. . .

inp per

mod

par

ou t

This Operator finds the optimal values of the selected parameters
for the Operators in its subprocess.

Description

The Optimize Parameters (Grid) Operator is a nested Operator. It executes the subprocess for
all combinations of selected values of the parameters and then delivers the optimal parameter
values through the parameter set port. The performance vector for optimal values of param-
eters is delivered through the performance port and the associated model (if any) through the
model port. Any additional results of the best run are delivered through the output ports. Which
parameters are optimal is based on the performance value delivered to the inner performance
port.
The entire configuration of this Operator is done through the edit parameter settings param-

eter. Complete description of this parameter can be found in the parameters section.
This Operator returns an optimal parameter set which can also be written to a file with the

Write Parameters Operator. This parameter set can be read in another process using the Read
Parameters Operator and then be applied using the Set Parameters Operator.
The inner performance port can be used to log the performance of the inner subprocess. A log

is created automatically to capture the number of the run, the parameter settings and the main
criterion or all criteria of the delivered performance vector, depending on the parameter log all
criteria. This can be disabled by deselecting log performance. The inner performance port is also
used to determine the best model by comparing the fitness of the performance of the different
iterations.
Please note that this Operator has two modes: synchronized and non-synchronized. They

depend on the setting of the synchronize parameter. In the latter, all parameter combinations
are generated and the subprocess is executed for each combination. In the synchronized mode,
no combinations are created but the parameter values are treated as a list of combinations. For
the iterationover a single parameter there is nodifferencebetweenbothmodes. Pleasenote that
the number of parameter possibilities must be the same for all parameters in the synchronized
mode. As an Example, having two boolean parameters A and B (both with true/false as possible
parameter settings) will produce four combinations in non-synchronized mode (t/t, f/t, t/f, f/f)
and two combinations in synchronized mode (t/t, f/f).
If the synchronize parameter is not set to true, selecting a large number of parameters and/or

large number of steps (or possible values of parameters) results in a huge number of combina-
tions. For example, if you select 3 parameters and 25 steps for each parameter then the total
number of combinations would be above 17576 (i.e. 26 x 26 x 26). The subprocess is executed
for all possible combinations. Running a subprocess for such a huge number of iterations will
take a lot of time. So always carefully limit the parameters and their steps.
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Differentiation
Other parameter optimization schemes are also available. TheOptimizeParameters (Evolution-
ary) Operatormight be useful if the best ranges and dependencies are not known at all. Another
Operator which works similar to this parameter optimization Operator is the Loop Parameters
Operator. In contrast to the optimization Operators, this Operator simply iterates through all
parameter combinations. This might be especially useful for plotting and logging purposes.

• Optimize Parameters (Evolutionary)
The Optimize Parameters (Evolutionary) Operator finds the optimal values for a set of
parameters using an evolutionary approach which is often more appropriate than a grid
search (as in the Optimize Parameters (Grid) Operator) or a greedy search (as in the Opti-
mize Parameters (Quadratic) Operator) and leads to better results. The Optimize Param-
eters (Evolutionary) Operator might be useful if the best ranges and dependencies are not
known at all.

See page 669 for details.

• Optimize Parameters (Quadratic)
The Optimize Parameters (Quadratic) Operator finds the optimal values using a quadratic
interaction model. First it runs the same iterations as this operator. From the collected
parameter set/performance pairs it tries to calculate a new parameter set that might lie
in between the given grid lines. The result will either be the best performance from the
original runs or the from the newly calculated parameter set.

See page 677 for details.

Tutorial Processes

Finding optimal values of parameters of the SVM Operator
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Figure 4.102: Tutorial process ‘Finding optimal values of parameters of the SVM Operator’.

The ‘Weighting’ data set is loaded using the Retrieve Operator. The Optimize Parameters
(Grid) Operator is applied on it. Have a look at the Edit Parameter Settings parameter of the
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Optimize Parameters (Grid) Operator. You can see in the Selected Parameters window that the
C and gamma parameters of the SVM Operator are selected. Click on the SVM.C parameter in
the Selected Parameters window, youwill see that the range of the C parameter is set from 0.001
to 100000. 11 values are selected (in 10 steps) logarithmically. Now, click on the SVM.gamma
parameter in the Selected Parameters window, you will see that the range of the gamma param-
eter is set from 0.001 to 1.5. 11 values are selected (in 10 steps) logarithmically. There are 11
possible values of 2 parameters, thus there are 121 ( i.e. 11 x 11) combinations. The subprocess
will be executed for all combinations of these values, thus it will iterate 121 times. In every iter-
ation, the values of the C and/or gamma parameters of the SVM(LibSVM) Operator are changed.
The value of the C parameter is 0.001 in the first iteration. The value is increased logarithmi-
cally until it reaches 100000 in the last iteration. Similarly, the value of the gamma parameter
is 0.001 in the first iteration. The value is increased logarithmically until it reaches 1.5 in the
last iteration.
Havea lookat the subprocessof theOptimizeParameters (Grid)Operator. First thedata is split

into two equal partitions using the Split Data Operator. The SVM (LibSVM) Operator is applied
on one partition. The resultant classificationmodel is applied using a Apply Model Operator on
the second partition. The statistical performance of the SVM model on the testing partition is
measured using the Performance (Classification) Operators. The nested Operator also logs the
performance and parameters for each iteration.
Run the process and turn to the Results View. You can see that the optimal parameter set has

the following values: SVM.C = 398.107 and SVM.gamma = 0.001. Now have a look at the values
logged by the Optimize Parameter (Grid) Operator to verify these values. You can see that the
minimumTesting Error is 0.02 (in 8th iteration). The values of the C and gamma parameters for
this iteration are the same as given in the optimal parameter set.

Parameters
edit parameter settings (menu) Theparameters are selected through the edit parameter set-

tings menu. You can select the parameters and their possible values through this menu.
This menu has an Operators window which lists all the operators in the subprocess of this
Operator. When you click on any Operator in the Operators window, all parameters of
that Operator are listed in the Parameters window. You can select any parameter through
the arrow keys of the menu. The selected parameters are listed in the Selected Parame-
ters window. Only those parameters should be selected for which you want to iterate the
subprocess. This Operator iterates through parameter values in the specified range. The
range of every selected parameter should be specified. When you click on any selected pa-
rameter (parameter in Selected Parameters window), the Grid/Range and Value List option
is enabled. These options allow you to specify the range of values of the selected param-
eters. TheMin andMax fields are for specifying the lower and upper bounds of the range
respectively. As all values within this range cannot be checked, the steps field allows you
to specify the number of values to be checked from the specified range. Finally the scale
option allows you to select the pattern of these values. You can also specify the values in
form of a list.

error handling (selection) Thisparameter allowsyou to select themethod forhandlingerrors
occurring during the execution of the inner process. It has the following options:

• fail_on_error In case an error occurs, the execution of the process will fail with an
error message.

• ignore_error In case an error occurs, the error will be ignored and the execution of
the process will continue with the next iteration.
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log performance (boolean) This parameter will only be visible if the inner performance port
is connected. If it is connected, the main criterion of the performance vector will be auto-
matically logged with the parameter set if this parameter is set to true.

log all criteria (boolean) This parameter allows for more logging. If set to true, all perfor-
mance criteria will be logged.

synchronize (boolean) This Operator has two modes: synchronized and non-synchronized.
They depend on the setting of this parameter. If it is set to false, all parameter combina-
tions are generated and the inner Operators are applied for each combination. If it is set
to true, no combinations are created but the parameter values are treated as a list of com-
binations. For the iteration over a single parameter there is no difference between both
modes. Please note that the number of parameter possibilities must be the same for all
parameters in the synchronized mode.

enable parallel execution (boolean) This parameter enables the parallel execution of the
subprocess. Please disable the parallel execution if you run into memory problems.

Input Ports
input (inp) This Operator can have multiple inputs. When one input is connected, another

input port becomes available which is ready to accept another input (if any). The order of
inputs remains the same. The Object supplied at the first input port of this Operator is
available at the first input port of the nested chain (inside the subprocess). Do not forget
to connect all inputs in correct order. Make sure that you have connected the right number
of ports at the subprocess level.

Output Ports
performance (per) This port delivers the Performance Vector for the optimal values of the se-

lected parameters. A Performance Vector is a list of performance criteria values.

model (mod) This port delivers the Model for the optimal values of the selected parameters.

parameters (par) This port delivers the optimal values of the selected parameters. This op-
timal parameter set can also be written to a file with the Write Parameters operator. The
written parameter set can be read in another process using the Read Parameters operator.

output (out) Any results of the subprocess are delivered through the output ports. This Oper-
ator can have multiple outputs. When one output port is connected, another output port
becomes available which is ready to deliver another output (if any). The order of outputs
remains the same. The Object delivered at the first output port of the subprocess is deliv-
ered at the first outputport of the Operator. Don’t forget to connect all outputs in correct
order. Make sure that you have connected the right number of ports.

Related Documents
• Optimize Parameters (Evolutionary) (page 669)

• Optimize Parameters (Quadratic) (page 677)
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Optimize Parameters (Quadratic)

Optimize Parame. . .

inp per

par

res

This operator finds the optimal values for parameters using a
quadratic interaction model.

Description

Thisoperatorfinds theoptimal values for a setofparametersusingaquadratic interactionmodel.
Theparameterparameters is a list of keyvaluepairswhere thekeysareof the formOperatorName.parameter-
_name and the value is a comma separated list of values (as for the GridParameterOptimization
operator).
The operator returns an optimal ParameterSet which can as well be written to a file with a

ParameterSetLoader. This parameter set can be read in another process using an ParameterSet-
Loader.
The file format of the parameter set file is straightforward and can also easily be generated by

external applications. Each line is of the form operator_name.parameter_name = value .

Differentiation

• Optimize Parameters (Evolutionary) The Optimize Parameters (Evolutionary) opera-
tor finds the optimal values for a set of parameters using an evolutionary approach which
is often more appropriate than a grid search (as in the Optimize Parameters (Grid) oper-
ator) or a greedy search (as in the Optimize Parameters (Quadratic) operator) and leads
to better results. The Optimize Parameters (Evolutionary) operator might be useful if the
best ranges and dependencies are not known at all. See page 669 for details.

• Optimize Parameters (Grid) TheOptimize Parameters (Grid) operator executes its sub-
process for all combinations of the selected values of the parameters and then delivers the
optimal parameter values. See page ?? for details.

Input Ports

input (inp) Thisoperator canhavemultiple inputs. Whenone input is connected, another input
port becomes available which is ready to accept another input (if any). The order of inputs
remains the same. The Object supplied at the first input port of this operator is available
at the first input port of the nested chain (inside the subprocess). Do not forget to connect
all inputs in correct order. Make sure that you have connected the right number of ports
at the subprocess level.

Output Ports

performance (per) This port delivers the Performance Vector for the optimal values of the se-
lected parameters. A Performance Vector is a list of performance criteria values.
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parameters (par) This port delivers the optimal values of the selected parameters. This op-
timal parameter set can also be written to a file with the Write Parameters operator. The
written parameter set can be read in another process using the Read Parameters operator.

result (res) Anyadditional results of the subprocess aredelivered through the resultports. This
operator can havemultiple outputs. When one result port is connected, another result port
becomes available which is ready to deliver another output (if any). The order of outputs
remains the same. TheObject delivered at thefirst resultport of the subprocess is delivered
at the first result port of the operator. Don’t forget to connect all outputs in correct order.
Make sure that you have connected the right number of ports.

Parameters
configure operator Configure this operator by means of a Wizard.

parameters (list) The parameters

error handling (selection) Thisparameter allowsyou to select themethod forhandlingerrors
occurring during the execution of the inner process. It has the following options:

• fail_on_error In case an error occurs, the execution of the process will fail with an
error message.

• ignore_error In case an error occurs, the error will be ignored and the execution of
the process will continue with the next iteration.

if exceeds region (selection) What to do if region is exceeded.

• ignore
• clip
• fail

if exceeds range (selection) What to do if range is exceeded.

• ignore
• clip
• fail

Related Documents
• Optimize Parameters (Evolutionary) (page 669)

• Optimize Parameters (Grid) (page ??)
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Set Parameters

Set  Parameters
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This operator applies a set of parameters to the specified opera-
tors. This operator is mostly used for applying an optimal set of
parameters of one operator to another similar operator.

Description

The Set Parameters operator takes a set of parameters as input. Operators like Optimize Param-
eters (Grid) or Read Parameters can be used as a source of parameter set. The Set Parameters
operator takes this parameter set and assigns these parameter values to the parameters of the
specified operator which can be specified through the name map parameter. This menu has two
columns: ‘set operator name’ and ‘operator name’. The ‘set operator name’ column is used for
specifying the name of the operator (or the name of the parameter set) that generated this pa-
rameter set and the ‘operator name’ column specifies the name of the target operator i.e. the
operator that will use this parameter set.
This operator can be very useful, e.g. in the following scenario. If one wants to find the best

parameters for a certain learning scheme, one is usually also interested in the model gener-
ated with these optimal parameters. Finding the best parameter set is easily possible by oper-
ators like the Optimize Parameters (Grid) operator. But generating a model with these optimal
parameters is not possible because such parameter optimization operators do not return the
IOObjects produced within, but only a parameter set and a performance vector. This is, because
the parameter optimization operators know nothing about models, but only about the perfor-
mance vectors producedwithin and producing performance vectors does not necessarily require
a model. To solve this problem, one can use the Set Parameters operator. Usually, a process
with the Set Parameters operator contains at least two operators of the same type, typically a
learner. One learner may be an inner operator of a parameter optimization scheme and may
be named ‘Learner’, whereas a second learner of the same type named ‘OptimalLearner’ comes
after the parameter optimization scheme and should use the optimal parameter set returned
by the optimization scheme. The Set Parameters operator takes the parameter set returned by
the optimization scheme as input. The name ‘Learner’, is specified in the ‘set operator name’
column and the name ‘OptimalLearner’ is specified in the ‘operator name’ column of the name
map parameter. Each parameter in this list maps the name of an operator that was used during
the optimization (in our case this is ‘Learner’) to an operator that should now use these param-
eters (in our case this is ‘OptimalLearner’). An important thing to note here is the sequence of
operators. The ‘Learner’, operator should be first in sequence, followed by the Set Parameters
operator and finally the ‘OptimalLearner’ operator.

Differentiation

• Clone Parameters The Clone Parameters operator is a very generic form of the Set Pa-
rameters operator. It differs from the Set Parameters operator because it does not require
a ParameterSet as input. It simply reads a parameter value from a source and uses it to
set the parameter value of a target parameter. This operator is more generic than the Set
Parameters operator and could completely replace it. See page 666 for details.
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Input Ports
parameter set (par) This input port expects a parameter set. It is the output of the Optimize

Parameters (Grid) operator in theattachedExampleProcess. Theoutputof otheroperators
like the Read Parameters operator can also be used as a source of a parameter set.

Parameters
name map (list) The Set Parameters operator takes a parameter set and assigns these param-

eter values to the parameters of the specified operator which can be specified through the
name map parameter. This menu has two columns i.e. ‘set operator name’ and ‘operator
name’. The ‘set operator name’ column is used for specifying the operator that generated
this parameter set (or the name of the parameter set) and the ‘operator name’ column
specifies the name of the target operator i.e. the operator that will use this parameter.

Related Documents
• Clone Parameters (page 666)

Tutorial Processes

Building a model using an optimal parameter set
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Figure 4.103: Tutorial process ‘Building a model using an optimal parameter set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Optimize Parameters
(Grid) operator is applied on it to produce an optimal set of parameters. The X-Validation oper-
ator is applied in the subprocess of the Optimize Parameters (Grid) operator. The X-Validation
operator uses an SVM (LibSVM) operator for training a model. This SVM (LibSVM) operator is
named ‘Learner’. After execution of the Optimize Parameters (Grid) operator, it returns a pa-
rameter set with optimal values of the C and degree parameters of the SVM (LibSVM) operator.
This parameter set is provided to the Set Parameters operator. The Set Parameters operator pro-
vides these optimal parameters to the SVM (LibSVM) operator in the main process (outside the
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Optimize Parameter (Grid) operator). This SVM (LibSVM) operator is named ‘OptimalLearner’
and it comes after the Set Parameters operator in the execution sequence. Have a look at the
name map parameter of the Set Parameters operator. The name ‘Learner’, is specified in the
‘set operator name’ column and the name ‘OptimalLearner’ is specified in the ‘operator name’
column of the name map parameter. Each parameter in this list maps the name of an operator
that was used during the optimization (in our case this is ‘Learner’) to an operator that should
now use these parameters (in our case this is ‘OptimalLearner’). The ‘OptimalLearner’ uses the
optimal parameters of ‘Learner’ and applies themodel on the ‘Polynomial’ data set. Have a look
at the parameters of the ‘OptimalLearner’ before the execution of the process. The degree and C
parameters are set to 1 and 0.0 respectively. These values are changed to 3 and 250 after execu-
tion of the process because these are the optimal values for these parameters generated by the
Optimize Parameters (Grid) operator and then these parameters were used by ‘OptimalLearner’.
These parameters can also be seen during the process execution (at the breakpoint after the Op-
timize Parameters (Grid) operator).
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4.7.2 Feature Selection
Backward Elimination

Backward Elimin.. .

exa exa

a t t

per

This operator selects the most relevant attributes of the given Ex-
ampleSet through an efficient implementation of the backward
elimination scheme.

Description
The Backward Elimination operator is a nested operator i.e. it has a subprocess. The subpro-
cess of the Backward Elimination operator must always return a performance vector. For more
information regarding subprocesses please study the Subprocess operator.
The Backward Elimination operator starts with the full set of attributes and, in each round,

it removes each remaining attribute of the given ExampleSet. For each removed attribute, the
performance is estimated using the inner operators, e.g. a cross-validation. Only the attribute
giving the least decrease of performance is finally removed from the selection. Then anew round
is started with themodified selection. This implementation avoids any additional memory con-
sumption besides the memory used originally for storing the data and thememory whichmight
be needed for applying the inner operators. The stopping behavior parameter specifies when the
iteration should be aborted. There are three different options:

• with decrease: The iteration runs as long as there is any increase in performance.

• with decrease of more than: The iteration runs as long as the decrease is less than the
specified threshold, either relative or absolute. Themaximal relative decrease parameter is
used for specifying the maximal relative decrease if the use relative decrease parameter is
set to true. Otherwise, themaximal absolute decrease parameter is used for specifying the
maximal absolute decrease.

• with significant decrease: The iteration stops as soon as the decrease is significant to the
level specified by the alpha parameter.

The speculative rounds parameter defines how many rounds will be performed in a row, after
the first time the stopping criterion is fulfilled. If the performance increases again during the
speculative rounds, the elimination will be continued. Otherwise all additionally eliminated
attributes will be restored, as if no speculative rounds had executed. This might help avoiding
getting stuck in local optima.
Feature selection i.e. the question for the most relevant features for classification or regres-

sion problems, is one of the main data mining tasks. A wide range of search methods have been
integrated intoRapidMiner including evolutionary algorithms. For all searchmethodsweneed a
performancemeasurement which indicates howwell a search point (a feature subset) will prob-
ably perform on the given data set.

Differentiation
• Forward Selection The Forward Selection operator starts with an empty selection of at-
tributes and, in each round, it adds each unused attribute of the given ExampleSet. For
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each added attribute, the performance is estimated using the inner operators, e.g. a cross-
validation. Only the attribute giving the highest increase of performance is added to the
selection. Then a new round is started with the modified selection. See page 685 for de-
tails.

Input Ports

example set (exa) This input port expects an ExampleSet. This ExampleSet is available at the
first port of the nested chain (inside the subprocess) for processing in the subprocess.

Output Ports

example set (exa) The feature selection algorithm is applied on the input ExampleSet. The
resultant ExampleSet with reduced attributes is delivered through this port.

attribute weights (att) The attribute weights are delivered through this port.

performance (per) This port delivers the Performance Vector for the selected attributes. A
Performance Vector is a list of performance criteria values.

Parameters

maximal number of eliminations (integer) This parameter specifies the maximal number
of backward eliminations.

speculative rounds (integer) This parameter specifies thenumber of times, the stopping cri-
terion might be consecutively ignored before the elimination is actually stopped. A num-
ber higher than one might help avoiding getting stuck in local optima.

stopping behavior (selection) The stopping behavior parameter specifies when the iteration
should be aborted. There are three different options:

• with_decrease The iteration runs as long as there is any increase in performance.

• with_decrease_of_more_than The iteration runs as long as the decrease is less than
the specified threshold, either relative or absolute. Themaximal relative decrease pa-
rameter is used for specifying themaximal relative decrease if the use relative decrease
parameter is set to true. Otherwise, themaximal absolute decrease parameter is used
for specifying the maximal absolute decrease.

• with_significant_decrease The iteration stops as soon as the decrease is significant
to the level specified by the alpha parameter.

use relative decrease (boolean) This parameter is only availablewhen the stopping behavior
parameter is set to ‘with decrease ofmore than’. If the use relative decrease parameter is set
to true themaximal relative decreaseparameterwill be used otherwise themaximal absolute
decrease parameter.

maximal absolute decrease (real) This parameter is only available when the stopping be-
havior parameter is set to ‘with decrease of more than’ and the use relative decrease pa-
rameter is set to false. If the absolute performance decrease to the last step exceeds this
threshold, the elimination will be stopped.
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maximal relative decrease (real) This parameter is only availablewhen the stopping behav-
ior parameter is set to ‘with decrease of more than’ and the use relative decrease parameter
is set to true. If the relative performance decrease to the last step exceeds this threshold,
the elimination will be stopped.

alpha (real) This parameter is only available when the stopping behavior parameter is set to
‘with significant decrease’. This parameter specifies the probability threshold which de-
termines if differences are considered as significant.

Related Documents
• Forward Selection (page 685)

Tutorial Processes

Feature reduction of the Polynomial data set
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Figure 4.104: Tutorial process ‘Feature reduction of the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular
attributes other then the label attribute. The Backward Elimination operator is applied on the
ExampleSet which is a nested operator i.e. it has a subprocess. It is necessary for the subprocess
to deliver a performance vector. This performance vector is used by the underlying feature re-
duction algorithm. Have a look at the subprocess of this operator. The X-Validation operator is
used there which itself is a nested operator. Have a look at the subprocesses of the X-Validation
operator. The K-NN operator is used in the ‘Training’ subprocess to train a model. The trained
model is applied using the Apply Model operator in the ‘Testing’ subprocess. The performance
is measured through the Performance operator and the resultant performance vector is used by
the underlying algorithm. Run the process and switch to the Results Workspace. You can see
that the ExampleSet that had 5 attributes has now been reduced to 3 attributes.
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Forward Selection
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This operator selects the most relevant attributes of the given Ex-
ampleSet throughahighly efficient implementationof the forward
selection scheme.

Description
The Forward Selection operator is a nested operator i.e. it has a subprocess. The subprocess of
the Forward Selection operator must always return a performance vector. For more information
regarding subprocesses please study the Subprocess operator.
TheForwardSelectionoperator startswithanempty selectionof attributesand, ineach round,

it adds each unused attribute of the given ExampleSet. For each added attribute, the perfor-
mance is estimated using the inner operators, e.g. a cross-validation. Only the attribute giving
the highest increase of performance is added to the selection. Then a new round is started with
the modified selection. This implementation avoids any additional memory consumption be-
sides the memory used originally for storing the data and the memory which might be needed
for applying the inner operators. The stopping behavior parameter specifies when the iteration
should be aborted. There are three different options:

• without increase : The iteration runs as long as there is any increase in performance.

• without increase of at least: The iteration runs as long as the increase is at least as high
as specified, either relative or absolute. The minimal relative increase parameter is used
for specifying the minimal relative increase if the use relative increase parameter is set to
true. Otherwise, theminimal absolute increaseparameter is used for specifying theminimal
absolute increase.

• without significant increase: The iteration stops as soon as the increase is not significant
to the level specified by the alpha parameter.

The speculative rounds parameter defines how many rounds will be performed in a row, af-
ter the first time the stopping criterion is fulfilled. If the performance increases again during
the speculative rounds, the selection will be continued. Otherwise all additionally selected at-
tributes will be removed, as if no speculative rounds had executed. This might help avoiding
getting stuck in local optima.
Feature selection i.e. the question for the most relevant features for classification or regres-

sion problems, is one of the main data mining tasks. A wide range of search methods have been
integrated intoRapidMiner including evolutionary algorithms. For all searchmethodsweneed a
performancemeasurement which indicates howwell a search point (a feature subset) will prob-
ably perform on the given data set.

Differentiation
• Backward Elimination The Backward Elimination operator starts with the full set of at-
tributes and, in each round, it removes each remaining attribute of the given ExampleSet.
For each removed attribute, the performance is estimated using the inner operators, e.g.
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a cross-validation. Only the attribute giving the least decrease of performance is finally
removed from the selection. Then a new round is started with themodified selection. See
page 682 for details.

Input Ports
example set (exa) This input port expects an ExampleSet. This ExampleSet is available at the

first port of the nested chain (inside the subprocess) for processing in the subprocess.

Output Ports
example set (exa) The feature selection algorithm is applied on the input ExampleSet. The

resultant ExampleSet with reduced attributes is delivered through this port.

attribute weights (att) The attribute weights are delivered through this port.

performance (per) This port delivers the Performance Vector for the selected attributes. A
Performance Vector is a list of performance criteria values.

Parameters
maximal number of attributes (integer) This parameter specifies the maximal number of

attributes to be selected through Forward Selections.

speculative rounds (integer) This parameter specifies thenumber of times, the stopping cri-
terion might be consecutively ignored before the elimination is actually stopped. A num-
ber higher than one might help avoiding getting stuck in local optima.

stopping behavior (selection) The stopping behavior parameter specifies when the iteration
should be aborted. There are three different options:

• without_increase The iteration runs as long as there is any increase in performance.
• without_increase_of_at_least The iteration runs as long as the increase is at least as
high as specified, either relative or absolute. The minimal relative increase parame-
ter is used for specifying the minimal relative increase if the use relative increase pa-
rameter is set to true. Otherwise, theminimal absolute increase parameter is used for
specifying the minimal absolute increase.

• without_significant_increase The iteration stops as soon as the increase is not sig-
nificant to the level specified by the alpha parameter.

use relative increase (boolean) This parameter is only available when the stopping behavior
parameter is set to ‘without increase of at least’. If the use relative increase parameter is set
to true theminimal relative increase parameter will be used otherwise theminimal absolute
increase parameter will be used.

minimal absolute increase (real) This parameter is only availablewhen the stopping behav-
ior parameter is set to ‘without increase of at least’ and the use relative increase parameter
is set to false. If the absolute performance increase to the last step drops below this thresh-
old, the selection will be stopped.

minimal relative increase (real) This parameter is only available when the stopping behav-
iorparameter is set to ‘without increaseof at least’ and theuse relative increaseparameter is
set to true. If the relative performance increase to the last step drops below this threshold,
the selection will be stopped.
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alpha (real) This parameter is only available when the stopping behavior parameter is set to
‘without significant increase’. This parameter specifies the probability threshold which
determines if differences are considered as significant.

Related Documents
• Backward Elimination (page 682)

Tutorial Processes

Feature reduction of the Polynomial data set through Forward Selection
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Figure 4.105: Tutorial process ‘Feature reduction of the Polynomial data set through Forward
Selection’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular
attributes other then the label attribute. The Forward Selection operator is applied on the Ex-
ampleSet which is a nested operator i.e. it has a subprocess. It is necessary for the subprocess
to deliver a performance vector. This performance vector is used by the underlying feature re-
duction algorithm. Have a look at the subprocess of this operator. The X-Validation operator
is used which itself is a nested operator. Have a look at the subprocesses of the X-Validation
operator. The K-NN operator is used in the ‘Training’ subprocess to train a model. The trained
model is applied using the Apply Model operator in the ‘Testing’ subprocess. The performance
is measured through the Performance operator and the resultant performance vector is used by
the underlying algorithm. Run the process and switch to the Results Workspace. You can see
that the ExampleSet that had 5 attributes has now been reduced to 3 attributes.
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Optimize Selection
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This operator selects the most relevant attributes of the given Ex-
ampleSet. Two deterministic greedy feature selection algorithms
‘forward selection’ and ‘backward elimination’ are used for feature
selection.

Description
Feature selection i.e. the question for the most relevant features for classification or regression
problems, is one of the main data mining tasks. A wide range of search methods have been in-
tegrated into RapidMiner including evolutionary algorithms. For all search methods we need a
performancemeasurement which indicates howwell a search point (a feature subset) will prob-
ably perform on the given data set.
Adeterministic algorithmisanalgorithmwhich, in informal terms, behavespredictably. Given

a particular input, it will always produce the same output, and the underlying machine will al-
ways pass through the same sequence of states.
A greedy algorithm is an algorithm that follows the problem solving heuristic of making the

locally optimal choice at each stage with the hope of finding a global optimum. On some prob-
lems, a greedy strategymay not produce an optimal solution, but nonetheless a greedy heuristic
may yield locally optimal solutions that approximate a global optimal solution.
This operator realizes the two deterministic greedy feature selection algorithms ‘forward se-

lection’ and ‘backward elimination’. However, we have added some enhancements to the stan-
dard algorithms which are described below:

Forward Selection

1. Create an initial population with n individuals where n is the number of attributes in the
input ExampleSet. Each individual will use exactly one of the features.

2. Evaluate the attribute sets and select only the best k.

3. For each of the k attribute sets do: If there are j unused attributes, make j copies of the
attribute set and add exactly one of the previously unused attributes to the attribute set.

4. As long as the performance improved in the last p iterations go to step 2

Backward Elimination

1. Start with an attribute set which uses all features.

2. Evaluate all attribute sets and select the best k.

3. For each of the k attribute sets do: If there are j attributes used, make j copies of the at-
tribute set and remove exactly one of the previously used attributes from the attribute set.

4. As long as the performance improved in the last p iterations go to step 2
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The parameter k can be specified by the keep best parameter, the parameter p can be specified
by the generations without improval parameter. These parameters have default values 1 which
means that the standard selection algorithms are used. Using other values increases the runtime
but might help to avoid local extrema in the search for the global optimum.
Another unusual parameter is themaximum number of generations parameter. This parameter

bounds the number of iterations to this maximum of feature selections / de-selections. In com-
bination with the generations without improval parameter, this allows several different selection
schemes (which are described for forward selection, backward elimination works analogous):

maximum number of generations = m and generations without improval = p:

Selects maximalm features. The selection stops if no performance improvement was measured
in the last p generations.

maximum number of generations = -1 and generations without improval = p:

Tries to selects new features until no performance improvement wasmeasured in the last p gen-
erations.

maximum number of generations = m and generations without improval = -1:

Selectsmaximalm features. The selection stops is not stopped until all combinations withmax-
imal m were tried. However, the result might contain fewer features than these.

maximum number of generations = -1 and generations without improval = -1:

Test all combinations of attributes (brute force, this might take a very long time and should only
be applied to small attribute sets).

Differentiation

• Optimize Selection (Evolutionary) This is also an attribute set reduction operator but
it uses a genetic algorithm for this purpose. See page 695 for details.

Input Ports

example set in (exa) This input port expects an ExampleSet. This ExampleSet is available at
the first port of the nested chain (inside the subprocess) for processing in the subprocess.

through (thr) This operator can have multiple through ports. When one input is connected
with the through port, another through port becomes available which is ready to accept
another input (if any). The order of inputs remains the same. The Object supplied at the
first through port of this operator is available at the first through port of the nested chain
(inside the subprocess). Do not forget to connect all inputs in correct order. Make sure
that you have connected the right number of ports at the subprocess level.
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Output Ports
example set out (exa) The feature selection algorithm is applied on the input ExampleSet.

The resultant ExampleSet with reduced attributes is delivered through this port.

weights (wei) The attribute weights are delivered through this port.

performance (per) This port delivers the Performance Vector for the selected attributes. A
Performance Vector is a list of performance criteria values.

Parameters
selection direction (selection) This parameter specifies which of the ‘forward selection’ and

‘backward elimination’ algorithms should be used.

limit generations without improval (boolean) This parameter indicates if the optimiza-
tionshouldbeaborted if thisnumberofgenerations showedno improvement. If unchecked,
always the maximal number of generations will be used.

generations without improval (integer) Thisparameter isonlyavailablewhen the limit gen-
erations without improval parameter is set to true. This parameter specifies the stop crite-
rion for early stopping i.e. it stops after n generations without improvement in the per-
formance. n is specified by this parameter.

limit number of generations (boolean) This parameter indicates if the number of genera-
tions should be limited to a specific number.

keep best (integer) The best n individuals are kept in each generation where n is the value of
this parameter.

maximum number of generations (integer) Thisparameter isonlyavailablewhenthe limit
number of generationsparameter is set to true. This parameter specifies the number of gen-
erations after which the algorithm should be terminated.

normalize weights (boolean) This parameter indicates if thefinalweights shouldbenormal-
ized. If set to true, the final weights are normalized such that the maximum weight is 1
and the minimum weight is 0.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed and is only avail-
able if the use local random seed parameter is set to true.

show stop dialog (boolean) This parameter determines if a dialog with a stop button should
be displayedwhich stops the search for the best feature space. If the search for best feature
space is stopped, the best individual found till then will be returned.

user result individual selection (boolean) If this parameter is set to true, it allows the user
to select the final result individual from the last population.

show population plotter (boolean) Thisparameterdetermines if thecurrentpopulationshould
be displayed in the performance space.
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plot generations (integer) This parameter is only available when the show population plotter
parameter is set to true. The population plotter is updated in these generations.

constraint draw range (boolean) This parameter is only availablewhen the show population
plotter parameter is set to true. This parameter determines if the draw range of the popu-
lation plotter should be constrained between 0 and 1.

draw dominated points (boolean) This parameter is only available when the show popula-
tion plotter parameter is set to true. This parameter determines if only points which are
not Pareto dominated should be drawn on the population plotter.

population criteria data file (filename) Thisparameter specifies thepath to thefile inwhich
the criteria data of the final population should be saved.

maximal fitness (real) This parameter specifies the maximal fitness. The optimization will
stop if the fitness reaches this value.

Related Documents
• Optimize Selection (Evolutionary) (page 695)

Tutorial Processes

Feature reduction of the Polynomial data set

Root
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Figure 4.106: Tutorial process ‘Feature reduction of the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular
attributes other then the label attribute. The Optimize Selection operator is applied on the Ex-
ampleSet which is a nested operator i.e. it has a subprocess. It is necessary for the subprocess to
deliver a performance vector. This performance vector is used by the underlying feature reduc-
tion algorithm. Have a look at the subprocess of this operator. The Split Validation operator has
been used there which itself is a nested operator. Have a look at the subprocesses of the Split
Validation operator. The SVM operator is used in the ‘Training’ subprocess to train a model.
The trained model is applied using the Apply Model operator in the ‘Testing’ subprocess. The
performance ismeasured through the Performance operator and the resultant performance vec-
tor is used by the underlying algorithm. Run the process and switch to the Results Workspace.
You can see that the ExampleSet that had 5 attributes has now been reduced to 2 attributes.
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Optimize Selection (Brute Force)

Optimize Selecti . . .

exa

th r

exa

wei

per

This operator selects the most relevant attributes of the given Ex-
ampleSet by trying all possible combinations of attribute selec-
tions.

Description
The Optimize Selection (Brute Force) operator is a nested operator i.e. it has a subprocess. This
subprocess must always return a performance vector. This operator selects the feature set with
the best performance vector. You need to have basic understanding of subprocesses in order
to apply this operator. Please study the documentation of the Subprocess operator for basic
understanding of subprocesses.
Feature selection i.e. the question for the most relevant features for classification or regres-

sion problems, is one of the main data mining tasks. A wide range of search methods have been
integrated intoRapidMiner including evolutionary algorithms. For all searchmethodsweneed a
performancemeasurement which indicates howwell a search point (a feature subset) will prob-
ably perform on the given data set.
This feature selection operator selects the best attribute set by trying all possible combina-

tions of attribute selections. It returns the ExampleSet containing the subset of attributeswhich
produced the best performance. As this operator works on the power-set of the attribute set, it
has exponential runtime.

Differentiation
• Optimize Selection (Evolutionary) This is also an attribute set reduction operator but
it uses a genetic algorithm for this purpose. See page 695 for details.

Input Ports
example set in (exa) This input port expects an ExampleSet. This ExampleSet is available at

the first port of the nested chain (inside the subprocess) for processing in the subprocess.

through (thr) This operator can have multiple through ports. When one input is connected
with the through port, another through port becomes available which is ready to accept
another input (if any). The order of inputs remains the same. The Object supplied at the
first through port of this operator is available at the first through port of the nested chain
(inside the subprocess). Do not forget to connect all inputs in correct order. Make sure
that you have connected the right number of ports at the subprocess level.

Output Ports
example set out (exa) The feature selection algorithm is applied on the input ExampleSet.

The resultant ExampleSet with reduced attributes is delivered through this port.

weights (wei) The attribute weights are delivered through this port.
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performance (per) This port delivers the Performance Vector for the selected attributes. A
Performance Vector is a list of performance criteria values.

Parameters
use exact number of attributes (boolean) Thisparameterdetermines if only combinations

containing exact numbers of attributes should be tested. The exact number is specified by
the exact number of attributes parameter.

exact number of attributes (integer) This parameter is only available when the use exact
number of attributes parameter is set to true. Only combinations containing this numbers
of attributes would be generated and tested.

restrict maximum (boolean) If set to true, the maximum number of attributes whose com-
binations will be generated and tested can be restricted. Otherwise all combinations of all
attributes are generated and tested. This parameter is only available when the use exact
number of attributes parameter is set to true.

min number of attributes (integer) Thisparameterdetermines theminimumnumberof fea-
tures used for the combinations to be generated and tested.

max number of attributes (integer) This parameter determines the maximum number of
features used for the combinations to be generated and tested. This parameter is only
available when the restrict maximum parameter is set to true.

normalize weights (boolean) Thisparameter indicates if thefinalweights shouldbenormal-
ized. If set to true, the final weights are normalized such that the maximum weight is 1
and the minimum weight is 0.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed and is only avail-
able if the use local random seed parameter is set to true.

show stop dialog (boolean) This parameter determines if a dialog with a stop button should
be displayedwhich stops the search for the best feature space. If the search for best feature
space is stopped, the best individual found till then will be returned.

user result individual selection (boolean) If this parameter is set to true, it allows the user
to select the final result individual from the last population.

show population plotter (boolean) Thisparameterdetermines if thecurrentpopulationshould
be displayed in the performance space.

plot generations (integer) This parameter is only available when the show population plotter
parameter is set to true. The population plotter is updated in these generations.

constraint draw range (boolean) This parameter is only availablewhen the show population
plotter parameter is set to true. This parameter determines if the draw range of the popu-
lation plotter should be constrained between 0 and 1.

draw dominated points (boolean) This parameter is only available when the show popula-
tion plotter parameter is set to true. This parameter determines if only points which are
not Pareto dominated should be drawn on the population plotter.
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population criteria data file (filename) Thisparameter specifies thepath to thefile inwhich
the criteria data of the final population should be saved.

maximal fitness (real) This parameter specifies the maximal fitness. The optimization will
stop if the fitness reaches this value.

Related Documents
• Optimize Selection (Evolutionary) (page 695)

Tutorial Processes

Feature reduction of the Polynomial data set
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Figure 4.107: Tutorial process ‘Feature reduction of the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regu-
lar attributes other then the label attribute. The Optimize Selection (Brute Force) operator is
applied on the ExampleSet which is a nested operator i.e. it has a subprocess. It is necessary
for the subprocess to deliver a performance vector. This performance vector is used by the un-
derlying feature reduction algorithm. Have a look at the subprocess of this operator. The Split
Validation operator has been used there which itself is a nested operator. Have a look at the
subprocesses of the Split Validation operator. The SVM operator is used in the ‘Training’ sub-
process to train a model. The trained model is applied using the Apply Model operator in the
‘Testing’ subprocess. The performance is measured through the Performance operator and the
resultant performance vector is used by the underlying algorithm. Run the process and switch
to the Results Workspace. You can see that the ExampleSet that had 5 attributes has now been
reduced to 3 attributes.
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Optimize Selection (Evolutionary)

Optimize Selecti . . .

exa

a t t

t h r

exa

wei

per

This operator selects the most relevant attributes of the given Ex-
ampleSet. A Genetic Algorithm is used for feature selection.

Description

Feature selection i.e. the question for the most relevant features for classification or regression
problems, is one of the main data mining tasks. A wide range of search methods have been in-
tegrated into RapidMiner including evolutionary algorithms. For all search methods we need a
performancemeasurement which indicates howwell a search point (a feature subset) will prob-
ably perform on the given data set.
A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.

This heuristic is routinely used to generate useful solutions to optimization and search prob-
lems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which gen-
erate solutions to optimization problems using techniques inspired by natural evolution, such
as inheritance, mutation, selection, and crossover.
In genetic algorithm for feature selection ‘mutation’ means switching features on and off

and ‘crossover’ means interchanging used features. Selection is done by the specified selec-
tion scheme which is selected by the selection scheme parameter. A genetic algorithm works as
follows:
Generate an initial population consisting of p individuals. Each attribute is switched on with

probability p_i. The numbers p and p_i can be adjusted by the population size and p initialize
parameters respectively.
For all individuals in the population

1. Perform mutation, i.e. set used attributes to unused with probability p_m and vice versa.
The probability p_m can be adjusted by the p mutation parameter.

2. Choose two individuals from the population and perform crossover with probability p_c.
The probability p_c can be adjusted by the p crossover parameter. The type of crossover can
be selected by the crossover type parameter.

3. Perform selection, map all individuals according to their fitness and draw p individuals at
randomaccording to their probability where p is the population sizewhich can be adjusted
by the population size parameter.

4. As long as the fitness improves, go to step number 2.

If the ExampleSet contains value series attributes with block numbers, the whole block will
be switched on and off. Exact, minimum or maximum number of attributes in combinations to
be tested can be specified by the appropriate parameters. Many other options are also available
for this operator. Please study the parameters section for more information.
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Input Ports
example set in (exa) This input port expects an ExampleSet. This ExampleSet is available at

the first port of the nested chain (inside the subprocess) for processing in the subprocess.

attribute weights in (att) This port expects attributeweights. It is not compulsory to use this
port.

through (thr) This operator can have multiple through ports. When one input is connected
with the through port, another through port becomes available which is ready to accept
another input (if any). The order of inputs remains the same. The Object supplied at the
first through port of this operator is available at the first through port of the nested chain
(inside the subprocess). Do not forget to connect all inputs in correct order. Make sure
that you have connected right number of ports at subprocess level.

Output Ports
example set out (exa) The genetic algorithm is applied on the input ExampleSet. The resul-

tant ExampleSet with reduced attributes is delivered through this port.

weights (wei) The attribute weights are delivered through this port.

performance (per) This port delivers the Performance Vector for the selected attributes. A
Performance Vector is a list of performance criteria values.

Parameters
use exact number of attributes (boolean) Thisparameterdetermines if only combinations

containing exact numbers of attributes should be tested. The exact number is specified by
the exact number of attributes parameter.

exact number of attributes (integer) This parameter is only available when the use exact
number of attributes parameter is set to true. Only combinations containing this numbers
of attributes would be generated and tested.

restrict maximum (boolean) If set to true, the maximum number of attributes whose com-
binations will be generated and tested can be restricted. Otherwise all combinations of all
attributes are generated and tested. This parameter is only available when the use exact
number of attributes parameter is set to true.

min of attributes (integer) Thisparameterdetermines theminimumnumberof featuresused
for the combinations to be generated and tested.

max number of attributes (integer) This parameter determines the maximum number of
features used for the combinations to be generated and tested. This parameter is only
available when the restrict maximum parameter is set to true.

population size (integer) This parameter specifies the population size i.e. the number of in-
dividuals per generation.

maximum number of generations (integer) This parameter specifies the number of gen-
erations after which the algorithm should be terminated.

use early stopping (boolean) This parameter enables early stopping. If not set to true, al-
ways the maximum number of generations are performed.
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generations without improval (integer) This parameter is only availablewhen theuse early
stopping parameter is set to true. This parameter specifies the stop criterion for early stop-
ping i.e. it stops after n generations without improvement in the performance. n is spec-
ified by this parameter.

normalize weights (boolean) Thisparameter indicates if thefinalweights shouldbenormal-
ized. If set to true, the final weights are normalized such that the maximum weight is 1
and the minimum weight is 0.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

show stop dialog (boolean) This parameter determines if a dialog with a stop button should
be displayedwhich stops the search for the best feature space. If the search for best feature
space is stopped, the best individual found till then will be returned.

user result individual selection (boolean) If this parameter is set to true, it allows the user
to select the final result individual from the last population.

show population plotter (boolean) Thisparameterdetermines if thecurrentpopulationshould
be displayed in performance space.

plot generations (integer) This parameter is only available when the show population plotter
parameter is set to true. The population plotter is updated in these generations.

constraint draw range (boolean) This parameter is only availablewhen the show population
plotter parameter is set to true. This parameter determines if the draw range of the popu-
lation plotter should be constrained between 0 and 1.

draw dominated points (boolean) This parameter is only available when the show popula-
tion plotter parameter is set to true. This parameter determines if only points which are
not Pareto dominated should be drawn on the population plotter.

population criteria data file (filename) Thisparameter specifies thepath to thefile inwhich
the criteria data of the final population should be saved.

maximal fitness (real) This parameter specifies the maximal fitness. The optimization will
stop if the fitness reaches this value.

selection scheme (selection) This parameter specifies the selection scheme of this evolu-
tionary algorithms.

tournament size (real) This parameter is only availablewhen the selection scheme parameter
is set to ‘tournament’. It specifies the fraction of the current population which should be
used as tournament members.

start temperature (real) This parameter is only available when the selection scheme param-
eter is set to ‘Boltzmann’. It specifies the scaling temperature.

dynamic selection pressure (boolean) This parameter is only available when the selection
schemeparameter is set to ‘Boltzmann’or ‘tournament’. If set to true the selectionpressure
is increased to maximum during the complete optimization run.
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keep best individual (boolean) If set to true, the best individual of each generations is guar-
anteed to be selected for the next generation.

save intermediate weights (boolean) This parameter determines if the intermediate best
results should be saved.

intermediate weights generations (integer) Thisparameter isonlyavailablewhen the save
intermediate weights parameter is set to true. The intermediate best results would be saved
every k generations where k is specified by this parameter.

intermediate weights file (filename) This parameter specifies the file into which the inter-
mediate weights should be saved.

p initialize (real) The initial probability for an attribute to be switched on is specified by this
parameter.

p mutation (real) Theprobability for an attribute to be changed is specifiedby this parameter.
If set to -1, the probability will be set to 1/n where n is the total number of attributes.

p crossover (real) The probability for an individual to be selected for crossover is specified by
this parameter.

crossover type (selection) The type of the crossover can be selected by this parameter.

Tutorial Processes
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Figure 4.108: Tutorial process ‘Feature reduction of the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular
attributes other then the label attribute. The Optimize Selection (Evolutionary) operator is ap-
plied on the ExampleSet it is a nested operator i.e. it has a subprocess. It is necessary for the
subprocess to deliver a performance vector. This performance vector is used by the underlying
Genetic Algorithm. Have a look at the subprocess of this operator. The Split Validation operator
has been used therewhich itself is a nested operator. Have a look at the subprocesses of the Split
Validation operator. The SVMoperator is used in the ‘Training’ subprocess to train amodel. The
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trained model is applied using the Apply Model operator in the ‘Testing’ subprocess. The per-
formance is measured through the Performance operator and the resultant performance vector
is used by the underlying algorithm. Run the process and switch to the Results Workspace. You
can see that the ExampleSet that had 5 attributes has now been reduced to 3 attributes.
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4.7.3 Feature Generation
Optimize by Generation (GGA)

Generate

exa exa
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per

This operator may select some attributes from the original at-
tribute set and it may also generate new attributes from the orig-
inal attribute set. GGA (Generating Genetic Algorithm) does not
change the original number of attributes unless adding or remov-
ing (or both) attributes prove to have a better fitness.

Description

Sometimes the selection of features alone is not sufficient. In these cases other transforma-
tions of the feature space must be performed. The generation of new attributes from the given
attributes extends the feature space. Maybe a hypothesis can be easily found in the extended
feature space. This operator can be considered to be a blend of attribute selection and attribute
generation procedures. It may select some attributes from the original set of attributes and it
may also generate new attributes from the original attributes.
A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.

This heuristic is routinely used to generate useful solutions to optimization and search prob-
lems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which gen-
erate solutions to optimization problems using techniques inspired by natural evolution, such
as inheritance, mutation, selection, and crossover. For studying the basic algorithm of a genetic
algorithm please study the description of the Optimize Selection (Evolutionary) operator.
In contrast to the simpleGenetic Algorithm, theGeneratingGenetic Algorithmgenerates new

attributes and thus can change the length of an individual. Therefore specialized mutation and
crossover operators are being applied. Generators are chosen at random froma list of generators
specified by boolean parameters. This operator is a nested operator i.e. it has a subprocess.
The subprocess must return a performance vector. You need to have basic understanding of
subprocesses in order to apply this operator. Please study the documentation of the Subprocess
operator for basic understanding of subprocesses.

Input Ports

example set in (exa) This input port expects an ExampleSet. This ExampleSet is available at
the first port of the nested chain (inside the subprocess) for processing in the subprocess.

Output Ports

example set out (exa) The genetic algorithm is applied on the input ExampleSet. The resul-
tant ExampleSet is delivered through this port.

attribute weights out (att) The attribute weights are delivered through this port.

performance out (per) This port delivers the Performance Vector for the selected attributes.
A Performance Vector is a list of performance criteria values.
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Parameters
max number of new attributes (integer) This parameter specifies the maximum number

of attributes to generate for an individual in one generation.

limit max total number of attributes (boolean) Thisparameter indicates if the total num-
ber of attributes in all generations should be limited. If set to true, the maximum number
is specified by the max total number of attributes parameter.

max total number of attributes (integer) This parameter is only available when the limit
max total number of attributes parameter is set to true. This parameter specifies the maxi-
mum total number of attributes in all generations.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

show stop dialog (boolean) This parameter determines if a dialog with a stop button should
be displayedwhich stops the search for the best feature space. If the search for best feature
space is stopped, the best individual found till then will be returned.

maximal fitness (real) This parameter specifies the maximal fitness. The optimization will
stop if the fitness reaches this value.

population size (integer) This parameter specifies the population size i.e. the number of in-
dividuals per generation.

maximum number of generations (integer) This parameter specifies the number of gen-
erations after which the algorithm should be terminated.

use plus (boolean) This parameter indicates if the summation function should be applied for
a generation of new attributes.

use diff (boolean) This parameter indicates if the difference function should be applied for a
generation of new attributes.

use mult (boolean) This parameter indicates if themultiplication function should be applied
for a generation of new attributes.

use div (boolean) This parameter indicates if the division function should be applied for a
generation of new attributes.

reciprocal value (boolean) This parameter indicates if the reciprocal function should be ap-
plied for a generation of new attributes.

use early stopping (boolean) This parameter enables early stopping. If not set to true, al-
ways the maximum number of generations are performed.

generations without improval (integer) This parameter is only availablewhen theuse early
stopping parameter is set to true. This parameter specifies the stop criterion for early stop-
ping i.e. it stops after n generations without improvement in the performance. n is spec-
ified by this parameter.
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tournament size (real) This parameter specifies the fraction of the current populationwhich
should be used as tournament members.

start temperature (real) This parameter specifies the scaling temperature.

dynamic selection pressure (boolean) If thisparameter is set to true, the selectionpressure
is increased to maximum during the complete optimization run.

keep best individual (boolean) If set to true, the best individual of each generation is guar-
anteed to be selected for the next generation.

p initialize (real) The initial probability for an attribute to be switched on is specified by this
parameter.

p crossover (real) The probability for an individual to be selected for crossover is specified by
this parameter.

crossover type (selection) The type of the crossover can be selected by this parameter.

p generate (real) This parameter specifies the probability for an individual to be selected for
a generation.

use heuristic mutation probability (boolean) If this parameter is set to true, the probabil-
ity for mutations will be chosen as 1/n where n is the number of attributes. Otherwise the
probability for mutations should be specified through the p mutation parameter

p mutation (real) Theprobability for an attribute to be changed is specifiedby this parameter.
If set to -1, the probability will be set to 1/n where n is the total number of attributes.
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Figure 4.109: Tutorial process ‘Applying GGA on the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular at-
tributes other then the label attribute. TheOptimize byGeneration (GGA) operator is applied on
the ExampleSet. Optimize by Generation (GGA) is a nested operator i.e. it has a subprocess. It
is necessary for the subprocess to deliver a performance vector. This performance vector is used
by the underlying Genetic Algorithm. Have a look at the subprocess of this operator. The Split
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Validation operator is used there which itself is a nested operator. Have a look at the subpro-
cesses of the Split Validation operator. The Linear Regression operator is used in the ‘Training’
subprocess to train a model. The trained model is applied using the Apply Model operator in
the ‘Testing’ subprocess. The performance is measured through the Performance (Regression)
operator and the resultant performance vector is used by the underlying algorithm. Run the
process and switch to the Results Workspace. You can see that the ExampleSet that had 5 at-
tributes, now has 4 attributes. The resultant ExampleSet with reduced attributes can be seen in
the Results Workspace.
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Optimize by Generation (YAGGA)
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This operator may select some attributes from the original at-
tribute set and it may also generate new attributes from the orig-
inal attribute set. YAGGA (Yet Another Generating Genetic Algo-
rithm) does not change the original number of attributes unless
adding or removing (or both) attributes prove to have a better fit-
ness.

Description
Sometimes the selection of features alone is not sufficient. In these cases other transforma-
tions of the feature space must be performed. The generation of new attributes from the given
attributes extends the feature space. Maybe a hypothesis can be easily found in the extended
feature space. This operator can be considered to be a blend of attribute selection and attribute
generation procedures. It may select some attributes from the original set of attributes and it
may also generate new attributes from the original attributes. The (generating) mutation can
do one of the following things with different probabilities:

• Probability p/4: Add a newly generated attribute to the feature vector.

• Probability p/4: Add a randomly chosen original attribute to the feature vector.

• Probability p/2: Remove a randomly chosen attribute from the feature vector.

Thus it is guaranteed that the length of the feature vector can both grow and shrink. On av-
erage it will keep its original length, unless longer or shorter individuals prove to have a better
fitness.
A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.

This heuristic is routinely used to generate useful solutions to optimization and search prob-
lems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which gen-
erate solutions to optimization problems using techniques inspired by natural evolution, such
as inheritance, mutation, selection, and crossover. For studying the basic algorithm of a genetic
algorithm please study the description of the Optimize Selection (Evolutionary) operator.
This operator is a nested operator i.e. it has a subprocess. The subprocess must return a per-

formance vector. You need to have basic understanding of subprocesses in order to apply this
operator. Please study the documentation of the Subprocess operator for basic understanding
of subprocesses.

Differentiation
• Optimize by Generation (YAGGA2)The YAGGA2 operator is an improved version of the
usual YAGGA operator, this operator allows more feature generators and provides several
techniques for redundancy prevention. This leads to smaller ExampleSets containing less
redundant features. See page 708 for details.

Input Ports
example set in (exa) This input port expects an ExampleSet. This ExampleSet is available at

the first port of the nested chain (inside the subprocess) for processing in the subprocess.
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Output Ports
example set out (exa) The genetic algorithm is applied on the input ExampleSet. The resul-

tant ExampleSet is delivered through this port.

attribute weights out (att) The attribute weights are delivered through this port.

performance out (per) This port delivers the Performance Vector for the selected attributes.
A Performance Vector is a list of performance criteria values.

Parameters
limit max total number of attributes (boolean) Thisparameter indicates if the total num-

ber of attributes in all generations should be limited. If set to true, the maximum number
is specified by the max total number of attributes parameter.

max total number of attributes (integer) This parameter is only available when the limit
max total number of attributes parameter is set to true. This parameter specifies the maxi-
mum total number of attributes in all generations.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is available only if the use local random seed parameter is set to true.

show stop dialog (boolean) This parameter determines if a dialog with a stop button should
be displayedwhich stops the search for the best feature space. If the search for best feature
space is stopped, the best individual found till then will be returned.

maximal fitness (real) This parameter specifies the maximal fitness. The optimization will
stop if the fitness reaches this value.

population size (integer) This parameter specifies the population size i.e. the number of in-
dividuals per generation.

maximum number of generations (integer) This parameter specifies the number of gen-
erations after which the algorithm should be terminated.

use plus (boolean) This parameter indicates if the summation function should be applied for
generation of new attributes.

use diff (boolean) This parameter indicates if the difference function should be applied for
generation of new attributes.

use mult (boolean) This parameter indicates if themultiplication function should be applied
for generation of new attributes.

use div (boolean) This parameter indicates if the division function should be applied for gen-
eration of new attributes.

use reciprocals (boolean) This parameter indicates if the reciprocal function should be ap-
plied for generation of new attributes.

use early stopping (boolean) This parameter enables early stopping. If not set to true, al-
ways the maximum number of generations are performed.
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generations without improval (integer) This parameter is only availablewhen theuse early
stopping parameter is set to true. This parameter specifies the stop criterion for early stop-
ping i.e. it stops after n generations without improvement in the performance. n is spec-
ified by this parameter.

tournament size (real) This parameter specifies the fraction of the current populationwhich
should be used as tournament members.

start temperature (real) This parameter specifies the scaling temperature.

dynamic selection pressure (boolean) If thisparameter is set to true, the selectionpressure
is increased to maximum during the complete optimization run.

keep best individual (boolean) If set to true, the best individual of each generation is guar-
anteed to be selected for the next generation.

p initialize (real) The initial probability for an attribute to be switched on is specified by this
parameter.

p crossover (real) The probability for an individual to be selected for crossover is specified by
this parameter.

crossover type (selection) The type of the crossover can be selected by this parameter.

use heuristic mutation probability (boolean) If this parameter is set to true, the probabil-
ity for mutations will be chosen as 1/n where n is the number of attributes. Otherwise the
probability for mutations should be specified through the p mutation parameter

p mutation (real) Theprobability for an attribute to be changed is specifiedby this parameter.
If set to -1, the probability will be set to 1/n where n is the total number of attributes.

Related Documents
• Optimize by Generation (YAGGA2) (page 708)

Tutorial Processes

Applying YAGGA on the Polynomial data set

Root

Polynomial

out

YAGGA

exa exa

a t t

per

inp res

res

Figure 4.110: Tutorial process ‘Applying YAGGA on the Polynomial data set’.
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The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular at-
tributes other then the label attribute. TheOptimize byGeneration (YAGGA) operator is applied
on the ExampleSet. Optimize by Generation (YAGGA) is a nested operator i.e. it has a subpro-
cess. It is necessary for the subprocess to deliver a performance vector. This performance vector
is used by the underlying Genetic Algorithm. Have a look at the subprocess of this operator. The
SplitValidationoperator is usedwhich itself is anestedoperator. Havea lookat the subprocesses
of the Split Validation operator. The Linear Regression operator is used in the ‘Training’ sub-
process to train a model. The trained model is applied using the Apply Model operator in the
‘Testing’ subprocess. The performance ismeasured through the Performance (Regression) oper-
ator and the resultant performance vector is used by the underlying algorithm. Run the process
and switch to the ResultsWorkspace. You can see that the ExampleSet that had 5 attributes now
has 6 attributes. The attributes ‘a1’ and ‘a2’ were selected from the original attribute set and the
attributes ‘gensym2’, ‘gensym35’, ‘gensym63’ and ‘gensym72’ were generated. The number of
resultant attributes is not less than the number of original attributes because YAGGA is not an
attribute reduction operator. It may (or may not) increase or decrease the number of attributes
depending on what proves to have a better fitness.
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Optimize by Generation (YAGGA2)

Generate

exa exa
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per

This operator may select some attributes from the original at-
tribute set and it may also generate new attributes from the origi-
nal attribute set. YAGGA2 (Yet Another Generating Genetic Algo-
rithm 2) does not change the original number of attributes unless
adding or removing (or both) attributes proves to have a better fit-
ness. This algorithm is an improved version of YAGGA.

Description

Sometimes the selection of features alone is not sufficient. In these cases other transforma-
tions of the feature space must be performed. The generation of new attributes from the given
attributes extends the feature space. Maybe a hypothesis can be easily found in the extended
feature space. This operator can be considered to be a blend of attribute selection and attribute
generation procedures. It may select some attributes from the original set of attributes and it
may also generate new attributes from the original attributes. The (generating) mutation can
do one of the following things with different probabilities:

• Probability p/4: Add a newly generated attribute to the feature vector.

• Probability p/4: Add a randomly chosen original attribute to the feature vector.

• Probability p/2: Remove a randomly chosen attribute from the feature vector.

Thus it is guaranteed that the length of the feature vector can both grow and shrink. On av-
erage it will keep its original length, unless longer or shorter individuals prove to have a better
fitness.
In addition to the usual YAGGA operator, this operator allows more feature generators and

provides several techniques for redundancy prevention. This leads to smaller ExampleSets con-
taining less redundant features.
A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.

This heuristic is routinely used to generate useful solutions to optimization and search prob-
lems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which gen-
erate solutions to optimization problems using techniques inspired by natural evolution, such
as inheritance, mutation, selection, and crossover. For studying the basic algorithm of a genetic
algorithm please study the description of the Optimize Selection (Evolutionary) operator.
This operator is a nested operator i.e. it has a subprocess. The subprocess must return a per-

formance vector. You need to have basic understanding of subprocesses in order to apply this
operator. Please study the documentation of the Subprocess operator for basic understanding
of subprocesses.

Differentiation

• Optimize by Generation (YAGGA) The YAGGA2 operator is an improved version of the
usual YAGGA operator, this operator allows more feature generators and provides several
techniques for redundancy prevention. This leads to smaller ExampleSets containing less
redundant features. See page 704 for details.
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Input Ports
example set in (exa) This input port expects an ExampleSet. This ExampleSet is available at

the first port of the nested chain (inside the subprocess) for processing in the subprocess.

Output Ports
example set out (exa) The genetic algorithm is applied on the input ExampleSet. The resul-

tant ExampleSet is delivered through this port.

attribute weights out (att) The attribute weights are delivered through this port.

performance out (per) This port delivers the Performance Vector for the selected attributes.
A Performance Vector is a list of performance criteria values.

Parameters
limit max total number of attributes (boolean) Thisparameter indicates if the total num-

ber of attributes in all generations should be limited. If set to true, the maximum number
is specified by the max total number of attributes parameter.

max total number of attributes (integer) This parameter is only available when the limit
max total number of attributes parameter is set to true. This parameter specifies the maxi-
mum total number of attributes in all generations.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

show stop dialog (boolean) This parameter determines if a dialog with a stop button should
be displayed which stops the search for the best feature space. If the search for the best
feature space is stopped, the best individual found till then will be returned.

maximal fitness (real) This parameter specifies the maximal fitness. The optimization will
stop if the fitness reaches this value.

population size (integer) This parameter specifies the population size i.e. the number of in-
dividuals per generation.

maximum number of generations (integer) This parameter specifies the number of gen-
erations after which the algorithm should be terminated.

use plus (boolean) This parameter indicates if the summation function should be applied for
a generation of new attributes.

use diff (boolean) This parameter indicates if the difference function should be applied for a
generation of new attributes.

use mult (boolean) This parameter indicates if themultiplication function should be applied
for a generation of new attributes.

use div (boolean) This parameter indicates if the division function should be applied for a
generation of new attributes.
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reciprocal value (boolean) This parameter indicates if the reciprocal function should be ap-
plied for a generation of new attributes.

use early stopping (boolean) This parameter enables early stopping. If not set to true, al-
ways the maximum number of generations are performed.

generations without improval (integer) This parameter is only availablewhen theuse early
stopping parameter is set to true. This parameter specifies the stop criterion for early stop-
ping i.e. it stops after n generations without improvement in the performance. n is spec-
ified by this parameter.

tournament size (real) This parameter specifies the fraction of the current populationwhich
should be used as tournament members.

start temperature (real) This parameter specifies the scaling temperature.

dynamic selection pressure (boolean) If thisparameter is set to true, the selectionpressure
is increased to maximum during the complete optimization run.

keep best individual (boolean) If set to true, the best individual of each generation is guar-
anteed to be selected for the next generation.

p initialize (real) The initial probability for an attribute to be switched on is specified by this
parameter.

p crossover (real) The probability for an individual to be selected for crossover is specified by
this parameter.

crossover type (selection) The type of the crossover can be selected by this parameter.

use heuristic mutation probability (boolean) If this parameter is set to true, the probabil-
ity for mutations will be chosen as 1/n where n is the number of attributes. Otherwise the
probability for mutations should be specified through the p mutation parameter

p mutation (real) Theprobability for an attribute to be changed is specifiedby this parameter.
If set to -1, the probability will be set to 1/n where n is the total number of attributes.

use square roots (boolean) This parameter indicates if the square root function should be
applied for a generation of new attributes.

use power functions (boolean) This parameter indicates if thepower (of one attribute to an-
other attribute) function should be applied for a generation of new attributes.

use sin (boolean) This parameter indicates if the sine function should be applied for a gener-
ation of new attributes.

use cos (boolean) This parameter indicates if the cosine function should be applied for a gen-
eration of new attributes.

use tan (boolean) This parameter indicates if the tangent function should be applied for a
generation of new attributes.

use atan (boolean) This parameter indicates if the arc tangent function should be applied for
a generation of new attributes.

use exp (boolean) This parameter indicates if the exponential function should be applied for
a generation of new attributes.

710



4.7. Optimization

use log (boolean) This parameter indicates if the logarithmic function should be applied for
a generation of new attributes.

use absolute values (boolean) This parameter indicates if the absolute function should be
applied for a generation of new attributes.

use min (boolean) This parameter indicates if the minimum function should be applied for a
generation of new attributes.

use max (boolean) This parameter indicates if the maximum function should be applied for
a generation of new attributes.

use sgn (boolean) This parameter indicates if the signum function should be applied for a
generation of new attributes.

use floor ceil functions (boolean) This parameter indicates if the floor and ceiling functions
should be applied for a generation of new attributes.

restrictive selection (boolean) This parameter indicates if the restrictive generator selec-
tion should be used. Execution is usually faster if this parameter is set to true.

remove useless (boolean) This parameter indicates if useless attributes should be removed.

remove equivalent (boolean) This parameter indicates if equivalent attributes should be re-
moved.

equivalence samples (integer) nnumber of samples are checked to prove equivalencywhere
n is the value of this parameter.

equivalence epsilon (real) Two attributes are considered equivalent if their difference is not
bigger than epsilon.

equivalence use statistics (boolean) If this parameter is set to true, attribute statistics are
recalculated before equivalence check.

unused functions (string) Thisparameter specifies the space separated list of functionswhich
are not allowed in arguments for the attribute construction.

constant generation prob (real) This parameter specifies the probability for a generation of
random constant attributes.

associative attribute merging (boolean) This parameter specifies if post processing should
be performed after the crossover. It is only possible for runs with only one generator.

Related Documents
• Optimize by Generation (YAGGA) (page 704)

Tutorial Processes

Applying YAGGA2 on the Polynomial data set

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular
attributes other then the label attribute. The Optimize by Generation (YAGGA2) operator is ap-
plied on the ExampleSet. It is a nested operator i.e. it has a subprocess. It is necessary for the
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Figure 4.111: Tutorial process ‘Applying YAGGA2 on the Polynomial data set’.

subprocess to deliver a performance vector which is used by the underlying Genetic Algorithm.
Have a look at the subprocess of this operator. The Split Validation operator is used there which
itself is a nested operator. Have a look at the subprocesses of the Split Validation operator. The
Linear Regression operator is used in the ‘Training’ subprocess to train a model. The trained
model is applied using the Apply Model operator in the ‘Testing’ subprocess. The performance
ismeasured through the Performance (Regression) operator and the resultant performance vec-
tor is used by the underlying algorithm. Run the process and switch to the Results Workspace.
You can see that the ExampleSet that had 5 attributes now has 7 attributes. All attributes were
selected from the original attribute set and the attributes ‘gensym5’ and ‘gensym6’ were gener-
ated. The number of resultant attributes is not less than the number of original attributes be-
cause YAGGA2 is not an attribute reduction operator. It may (or may not) increase or decrease
the number of attributes depending on what proves to have a better fitness.
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4.7.4 Feature Weighting
Optimize Weights (Evolutionary)
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This operator calculates the relevanceof the attributes of the given
ExampleSet byusing an evolutionary approach. Theweights of the
attributes are calculated using a Genetic Algorithm.

Description

The Optimize Weights (Evolutionary) operator is a nested operator i.e. it has a subprocess. The
subprocess of the Optimize Weights (Evolutionary) operator must always return a performance
vector. Formore information regarding subprocesses please study the Subprocess operator. The
Optimize Weights (Evolutionary) operator calculates the weights of the attributes of the given
ExampleSet by using a Genetic Algorithm. The higher the weight of an attribute, the more rel-
evant it is considered.
A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution.

This heuristic is routinely used to generate useful solutions to optimization and search prob-
lems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which gen-
erate solutions to optimization problems using techniques inspired by natural evolution, such
as inheritance, mutation, selection, and crossover.
In genetic algorithm ‘mutation’means switching features on andoff and ‘crossover’means in-

terchanging used features. Selection is done by the specified selection schemewhich is selected
by the selection scheme parameter. A genetic algorithm works as follows:
Generate an initial population consisting of p individuals. The number p can be adjusted by

the population size parameter.
For all individuals in the population

1. Perform mutation, i.e. set used attributes to unused with probability p_m and vice versa.
The probability p_m can be adjusted by the corresponding parameters.

2. Choose two individuals from the population and perform crossover with probability p_c.
The probability p_c can be adjusted by the p crossover parameter. The type of crossover can
be selected by the crossover type parameter.

3. Perform selection, map all individuals according to their fitness and draw p individuals at
randomaccording to their probability where p is the population sizewhich can be adjusted
by the population size parameter.

4. As long as the fitness improves, go to step number 2.

If the ExampleSet contains value series attributes with block numbers, the whole block will
be switched on and off. Exact, minimum or maximum number of attributes in combinations to
be tested can be specified by the appropriate parameters. Many other options are also available
for this operator. Please study the parameters section for more information.
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Input Ports
example set in (exa) This input port expects an ExampleSet. This ExampleSet is available at

the first port of the nested chain (inside the subprocess) for processing in the subprocess.

attribute weights in (att) This port expects attributeweights. It is not compulsory to use this
port.

through (thr) This operator can have multiple through ports. When one input is connected
with the through port, another through port becomes available which is ready to accept
another input (if any). The order of inputs remains the same. The Object supplied at the
first through port of this operator is available at the first through port of the nested chain
(inside the subprocess). Do not forget to connect all inputs in correct order. Make sure
that you have connected the right number of ports at the subprocess level.

Output Ports
example set out (exa) The genetic algorithm is applied on the input ExampleSet. The resul-

tant ExampleSet with reduced attributes is delivered through this port.

weights (wei) The attribute weights are delivered through this port.

performance (per) This port delivers the Performance Vector for the selected attributes. A
Performance Vector is a list of performance criteria values.

Parameters
population size (integer) This parameter specifies the population size i.e. the number of in-

dividuals per generation.

maximum number of generations (integer) This parameter specifies the number of gen-
erations after which the algorithm should be terminated.

use early stopping (boolean) This parameter enables early stopping. If not set to true, al-
ways the maximum number of generations are performed.

generations without improval (integer) This parameter is only availablewhen theuse early
stopping parameter is set to true. This parameter specifies the stop criterion for early stop-
ping i.e. it stops after n generations without improvement in the performance. n is spec-
ified by this parameter.

normalize weights (boolean) This parameter indicates if thefinalweights shouldbenormal-
ized. If set to true, the final weights are normalized such that the maximum weight is 1
and the minimum weight is 0.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

show stop dialog (boolean) This parameter determines if a dialog with a stop button should
be displayed which stops the search for the best feature space. If the search for the best
feature space is stopped, the best individual found till then will be returned.
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user result individual selection (boolean) If this parameter is set to true, it allows the user
to select the final result individual from the last population.

show population plotter (boolean) Thisparameterdetermines if thecurrentpopulationshould
be displayed in the performance space.

population criteria data file (filename) Thisparameter specifies thepath to thefile inwhich
the criteria data of the final population should be saved.

maximal fitness (real) This parameter specifies the maximal fitness. The optimization will
stop if the fitness reaches this value.

selection scheme (selection) This parameter specifies the selection scheme of this evolu-
tionary algorithms.

tournament size (real) This parameter is only availablewhen the selection scheme parameter
is set to ‘tournament’. It specifies the fraction of the current population which should be
used as tournament members.

start temperature (real) This parameter is only available when the selection scheme param-
eter is set to ‘Boltzmann’. It specifies the scaling temperature.

dynamic selection pressure (boolean) This parameter is only available when the selection
schemeparameter is set to ‘Boltzmann’or ‘tournament’. If set to true the selectionpressure
is increased to maximum during the complete optimization run.

keep best individual (boolean) If set to true, the best individual of each generations is guar-
anteed to be selected for the next generation.

save intermediate weights (boolean) This parameter determines if the intermediate best
results should be saved.

intermediate weights generations (integer) Thisparameter isonlyavailablewhen the save
intermediate weights parameter is set to true. The intermediate best results would be saved
every k generations where k is specified by this parameter.

intermediate weights file (filename) This parameter specifies the file into which the inter-
mediate weights should be saved.

mutation variance (real) This parameter specifies the (initial) variance for each mutation.

1 5 rule (boolean) This parameter determines if the 1/5 rule for variance adaption should be
used.

bounded mutation (boolean) If this parameter is set to true, the weights are bounded be-
tween 0 and 1.

p crossover (real) The probability for an individual to be selected for crossover is specified by
this parameter.

crossover type (selection) The type of the crossover can be selected by this parameter.

use default mutation rate (boolean) Thisparameterdetermines if thedefaultmutation rate
should be used for nominal attributes.

nominal mutation rate (real) This parameter specifies the probability to switch nominal at-
tributes between 0 and 1.
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initialize with input weights (boolean) Thisparameter indicates if thisoperator should look
for attribute weights in the given input and use them as a starting point for the optimiza-
tion.

Tutorial Processes

Calculating the weights of the attributes of the Polynomial data set
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Figure 4.112: Tutorial process ‘Calculating the weights of the attributes of the Polynomial data
set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular
attributes other than the label attribute. The Optimize Weights (Evolutionary) operator is ap-
plied on the ExampleSetwhich is a nested operator i.e. it has a subprocess. It is necessary for the
subprocess to deliver a performance vector. This performance vector is used by the underlying
Genetic Algorithm. Have a look at the subprocess of this operator. The Split Validation operator
has been used therewhich itself is a nested operator. Have a look at the subprocesses of the Split
Validation operator. The SVMoperator is used in the ‘Training’ subprocess to train amodel. The
trained model is applied using the Apply Model operator in the ‘Testing’ subprocess. The per-
formance is measured through the Performance operator and the resultant performance vector
is used by the underlying algorithm. Run the process and switch to the Results Workspace. You
can see that the ExampleSet that had 5 attributes has nowbeen reduced to 2 attributes. Also take
a look at the weights of the attributes in the Results Workspace. You can see that two attributes
have weight 1 and the remaining attributes have weight 0.
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Optimize Weights (Forward)
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This operator calculates the relevanceof the attributes of the given
ExampleSet by calculating the attribute weights. This operator
assumes that the attributes are independent and optimizes the
weights of the attributes with a linear search.

Description
The OptimizeWeights (Forward) operator is a nested operator i.e. it has a subprocess. The sub-
process of the Optimize Weights (Forward) operator must always return a performance vector.
For more information regarding subprocesses please study the Subprocess operator. The Opti-
mize Weights (Forward) operator calculates the weights of the attributes of the given Example-
Set by using the performance vector returned by the subprocess. The higher the weight of an
attribute, the more relevant it is considered.
This operator performs the weighting under the naive assumption that the features are inde-

pendent from each other. Each attribute is weighted with a linear search. This approach may
deliver good results after short time if the features indeed are not highly correlated.

Differentiation
• Optimize Weights (Evolutionary) The Optimize Weights (Evolutionary) operator cal-
culates the relevance of the attributes of the given ExampleSet by using an evolutionary
approach. The weights of the attributes are calculated using a Genetic Algorithm. See
page 713 for details.

Input Ports
example set in (exa) This input port expects an ExampleSet. This ExampleSet is available at

the first port of the nested chain (inside the subprocess) for processing in the subprocess.

through (thr) This operator can have multiple through ports. When one input is connected
with the through port, another through port becomes available which is ready to accept
another input (if any). The order of inputs remains the same. The Object supplied at the
first through port of this operator is available at the first through port of the nested chain
(inside the subprocess). Do not forget to connect all inputs in correct order. Make sure
that you have connected the right number of ports at subprocess level.

Output Ports
example set out (exa) The resultant ExampleSetwith reduced attributes is delivered through

this port.

weights (wei) The attribute weights are delivered through this port.

performance (per) This port delivers the Performance Vector for the selected attributes. A
Performance Vector is a list of performance criteria values.
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Parameters

keep best (integer) This parameter specifies the number of best individuals to keep in each
generation.

generations without improval (integer) Thisparameter specifies the stopcriterion forearly
stopping i.e. it stops after n generations without improvement in the performance. n is
specified by this parameter.

weights (string) This parameter specifies theweights to be used for the creation of individuals
in each generation.

normalize weights (boolean) This parameter indicates if thefinalweights shouldbenormal-
ized. If set to true, the final weights are normalized such that the maximum weight is 1
and the minimum weight is 0.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is available only if the use local random seed parameter is set to true.

show stop dialog (boolean) This parameter determines if a dialog with a stop button should
be displayed which stops the search for the best feature space. If the search for the best
feature space is stopped, the best individual found till then will be returned.

user result individual selection (boolean) If this parameter is set to true, it allows the user
to select the final result individual from the last population.

show population plotter (boolean) Thisparameterdetermines if thecurrentpopulationshould
be displayed in the performance space.

plot generations (integer) This parameter is only available when the show population plotter
parameter is set to true. The population plotter is updated in these generations.

constraint draw range (boolean) This parameter is only availablewhen the show population
plotter parameter is set to true. This parameter determines if the draw range of the popu-
lation plotter should be constrained between 0 and 1.

draw dominated points (boolean) This parameter is only available when the show popula-
tion plotter parameter is set to true. This parameter determines if only points which are
not Pareto dominated should be drawn on the population plotter.

population criteria data file (filename) Thisparameter specifies thepath to thefile inwhich
the criteria data of the final population should be saved.

maximal fitness (real) This parameter specifies the maximal fitness. The optimization will
stop if the fitness reaches this value.

Related Documents

• Optimize Weights (Evolutionary) (page 713)
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Tutorial Processes
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Figure 4.113: Tutorial process ‘Calculating the weights of the attributes of the Polynomial data
set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can have a look at the ExampleSet. You can see that the ExampleSet has 5 regular
attributes other then the label attribute. The Optimize Weights (Forward) operator is applied
on the ExampleSet which is a nested operator i.e. it has a subprocess. It is necessary for the
subprocess to deliver a performance vector. This performance vector is used by the underlying
algorithm. Have a look at the subprocess of this operator. The Split Validation operator has been
used there which itself is a nested operator. Have a look at the subprocesses of the Split Vali-
dation operator. The SVM operator is used in the ‘Training’ subprocess to train a model. The
trained model is applied using the Apply Model operator in the ‘Testing’ subprocess. The per-
formance is measured through the Performance operator and the resultant performance vector
is used by the underlying algorithm. Run the process and switch to the Results Workspace. You
can see that the ExampleSet that had 5 attributes has nowbeen reduced to 2 attributes. Also take
a look at the weights of the attributes in the Results Workspace. You can see that two attributes
have non-zero weight and the remaining attributes have weight 0.
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Apply Model

Apply Model

mod

unl

lab

mod

This Operator applies a model on an ExampleSet.

Description

A model is first trained on an ExampleSet by another Operator, which is often a learning algo-
rithm. Afterwards, this model can be applied on another ExampleSet. Usually, the goal is to get
a prediction on unseen data or to transform data by applying a preprocessing model.
The ExampleSet upon which the model is applied, has to be compatible with the Attributes

of the model. This means, that the ExampleSet has the same number, order, type and role of
Attributes as the ExampleSet used to generate the model.

Differentiation

• Group Models

If youwant to apply severalmodels in a rowyou canuse theGroupModelsOperator. This is
helpful if you for examplewant to apply preprocessingmodels before applying a prediction
model.

See page 406 for details.

Input Ports

Model (Mod) This port expects a model. The number, order, type and role of Attributes of the
ExampleSet on which this model was trained has to be consistent with the ExampleSet on
the unlabeled data input port.

Unlabelled data (Unl) This port expects an ExampleSet. The number, order, type and role of
Attributes of this ExampleSet has to be consistent with ExampleSet on which the model
delivered to the model input port was trained.

Output Ports

labelled data (lab) TheExampleSet delivered fromthis port is changedbymeansof themodel.
For the case of predictions, new Attributes like ‘prediction(Label)’ and ‘confidence(Value)’
are added. Applying preprocessing models updates the existing ExampleSet.

model (mod) The input model is passed without changing to the output through this port.
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Parameters
application parameters Thisparameter canchange the settingsof certainmodelsbefore they

are applied to provided ExampleSet. This is only possible for a few Operators and can be
considered a legacy option.

create view If the model applied at the input port supports Views, it is possible to create a
View instead of changing the underlying data. If this option is checked, the application of
themodel is delayed until the transformations are needed. Mostmodels no longer support
Views and it can be considered a legacy option.

Tutorial Processes

Train and apply a linear regression model

Process

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
with predictions obtained from applying the model. 
Model output: 
Have a look into the Results view showing the 
formula for linear regression with coefficients 
obtained from the training process. 

Generating a model within the 
training of a linear regression

Loading labelled data

Unlabelled data 
 
 
 
 
 
 

Removing the label to emulate 
an unlabelled data set.

Applying the model obtained from training to an 
unlabelled data set 
 
 
 
 
 
 
 
Labelled data output: 
ExampleSet from the unlabelled input port enriched 
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Figure 5.1: Tutorial process ‘Train and apply a linear regression model’.

In this tutorial Process, a model is created within the training of a linear regression.
This tutorial Process first trains a linear regression model on the ‘Polynomial’ ExampleSet.

Afterwards, the model is applied on an unlabelled ‘Polynomial’ ExampleSet. The resulting out-
put ExampleSet has a new Attribute: ‘prediction(label)’.
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This operator identifies the attributes that play the largest role
when making a prediction.

Description

Given amodel and an input, you can generate a prediction, but which of the attributes plays the
largest role in forming that prediction? This operator takes amodel and an ExampleSet as input,
andgenerates a tablehighlighting theattributes thatmost strongly support (green) or contradict
(red) each prediction. Alternatively, the table can be displayed with two extra columns (support
and predict) containing numeric details.
For each Example in an ExampleSet, this operator generates a neigboring set of data points,

and uses correlation to identify the local attribute weights in that neighborhood. Although the
relationship between attributes and predictionsmay be highly non-linear globally, the local lin-
ear relationship is more than powerful enough to explain the predictions.
This operator works with all data types and data sizes. It supports both classification and

regression problems. The only model type which is not recommended is k-Nearest Neighbors,
since this model typically suffers from long runtimes.

Input Ports

model (mod) This input port expects a model.

training data (tra) This input port expects an ExampleSet identical to the one that trained the
model.

test data (tes) This input port expects an ExampleSet with test data.

Output Ports

visualization output (vis) This output port displays the test data with predictions and color
highlighting of attributes: green when the value of the attribute supports the prediction,
and red when the value of the attribute contradicts the prediction.

example set output (exa) This output port displays the test data with predictions and two
extra columns: one that details the attributes that support the prediction and one that
details the attributes that contradict the prediction.

importances output (imp) This output port displays the test data in a long table format in-
cluding the importance of all attributes for each row. This can be useful if the data should
be visualized later on.

723



5. Scoring

Parameters
maximal explaining attributes (integer) The maximal number of attributes used to sup-

port the predictions, also the maximal number of attributes used for contradicting it. The
whole point about explanations is that they allow you to focus on the factors that matter
in each particular case. We recommend a value of 3 to achieve this but you can increase
this number if you feel that you needmore factors to explain the predictions to you. Please
note that youmight end up with less factors if only less attribute values than the maximal
number support or contradict a prediction in this case.

local sample size (integer) The number of locally generated samples around each prediction
data point to identify the attributes with the biggest impact on this decision. You might
want to increase this number for high-dimensional data sets in case the quality of pre-
dictions become worse. Please note that the runtime of this algorithm slows down with
higher numbers. In general, a value of around 500 delivers high-quality explanations in a
reasonable amount of time.

Tutorial Processes

Explaining Predictions for Titanic

Process

Retrieve Titanic . . .

out

Naive Bayes

t ra mod

exa

Retrieve Titanic . . .

out

Explain Predictio...

mod

t ra

tes
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exa

imp

inp res

res

res

Figure 5.2: Tutorial process ‘Explaining Predictions for Titanic’.

This process trains a Naive Bayes model on the Titanic data. It then uses the Explain Predic-
tions operator to create the predictions and all local explanations for the second data set.
You can see the two results. First the data with additional columns for the predictions, the

confidences, and the new explanations. The other result directly visualizes the explanations
with colors. Green means a value which strongly supports the prediction. Red means that this
value contradicts the prediction. Have a look at the 3rd row for example. The model predicts
“Yes” for survival despite the fact that the gender is male. In general, most men died during the
accident though so the model made this prediction based on the other values. In this case, this
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would be the age of 71, the amount ofmoney paid, and the fact that this person traveledwithout
parents or children.
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Model Simulator

Model Simulator

mod

t ra

tes

s im

mod

This Operator provides an easy, real-time method to change the
inputs to a model and view the output. It shows predictions, con-
fidences, and explanations for those inputs.

Description
The outputs are designed to achieve three goals: First, users will get a better understanding
of how the model comes to its conclusions, even for black box models like deep learning neu-
ral networks. Second, users can simulate cases where they know the outcome, and check if the
model behaves as expected. Third, users can use the built-in optimization method to find op-
timal input settings in order to achieve a desired outcome. The latter turns predictive models
into prescriptive models.
The result is displayed in two panels. In the left panel, users can change the input settings

for all attributes, while in the right panel, the outputs are calculated and displayed in real time.
Each input attribute (independent variable) of the model is displayed in a row, together with
a user interface element corresponding to the value type of the attribute. At the end of each
row is a little information symbol; when hovered, it displays additional information about the
attribute, including statistics and the distribution of values. The length of the gray bars below
each attribute name depicts the global importance of this attribute for the model (in contrast to
the local importance for each specific prediction, which will be discussed below), based on its
correlation with the predictions.
Users can select categorical values from a drop-down element, turn binary values on or off,

and move numerical sliders to arbitrary values within the range defined by the minimum and
maximum. Please note that attributes with value type date are not supported.
The “Optimize” button at the bottom of the input panel spawns a dialog enabling the user

to determine the optimal input values needed to obtain a desired output. Also constrained op-
timizations are supported. When the optimization is completed, the optimal input values are
displayed in the input panel.
All the outputs can be found on the right side and are calculated in real-time. There are five

differentpartswhich slightly differ dependingon if youhavea classificationor a regressionprob-
lem.

• Most Likely / Prediction (top left): You can easily seewhat the current predictionwould be.
It shows the most likely class in case of classification and the predicted number in case of
regression tasks. A bar chart showing the confidences for other likely classes is also shown
in case of classification.

• Confidence Distribution / Distributions of Prediction (top right): In case of classification,
youwill see the distribution of all confidence values for this class on a test data set if it was
provided. The current confidence is highlighted. In case of regression, you will see how
the current prediction relates to the distribution of predictions on a test set. Again, the
distribution is only shown if a test set was provided.

• Important Factors (bottom left): You can see how much the most important attributes
contribute to the current prediction. An attribute value can either support a prediction
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(green bar) or contradict it (red bar). In contrast with the global importance of an attribute
described previously (the gray bar in the input panel), the local importance of an attribute
is based on its correlation with the predictions in the neighborhood of the selected input.
See also the documentation for the Operator Explain Predictions.

• Accuracy (bottom right): If a test data set was provided, and if it contains a label attribute,
you will see how accurate the model works overall and for the currently predicted class (in
case of classification).

• Interpretation (bottom): A short summary of some major and outstanding points of all of
the results above.

The simulator works well independent of the training data size. It has been successfully used
for more than 10 Million data rows. The number of attributes has an impact though. It works
well for less than 1,000 columns. In this case, the simulator provides all calculations in real time.
For more than 1,000 columns, the real-time updates of the local feature importance is disabled.
The automatic optimization of input features is disabled for more than 10,000 input features.
The model simulator supports all model types. The one exception are k-Nearest Neighbors

models for massive amounts of training data since the model application time of this model
type is too slow to support interactive, real-time exploration. Hence, we do not recommend to
use the simulator or the optimization for k-Nearest Neighbors models.

Input Ports
model (mod) This input port expects a model.

input (inp) This input port expects an ExampleSet identical to the one that trained the model.

input (inp) This input port expects an ExampleSet with test data. This data is optional.

Output Ports
simulator output (sim) This port delivers the model simulator, used to simulate inputs and

observe the model’s behavior. It also provides an optimization algorithm which finds the
optimal input needed to provide a desired output.

model (mod) The input model is passed without changing to the output through this port.

Tutorial Processes

Model Simulator for the Titanic data

This process trains a Naive Bayes model on the Titanic data. It then uses the Model Simulator
operator to create a new user interface for simulating model input and observing the model’s
output in real-time. Can you find out how likely it is that you personally would survive when
buying a third class ticket? Also, what is the best situation you could be in given your age and
gender?
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Process
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Figure 5.3: Tutorial process ‘Model Simulator for the Titanic data’.

Prescriptive Analytics

Prescriptive Anal.. .

mod

t ra

op t Given a model and a desired output, this operator automatically
finds the optimal inputs.

Description
In predictivemodeling, a model is used to predict an outcome, given an input. This operator re-
verses that procedure, starting with amodel and a desired output, and prescribing an optimized
input to achieve the desired outcome.
The operator uses an evolutionary optimization method, based on the model, with one of the

following targets:

• minimize confidence for a class

• maximize confidence for a class

• get as close as possible to a certain confidence for a class

• minimize regression prediction

• maximize regression prediction

• get as close as possible to a certain regression prediction

The training data can be used to to constrain the optimization, so that all numerical values
satisfy one or more of the following conditions:
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• stay close to the average, within 1 / 2 / 3 times the standard deviation

• stay above the minimum

• stay below the maximum

• stay above a certain value

• stay below a certain value

Moreover, the user may assign constant values to any of the attributes, overriding the above
conditions.

Input Ports
model (mod) This port expects a model, whose optimal inputs should be identified.

training data (tra) This port expects an ExampleSet, the same ExampleSet that was used to
create the model.

Output Ports
optimal data (opt) The optimal data which, when used as an input to the model, delivers the

desired result.

Parameters
classification (boolean) Indicates if themodel is a classificationmodel or a regressionmodel.

class name (string) The class for which the confidence should be optimized.

optimization direction (selection) Theoptimizationstrategy: minimize,maximize, or spec-
ify a value. A specific value can be useful for regression / forecasting problems.

value to reach (real) Specify a confidence or regression value which should be reached. Only
available if the value for “optimization direction” is “specific value”.

stay around average (numerical) (boolean) Indicates if numerical values should stay in a
specified range around the average value which helps to prevent extreme values which
might be not feasible as inputs.

standard deviations around average (real) Defines the number of standard deviations the
values can move away from the numerical average.

stay above global minimum (numerical) (boolean) Indicates ifnumerical values should stay
above the minimum value of the corresponding attribute.

stay below global maximum (numerical) (boolean) Indicates if numerical values should
stay below the maximum value of the corresponding attribute.

stay above value (numerical) (boolean) Indicates if numerical values should stay above a
specified value.

minimum value (real) Attribute values during optimization should stay above this value.

stay below value (numerical) Indicates ifnumerical values should staybelowaspecifiedvalue.

729



5. Scoring

maximum value (real) Attribute values during optimization should stay below this value.

constant attribute values (list) A list of attributes which should be kept at constant values.
You can specify name-value pairs with the attribute name on the left and the desired con-
stant value on the right.

limit type (selection) Defines when the optimization ends. No limit uses a heuristic to detect
the optimum. Time limit stops after specified time. Generations stops after the specified
number of generations is reached.

maximum generations (integer) Themaximumnumber of generations for the evolutionary
optimization algorithm. Only available if the limit is “generations and population size”.

population size (integer) The number of individuals in the population of the evolutionary
optimization algorithm. Only available if the limit is “generations and population size”.

time limit (in seconds) (integer) Themaximumnumberof seconds theoptimizationwill run.
Only available if the limit is “time limit”.

Tutorial Processes

Prescriptive Analytics for Titanic

Process

Retrieve Titanic . . .

out

Naive Bayes

t ra mod

exa

Prescriptive Anal.. .

mod

t ra

op tinp res

res

Figure 5.4: Tutorial process ‘Prescriptive Analytics for Titanic’.

This process trains aNaiveBayesmodel on theTitanic data. It thenuses theoperatorPrescrip-
tive Analytics to find the optimal attribute values which maximize the likelihood for survival.
Pleasenote thatmost default parameter valueswill deliver reasonable resultswithout going to

the extremes. Butwemade some important settings. First, wedefined that this is a classification
problem and that we want to maximize the confidence for the prediction of “Yes”. We also set
some constant values which are things which you cannot easily change when being a passenger
of the Titanic. In this case, this would be the age of the person and the gender. We used the
values 40 and Female here.
After the process is executed, you will get a new ExampleSet as a result which will show the

optimal settings in this case. If you purchase a first class ticket for $133 and only travel with one
parent or child, you will have a 99% likelihood of survival.

730



5.1. Confidences

5.1 Confidences
Apply Threshold

Apply Threshold

exa

th r

exa
This operator applies a threshold on soft classified data.

Description
The Apply Threshold operator applies the given threshold to a labeled ExampleSet and maps
a soft prediction to crisp values. The threshold is provided through the threshold port. Mostly
the Create Threshold operator is used for creating thresholds before it is applied using theApply
Threshold operator. If the confidence for the second class is greater than the given threshold the
prediction is set to this class otherwise it is set to the other class. This can be easily understood
by studying the attached Example Process.
Among various classification methods, there are two main groups of methods: soft and hard

classification. In particular, a soft classification rule generally estimates the class conditional
probabilities explicitly and thenmakes the class prediction based on the largest estimated prob-
ability. In contrast, hard classification bypasses the requirement of class probability estimation
and directly estimates the classification boundary.

Input Ports
example set (exa) This input port expects a labeled ExampleSet. TheExampleSet should have

label and prediction attributes as well as attributes for confidence of predictions.

threshold (thr) The threshold isprovided through this inputport. Frequently, theCreateThresh-
old operator is used for providing threshold at this port.

Output Ports
example set (exa) Thepredictionsof the inputExampleSet are changedaccording to the thresh-

old given at the threshold port and themodified ExampleSet is delivered through this port.

Tutorial Processes

Creating and Applying thresholds

This Example Process starts with a Subprocess operator. This subprocess provides the labeled
ExampleSet. Double-click on the Subprocess operator to see what is happening inside the sub-
process although it is not directly relevant to the use of the Apply Threshold operator. In the
subprocess, the K-NN classification model is learned and applied on different samples of the
‘Weighting’ data set. The resultant labeled ExampleSet is output of this subprocess. A break-
point is inserted after this subprocess so that you can have a look at the labeled ExampleSet
before the application of the Apply Threshold operator. You can see that the ExampleSet has
20 examples. 11 of them are predicted as ‘positive’ and the remaining 9 examples are predicted
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Figure 5.5: Tutorial process ‘Creating and Applying thresholds’.

as ‘negative’. If you sort the results according to the confidence of positive prediction, you will
easily see that among 11 examples predicted as ‘positive’, 3 examples have confidence 0.600,
4 examples have confidence 0.700, 3 examples have confidence 0.800 and 1 example has confi-
dence 0.900.
Now let us have a look at what is happening outside the subprocess. The Create Threshold

operator is used for creating a threshold. The threshold parameter is set to 0.700 and the first
class and second class parameters are set to ‘negative’ and ‘positive’ respectively. This threshold
is applied on the labeled ExampleSet using the Apply Threshold operator. We know that when
the Apply Threshold operator is applied on an ExampleSet, if the confidence for the second class
is greater than the given threshold then the prediction is set to this class otherwise it is set to the
other class. In this process, if the confidence for the second class i.e. ‘positive’ (class specified in
the second class parameter of the Create Threshold operator) is greater than the given threshold
i.e. 0.700 (threshold specified in the threshold parameter of the Create Threshold operator) the
prediction is set to ‘positive’ otherwise it is set to ‘negative’. In the labeled ExampleSet only
4 examples had confidence (positive) greater than 0.700. When the Apply Threshold operator
is applied only these 4 examples are assigned ‘positive’ prediction and all other examples are
assigned ‘negative’ predictions.
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Create Threshold

Create Threshold

out
This operator creates a user defined threshold for crisp classifica-
tion based on the prediction confidences (soft predictions). This
threshold can be applied by using the Apply Threshold operator.

Description

The threshold parameter specifies the required threshold. The first class and second class pa-
rameters are used for specifying the classes of the ExampleSet that should be considered as first
and second class respectively. The threshold created by this operator can be applied on the la-
beled ExampleSet using the Apply Threshold operator. Should it occur that the confidence for
the second class is greater than the given threshold then the prediction is set to this second
class otherwise it is set to the first class. This can be easily understood by studying the attached
Example Process.
The Apply Threshold operator applies the given threshold to a labeled ExampleSet and maps

a soft prediction to crisp values. The threshold is provided through the threshold port. Mostly
the Create Threshold operator is used for creating thresholds before they are applied using the
Apply Threshold operator.
Among various classification methods, there are two main groups of methods: soft and hard

classification. In particular, a soft classification rule generally estimates the class conditional
probabilities explicitly and thenmakes the class prediction based on the largest estimated prob-
ability. In contrast, hard classification bypasses the requirement of class probability estimation
and directly estimates the classification boundary.

Output Ports

output (out) This port delivers the threshold. This threshold can be applied on a labeled Ex-
ampleSet by using the Apply Threshold operator.

Parameters

threshold (real) Thisparameter specifies the thresholdof thepredictionconfidence. It should
be in range 0.0 to 1.0. If the prediction confidence for the second class is greater than this
threshold the prediction is set to second class (i.e. the class specified through the second
class parameter) otherwise it is set to the first class(i.e. the class specified through the first
class parameter).

first class (string) This parameter specifies the class which should be considered as the first
class.

second class (string) This parameter specifies the class which should be considered as the
second class.

Tutorial Processes
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Figure 5.6: Tutorial process ‘Creating and Applying thresholds’.

Creating and Applying thresholds

This Example Process starts with a Subprocess operator. This subprocess provides the labeled
ExampleSet. Double-click on the Subprocess operator to see what is happening inside the sub-
process although it is not directly relevant to the use of the Create Threshold operator. In the
subprocess, the K-NN classification model is learned and applied on different samples of the
‘Weighting’ data set. The resultant labeled ExampleSet is output of this subprocess. A break-
point is inserted after this subprocess so that you can have a look at the labeled ExampleSet
before the application of the Create Threshold and Apply Threshold operators. You can see that
the ExampleSet has 20 examples. 11 of them are predicted as ‘positive’ and the remaining 9 ex-
amples are predicted as ‘negative’. If you sort the results according to the confidence of positive
prediction, you will easily see that among 11 examples predicted as ‘positive’, 3 examples have
confidence 0.600, 4 examples have confidence 0.700, 3 examples have confidence 0.800 and 1
example has confidence 0.900.
Now let us have a look at what is happening outside the subprocess. The Create Threshold

operator is used for creating a threshold. The threshold parameter is set to 0.700 and the first
class and second class parameters are set to ‘negative’ and ‘positive’ respectively. A breakpoint
is inserted here so that you can see the threshold in the Results Workspace. This statement in
the Results Workspace explains everything:
if confidence(positive) > 0.7 then positive; else negative
This statement means that if confidence(positive) is greater than 0.7 then the class should

be predicted as positive otherwise it should be predicted as negative. In a general form this
statement would look something like this:
if confidence(second) > T then second; else first.
whereT, secondandfirst are thevaluesof the threshold, secondclass andfirst classparameters

respectively.
This threshold is applied on the labeled ExampleSet using the Apply Threshold operator. We
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know that when the Apply Threshold operator is applied on an ExampleSet there are two possi-
bilities: if the confidence for the second class is greater than the given threshold the prediction
is set to second otherwise to the first class. In this process, if the confidence for the second class
i.e. ‘positive’ (class specified in the second class parameter of the Create Threshold operator) is
greater than the given threshold i.e. 0.700 (threshold specified in the threshold parameter of the
Create Threshold operator) the prediction is set to ‘positive’ otherwise it is set to ‘negative’. In
the labeled ExampleSet only 4 examples had confidence (positive) greater than 0.700. When the
Apply Threshold operator is applied only these 4 examples are assigned ‘positive’ predictions
and all other examples are assigned ‘negative’ predictions.
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Drop Uncertain Predictions

Drop Uncertain P.. .

exa exa

ori

This operator sets all predictions to ‘unknown’ (missing value) if
the corresponding confidence is less than the specified minimum
confidence. This operator is used for dropping predictions with
low confidence values.

Description

The Drop Uncertain Predictions operator expects a labeled ExampleSet i.e. an ExampleSet with
label and prediction attributes along with prediction confidences. The minimum confidence
threshold is specified through the min confidence parameter. All those predictions of the given
ExampleSet are dropped where the corresponding prediction confidence is below the specified
threshold. Suppose an ExampleSet with two possible classes ‘positive’ and ‘negative’. If the
min confidence parameter is set to 0.700, all the examples that were predicted as ‘positive’ but
their corresponding ‘confidence (positive)’ value is less than 0.700 are classified as missing val-
ues. Similarly the label value is set tomissing value for all those examples that were predicted as
‘negative’ but their corresponding confidence ‘(negative)’ value is less than 0.700. This operator
also allows you to define different minimum confidence thresholds for different classes through
the min confidences parameter.

Input Ports

example set input (exa) This input port expects a labeled ExampleSet. It is the output of the
ApplyModel operator in the attached Example Process. The output of other operators can
also be used as input if it is a labeled ExampleSet.

Output Ports

example set output (exa) The uncertain predictions are dropped and the resultant Example-
Set is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters

class handling (selection) This parameter specifies themode of class handling which defines
if all classes are handled equally or if individual class thresholds are set.

• balanced In this case all classes are handled equally i.e. the same confidence thresh-
old is applied on all possible values of the label. The minimum confidence threshold
is specified through the min confidence parameter.

• unbalanced In this case classes are not handled equally i.e. different confidence
thresholds can be specified for different classes through the min confidences param-
eter.
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min confidence (real) This parameter is only available when the class handling parameter is
set to ‘balanced’. Thisparameter sets theminimumconfidence threshold for all theclasses.
Predictions below this confidence will be dropped.

min confidences (list) This parameter is only available when the class handling parameter is
set to ‘unbalanced’. This parameter specifies individual thresholds for classes. Predictions
below these confidences will be dropped.

Tutorial Processes

Dropping uncertain predictions of the Naive Bayes operator

Process
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out

Golf-Testset

out

Naive Bayes

t ra mod

exa Apply Model

mod

unl

lab

mod
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exa exa

ori

inp

res

res

Figure 5.7: Tutorial process ‘Dropping uncertain predictions of the Naive Bayes operator’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Naive Bayes operator is applied
on it to generate a classification model. The resultant classification model is applied on the
‘Golf-Testset’ data set by using the Apply Model operator. A breakpoint is inserted here so that
you can see the labeled ExampleSet generated by the Apply Model operator. You can see that
10 examples have been classified as ‘yes’ but only 6 of them have ‘confidence (yes)’ above 0.700.
Only 2 examples have been classified as ‘no’ but only 1 of themhas ‘confidence (no)’ above 0.700.
This labeled ExampleSet is provided to the Drop Uncertain Predictions operator. Themin confi-
dence parameter is set to 0.7. Thus all the exampleswhere the prediction confidence is below 0.7
are set tomissing values. This canbe seen in theResultsWorkspace. 7 examples had aprediction
confidence below 0.7 and all of them have been dropped.
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Find Threshold

Find Threshold

exa exa

th r

This operator finds the best threshold for crisp classificationof soft
classified data based on user defined costs. The optimization step
is based on ROC analysis.

Description

This operator finds the threshold for given prediction confidences of soft classified predictions
in order to turn it into a crisp classification. The optimization step is based on ROC analysis.
ROC is discussed at the end of this description.
The Find Threshold operator finds the threshold of a labeled ExampleSet to map a soft pre-

diction to crisp values. The threshold is delivered through the threshold port. Mostly the Ap-
ply Threshold operator is used for applying a threshold after it has been delivered by the Find
Threshold operator. If the confidence for the second class is greater than the given threshold the
prediction is set to this class otherwise it is set to the other class. This can be easily understood
by studying the attached Example Process.
Among various classification methods, there are two main groups of methods: soft and hard

classification. In particular, a soft classification rule generally estimates the class conditional
probabilities explicitly and thenmakes the class prediction based on the largest estimated prob-
ability. In contrast, hard classification bypasses the requirement of class probability estimation
and directly estimates the classification boundary.
Receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot of the true

positive rate vs. false positive rate for a binary classifier system as its discrimination threshold
is varied. The ROC can also be represented equivalently by plotting the fraction of true positives
out of the positives (TP/P = true positive rate) vs. the fraction of false positives out of the neg-
atives (FP/N = false positive rate). TP/P determines a classifier or a diagnostic test performance
on classifying positive instances correctly among all positive samples available during the test.
FP/N, on the other hand, defines how many incorrect positive results occur among all negative
samples available during the test.
A ROC space is defined by FP/N and TP/P as x and y axes respectively, which depicts relative

trade-offs between true positive (benefits) and false positive (costs). Each prediction result or
one instance of a confusionmatrix represents one point in the ROC space.The best possible pre-
dictionmethod would yield a point in the upper left corner or coordinate (0,1) of the ROC space,
representing 100% TP/P and 0% FP/N. The (0,1) point is also called a perfect classification. A
completely random guess would give a point along a diagonal line from the left bottom to the
top right corners.
The diagonal divides the ROC space. Points above the diagonal represent good classification

results, points below the line represent poor results. Note that the FindThreshold operator finds
a thresholdwhere points of bad classification are inverted to convert them to good classification.

Input Ports

example set (exa) This input port expects a labeled ExampleSet. The ExampleSet should have
label and prediction attributes as well as attributes for the confidence of predictions.
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Output Ports
example set (exa) The ExampleSet that was given as input is passed without changing to the

output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

threshold (thr) The threshold is delivered through this output port. Frequently, the Apply
Threshold operator is used for applying this threshold on the soft classified data.

Parameters
define labels (boolean) This is an expert parameter. If set to true, the first and second label

can be defined explicitly using the first label and second label parameters.

first label (string) This parameter is only available when the define labels parameter is set to
true. It explicitly defines the first label.

second label (string) This parameter is only available when the define labels parameter is set
to true. It explicitly defines the second label.

misclassification costs first (real) This parameter specifies the costs assigned when an ex-
ample of the first class is misclassified as one of the second.

misclassification costs second (real) This parameter specifies the costs assigned when an
example of the second class is misclassified as one of the first.

show roc plot (boolean) This parameter indicateswhether to display a plot of the ROC curve.

use example weights (boolean) Thisparameter indicates if exampleweights shouldbeused.

roc bias (selection) This is an expert parameter. It determines how the ROC (and AUC) are
evaluated.

Tutorial Processes

Introduction to the Find Threshold operator

This Example Process starts with a Subprocess operator. This subprocess provides the labeled
ExampleSet. Double-click on the Subprocess operator to see what is happening inside although
it is not directly relevant to theunderstandingof the FindThreshold operator. In the subprocess,
the Generate Data operator is used for generation of testing and training data sets with binomi-
nal label. The SVM classification model is learned and applied on training and testing data sets
respectively. The resultant labeled ExampleSet is output of this subprocess. A breakpoint is
inserted after this subprocess so that you can have a look at the labeled ExampleSet before ap-
plication of the Find Threshold operator. You can see that the ExampleSet has 500 examples.
If you sort the results according to the confidence of positive prediction, and scroll through the
data set, you will see that all examples with ‘confidence(positive)’ greater than 0.500 are clas-
sified as positive and all examples with ‘confidence(positive)’ less than 0.500 are classified as
negative.
Now have a look at what is happening outside the subprocess. The Find Threshold operator is

used for finding a threshold. All its parameters are usedwith default values. The Find Threshold
operator delivers a threshold through the threshold port. This threshold is applied on the la-
beled ExampleSet using the Apply Threshold operator. We know that when the Apply Threshold
operator is applied on an ExampleSet, if the confidence for the second class is greater than the
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Figure 5.8: Tutorial process ‘Introduction to the Find Threshold operator’.

given threshold the prediction is set to this class otherwise it is set to the other class. Have a look
at the resultant ExampleSet. Sort the ExampleSet according to ‘confidence(positive)’ and scroll
through the ExampleSet. You will see that all examples where ‘confidence(positive)’ is greater
than 0.306 are classified as positive and all examples where ‘confidence(positive)’ is less than
or equal to 0.306 are classified as negative. In the original ExampleSet the boundary value was
0.500 but the Find Threshold operator found a better threshold for a crisp classification of soft
classified data.
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Bootstrapping Validation

Validat ion

t ra mod

t ra

ave

ave

This operator performs validation after bootstrapping a sampling
of training data set in order to estimate the statistical performance
of a learning operator (usually on unseen data sets). It is mainly
used to estimate how accurately a model (learnt by a particular
learning operator) will perform in practice.

Description

The Bootstrapping Validation operator is a nested operator. It has two subprocesses: a train-
ing subprocess and a testing subprocess. The training subprocess is used for training a model.
The trained model is then applied in the testing subprocess. The performance of the model is
also measured during the testing phase. The training subprocess must provide a model and the
testing subprocess must provide a performance vector.
The input ExampleSet is partitioned into two subsets. One subset is used as the training set

and the other one is used as the test set. The size of two subsets can be adjusted through the
sample ratio parameter. The sample ratio parameter specifies the ratio of examples to be used
in the training set. The ratio of examples in the testing set is automatically calculated as 1-n
where n is the ratio of examples in the training set. The important thing to note here is that this
operator performs bootstrapping sampling (explained in the next paragraph) on the training set
before training amodel. Themodel is learned on the training set and is then applied on the test
set. This process is repeatedm number of times wherem is the value of the number of validations
parameter.
Bootstrapping sampling is sampling with replacement. In sampling with replacement, at ev-

ery step all examples have equal probability of being selected. Once an example has been se-
lected for the sample, it remains candidate for selection and it can be selected again in any other
coming steps. Thus a sample with replacement can have the same example multiple number of
times. More importantly, a sample with replacement can be used to generate a sample that is
greater in size than the original ExampleSet.
Usually the learning process optimizes the model parameters to make themodel fit the train-

ing data as well as possible. If we then take an independent sample of testing data, it will gener-
ally turn out that the model does not fit the testing data as well as it fits the training data. This
is called ‘over-fitting’, and is particularly likely to happen when the size of the training data set
is small, or when the number of parameters in the model is large. Bootstrapping Validation is a
way to predict the fit of a model to a hypothetical testing set when an explicit testing set is not
available.

Differentiation

• Split Validation Its validation subprocess executes just once. It provides linear, shuffled
and stratified sampling. See page 749 for details.
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• Cross Validation The input ExampleSet is partitioned into k subsets of equal size. Of
the k subsets, a single subset is retained as the testing data set (i.e. input of the testing
subprocess), and the remaining k – 1 subsets are used as the training data set (i.e. input of
the training subprocess). The cross-validation process is then repeated k times, with each
of the k subsets used exactly once as the testing data. The k results from the k iterations
can then be averaged (or otherwise combined) to produce a single estimation. See page
744 for details.

Input Ports
training (tra) This input port expects an ExampleSet for training a model (training data set).

The same ExampleSet will be used during the testing subprocess for testing the model.

Output Ports
model (mod) The training subprocess must return a model, which is trained on the input Ex-

ampleSet. Please note that model built on the complete input ExampleSet is delivered
from this port.

training (tra) The ExampleSet that was given as input at the training input port is passedwith-
out changing to the output through this port. This is usually used to reuse the same Ex-
ampleSet in further operators or to view the ExampleSet in the Results Workspace.

averagable (ave) The testing subprocess must return a Performance Vector. This is usually
generated by applying the model andmeasuring its performance. Two such ports are pro-
vided but more can also be used if required. Please note that the statistical performance
calculatedby this estimation scheme is only anestimate (insteadof anexact calculation) of
the performance which would be achieved with the model built on the complete delivered
data set.

Parameters
number of validations (integer) Thisparameter specifies thenumberof times thevalidation

should be repeated i.e. the number of times the inner subprocess should be executed.

sample ratio (real) This parameter specifies the relative size of the training set. In other val-
idation schemes this parameter should be between 1 and 0, where 1 means that the entire
ExampleSet will be used as training set. In this operator its value can be greater than 1
because bootstrapping sampling can generate an ExampleSet with a number of examples
greater than the original ExampleSet. All examples that are not selected for the training
set are automatically selected for the test set.

use weights (boolean) If this parameter is checked, example weights will be used for boot-
strapping if such weights are available.

average performances only (boolean) This parameter indicates if only performance vec-
tors should be averaged or all types of averagable result vectors.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomizing examples of a subset. Using the same value of the local random seed
will produce the same samples. Changing the value of this parameter changes the way
examples are randomized, thus samples will have a different set of examples.
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local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Related Documents
• Split Validation (page 749)

• Cross Validation (page 744)

Tutorial Processes

Validating Models using Bootstrapping Validation

Process
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Figure 6.1: Tutorial process ‘Validating Models using Bootstrapping Validation’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Generate ID operator is applied
on it to uniquely identify examples. This is done so that you can understand this process easily;
otherwise IDs are not required here. A breakpoint is added after this operator so that you can
preview the data before the application of the Bootstrapping Validation operator. You can see
that the ExampleSet has 14 examples with ids from 1 to 14. Double click the Bootstrapping
Validation operator and you will see the training and testing subprocesses. The Decision Tree
operator is used in the training subprocess. The trained model (i.e. Decision Tree) is passed to
the testing subprocess through the model ports. The testing subprocess receives testing data
from the testing port.
Now, have a look at the parameters of the Bootstrapping Validation operator. The no of vali-

dations parameter is set to 2 thus the inner subprocess will execute just twice. The sample ratio
parameter is set to 0.5. The number of examples in the ExampleSet is 14 and sample ratio is 0.5,
thus the training set will be composed of 7 (i.e. 14 x 0.5) examples. But it is not necessary that
these examples will be unique because bootstrapping sampling can select an example multiple
number of time. All the examples that are not selected for the training set automatically become
part of the testing set. You can verify this by running the process. You will see that the training
set has 7 examples but they are not all unique and all the examples that were not part of the
training set are part of the testing set.
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Cross Validation

Cross Validation

exa mod

exa

tes

per

This Operator performs a cross validation to estimate the statisti-
cal performance of a learning model.

Description
It is mainly used to estimate how accurately a model (learned by a particular learning Operator)
will perform in practice.
The Cross Validation Operator is a nested Operator. It has two subprocesses: a Training sub-

process and a Testing subprocess. The Training subprocess is used for training a model. The
trained model is then applied in the Testing subprocess. The performance of the model is mea-
sured during the Testing phase.
The input ExampleSet is partitioned into k subsets of equal size. Of the k subsets, a single

subset is retained as the test data set (i.e. input of the Testing subprocess). The remaining k - 1
subsets are used as training data set (i.e. input of the Training subprocess). The cross validation
process is then repeated k times, with each of the k subsets used exactly once as the test data.
The k results from the k iterations are averaged (or otherwise combined) to produce a single
estimation. The value k can be adjusted using the number of folds parameter.
The evaluation of the performance of a model on independent test sets yields a good estima-

tion of the performance on unseen data sets. It also shows if ‘overfitting’ occurs. This means
that themodel represents the testing data very well, but it does not generalize well for new data.
Thus, the performance can be much worse on test data.

Differentiation
• Split Validation
This Operator is similar to the Cross Validation Operator but only splits the data into one
training and one test set. Hence it is similar to one iteration of the cross validation.

See page 749 for details.

• Split Data
This Operator splits an ExampleSet into different subsets. It can be used to manual per-
form a validation.

See page 254 for details.

• Bootstrapping Validation
ThisOperator is similar to the Cross ValidationOperator. Instead of splitting the input Ex-
ampleSet into different subset, the Bootstrapping Validation Operator uses bootstrapping
sampling to get the training data. Bootstrapping sampling is sampling with replacement.

See page 741 for details.
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• Wrapper Split Validation
This Operator is similar to the Split Validation Operator. It has an additional Attribute
Weighting subprocess to evaluate the attribute weighting method individually.
See page 754 for details.

• Wrapper-X-Validation
This Operator is similar to the Cross Validation Operator. It has an additional Attribute
Weighting subprocess to evaluate the attribute weighting method individually.
See page 756 for details.

Input Ports
example set (exa) This input port receives an ExampleSet to apply the cross validation.

Output Ports
model (mod) This port delivers the predictionmodel trained on the whole ExampleSet. Please

note that this port should only be connected if you really need this model because other-
wise the generation will be skipped.

performance (per) This is an expandable port. You can connect any performance vector (re-
sult of a Performance Operator) to the result port of the inner Testing subprocess. The
performance output ports of the Cross Validation Operator deliver the average of the per-
formances over the number of folds iterations.

example set (exa) This port returns the same ExampleSet which as been given as input.

test result set (tes) This port delivers only an ExampleSet if the test set results port of the
inner Testing subprocess is connected. If so, the test sets are merged to one ExampleSet
anddelivered by this port. For examplewith this output port it is possible to get the labeled
test sets, with the results of the Apply Model Operator.

Parameters
split on batch attribute If this parameter is enabled, use the Attribute with the special role

‘batch’ to partition the data instead of randomly splitting the data. This gives you control
over the exact Examples which are used to train the model in each fold. All other split
parameters are not available in this case.

leave one out If thisparameter is enabled, the test set (i.e. the inputof theTesting subprocess)
is only one Example from the original ExampleSet. The remaining Examples are used as
the training data. This is repeated such that each Example in the ExampleSet is used once
as the test data. Thus it is repeated ‘n’ times, where ‘n’ is the total number of Examples
in the ExampleSet. The Cross Validation can take a very long time, as the Training and
Testing subprocesses are repeated as many times as the number of Example. If set to true,
the number of folds parameter is not available.

number of folds This parameter specifies the number of folds (number of subsets) the Exam-
pleSet shouldbedivided into. Each subsethas equalnumberofExamples. Also thenumber
of iterations that will take place is the same as the number of folds. If themodel output port
is connected, the Training subprocess is repeated onemore timewith all Examples to build
the final model.
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sampling type The Cross Validation Operator can use several types of sampling for building
the subsets. Following options are available:

• linear_sampling The linear samplingdivides theExampleSet intopartitionswithout
changing the order of the Examples. Subsets with consecutive Examples are created.

• shuffled_sampling The shuffled sampling builds randomsubsets of the ExampleSet.
Examples are chosen randomly for making subsets.

• stratified_sampling The stratified sampling builds random subsets. It ensures that
the class distribution (defined by the label Attribute) in the subsets is the same as in
the whole ExampleSet. For example in the case of a binominal classification, strati-
fied sampling builds random subsets such that each subset contains roughly the same
proportions of the two values of the label Attribute.

• automatic The automatedmodeuses stratified sampling per default. If it isn’t appli-
cable e.g. if the ExampleSet doesn’t contain a nominal label, shuffled sampling will
be used instead.

use local random seed This parameter indicates if a local random seed should be used for ran-
domizing Examples of a subset. Using the same value of the local random seedwill produce
the same subsets. Changing the valueof this parameter changes thewayExamples are ran-
domized, thus subsets will have a different set of Examples. This parameter is available
only if shuffled or stratified sampling is selected. It is not available for linear sampling
because it requires no randomization, Examples are selected in sequence.

local random seed If the use local random seed parameter is checked this parameter deter-
mines the local random seed. The same subsets will be created every time if the same
value is used.

enable parallel execution This parameter enables the parallel execution of the inner pro-
cesses. Please disable the parallel execution if you run into memory problems.

Tutorial Processes

Why validate Models

This tutorial process shows the reason why you always have to validate a learning model on an
independent data set.
The ‘Sonar’ data set is retrieved from the Samples folder. The Split Data Operator splits it into

two different subsets (with 90 % and 10 % of the Examples). A decision tree is trained on the
larger data set (which is called training data).
The decision tree is applied on both the training data and the test data and the performance is

calculated for both. Below that a Cross Validation Operator is used to calculate the performance
of a decision tree on the Sonar data in a more sophisticated way.
All calculated performances are delivered to the result ports of the Process:
Performance on Training data: The accuracy is relatively high with 86.63 % Performance on

Test data: The accuracy is only 61.90 %. This shows that the decision tree is trained to fit the
Training data well, but perform worse on the test data. This effect is called ‘overfitting’. Per-
formance from Cross Validation: The accuracy is 62.12 % +/- 9.81%. The Cross Validation not
only gives us a good estimation of the performance of the model on unseen data, but also the
standard deviation of this estimation. The above mentioned Perfomance on Test data falls in-
side this estimation, whereas the performance on the Training data is above it and is effected by
‘overfitting’.
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Figure 6.2: Tutorial process ‘Why validate Models’.

Validating Models using Cross Validation

This tutorial process shows the basic usage of the Cross Validation Operator on the ‘Deals’ data
set from the Sample folder.
The Cross Validation Operator divides the ExampleSet into 3 subsets. The sampling type pa-

rameter is set to linear sampling, so the subsets will have consecutive Examples (check the ID
Attribute). A decision tree is trained on 2 of the 3 subsets inside the Training subprocess of the
Cross Validation Operator.
The performance of the decision tree is then calculated on the remaining subset in the Testing

subprocess.
This is repeated 3 times, so that each subset was used one time as a test set.
The calculated performances are averaged over the three iterations and delivered to the result

port of the Process. Also the decision tree, whichwas trained on all Examples, is delivered to the
result port. Themerged test sets (the test result set output port of theCrossValidationOperator)
is the third result of the Process.
Play around with the parameters of the Cross Validation Operator. The number of folds pa-

rameter controls the number of subsets, the input ExampleSet is divided into. Hence it is also
the number of iterations of the cross validation. The sampling type changes the way the subsets
are created.
If linear sampling is used the IDs of the Examples in the subsets will be consecutive values. If

shuffled sampling is used the IDs of the Examples in the subsets will be randomized. If stratified
sampling is used the IDs of the Examples are also randomized, but the class distribution in the
subsets will be nearly the same as in the whole ‘Deals’ data set.
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6. Validation

Process
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Figure 6.3: Tutorial process ‘Validating Models using Cross Validation’.

Passing results from Training to Testing subprocess using through ports

This Process shows the usage of the through port to pass through RapidMiner Objects from the
Training to the Testing subprocess of the Cross Validation Operator.
In this Process an Attribute selection is performed before a linear regression is trained. The

Attribute weights are passed to the Testing subprocess. Also two different Performance Oper-
ators are used to calculate the performance of the model. Their results are connected to the
expandable performance port of the Testing subprocess.
Bothperformances are averagedover the 10 iterations of the cross validation and are delivered

to the result ports of the Process.

Using the batch Attribute to split the training data

This Process shows the usage of the split on batch attribute parameter of the Cross Validation
Operator.
The Titanic Training data set is retrieved from the Samples folder and the Passenger Class

Attribute is set to ‘batch’ role. As the split on batch attribute parameter of the Cross Validation
Operator is set to true, the data set is splitted into three subsets. Each subset has only Examples
of one Passenger class.
In the Training subprocess, 2 of the subsets are used to train the decision tree. In the Testing

subprocess, the remaining subset is used to test the decision tree.
Thus the decision tree is trained on all passengers from two Passenger Classes and tested on

the remaining class. The performances of all three combinations are averaged and delivered to
the result port of the Process.
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Figure 6.4: Tutorial process ‘Passing results from Training to Testing subprocess using through
ports’.
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This operator performs a simple validation i.e. randomly splits up
the ExampleSet into a training set and test set and evaluates the
model. This operator performs a split validation in order to esti-
mate the performance of a learning operator (usually on unseen
data sets). It is mainly used to estimate how accurately a model
(learnt by a particular learning operator) will perform in practice.

Description

TheSplitValidationoperator is anestedoperator. It has two subprocesses: a training subprocess
and a testing subprocess. The training subprocess is used for learning or building a model. The
trained model is then applied in the testing subprocess. The performance of the model is also
measured during the testing phase.
The input ExampleSet is partitioned into two subsets. One subset is used as the training set

and theother one is used as the test set. The size of two subsets canbe adjusted throughdifferent
parameters. The model is learned on the training set and is then applied on the test set. This is
done in a single iteration, as compared to the Cross Validation operator that iterates a number
of times using different subsets for testing and training purposes.
Usually the learning process optimizes the model parameters to make themodel fit the train-

ing data as well as possible. If we then take an independent sample of testing data, it will gener-
ally turn out that the model does not fit the testing data as well as it fits the training data. This
is called ‘over-fitting’, and is particularly likely to happen when the size of the training data set
is small, or when the number of parameters in the model is large. Split Validation is a way to
predict the fit of a model to a hypothetical testing set when an explicit testing set is not avail-
able. The Split Validation operator also allows training on one data set and testing on another
explicit testing data set.
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6. Validation

Process
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Figure 6.5: Tutorial process ‘Using the batch Attribute to split the training data’.

Input Ports
training example set (tra) This input port expects an ExampleSet for training amodel (train-

ing data set). The same ExampleSet will be used during the testing subprocess for testing
the model if no other data set is provided.

Output Ports
model (mod) The training subprocess must return a model, which is trained on the input Ex-

ampleSet. Please note that themodel built on the complete input ExampleSet is delivered
from this port.

training example set (tra) TheExampleSet thatwas givenas input at thetraining inputport is
passed without changing to the output through this port. This is usually used to reuse the
sameExampleSet in further operators or to view the ExampleSet in theResultsWorkspace.

averagable (ave) The testing subprocess must return a Performance Vector. This is usually
generated by applying the model andmeasuring its performance. Two such ports are pro-
vided but more can also be used if required. Please note that the performance calculated
by this estimation scheme is only an estimate (instead of an exact calculation) of the per-
formance which would be achieved with the model built on the complete delivered data
set.

Parameters
split (selection) This parameter specifies how the ExampleSet should be split
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• relative If a relative split is required, the relative size of the training set should be
provided in the split ratio parameter. Afterwards the relative size of the test set is
automatically calculated by subtracting the value of the split ratio from 1.

• absolute If an absolute split is required, you have to specify the exact number of ex-
amples to use in the training or test set in the training set size parameter or in the test
set size parameter. If either of these parameters is set to -1, its value is calculated
automatically using the other one.

split ratio (real) This parameter is only available when the split parameter is set to ‘relative’.
It specifies the relative size of the training set. It should be between1 and 0, where 1means
that the entire ExampleSet will be used as training set.

training set size (integer) This parameter is only available when the split parameter is set to
‘absolute’. It specifies the exact number of examples to be used as training set. If it is set
to -1, the test size set number of examples will be used for the test set and the remaining
examples will be used as training set.

test set size (integer) This parameter is only available when the split parameter is set to ‘ab-
solute’. It specifies the exact number of examples to be used as test set. If it is set to -1,
the training size set number of examples will be used for training set and the remaining
examples will be used as test set.

sampling type (selection) The Split Validation operator can use several types of sampling for
building the subsets. Following options are available:

• linear_sampling The linear sampling simply divides the ExampleSet into partitions
without changing the order of the examples i.e. subsets with consecutive examples
are created.

• shuffled_sampling The shuffled sampling builds random subsets of the ExampleSet.
Examples are chosen randomly for making subsets.

• stratified_sampling The stratified sampling builds random subsets and ensures that
the class distribution in the subsets is the same as in the whole ExampleSet. For ex-
ample, in the case of a binominal classification, stratified sampling builds random
subsets such that each subset contains roughly the same proportions of the two val-
ues of class labels.

• automatic The automated mode uses stratified sampling per default. If it isn’t ap-
plicable, e.g., if the ExampleSet doesn’t contain a nominal label, shuffled sampling
will be used instead.

use local random seed (boolean) Indicates if a local random seedshould be used for random-
izing examples of a subset. Using the same value oflocal random seedwill produce the same
subsets. Changing the value of this parameter changes the way examples are randomized,
thus subsets will have a different set of examples. This parameter is only available if Shuf-
fled or Stratified sampling is selected. It is not available for Linear sampling because it
requires no randomization, examples are selected in sequence.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes
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Figure 6.6: Tutorial process ‘Validating Models using Split Validation’.

Validating Models using Split Validation

The ‘Golf’ data set is loaded using the Retrieve operator. The Generate ID operator is applied
on it to uniquely identify examples. This is done so that you can understand this process easily;
otherwise IDs are not required here. A breakpoint is added after this operator so that you can
preview the data before the Split Validation operator starts. Double click the Split Validation
operator and you will see training and testing subprocesses. The Decision Tree operator is used
in the training subprocess. The trained model (i.e. Decision Tree) is passed to the testing sub-
process through the model ports. The testing subprocess receives testing data from the testing
port.
Now, have a look at the parameters of the Split Validation operator. The split parameter is set

to ‘absolute’. The training set size parameter is set to 10 and the test set size parameter is set to -
1. As there are 14 total examples in the ‘Golf’ data set, the test set automatically gets 4 remaining
examples. The sampling type parameter is set to Linear Sampling. Remaining parameters have
default values. Thus two subsets of the ‘Golf’ data set will be created. You will observe later
that these two subsets are created: training set: examples with IDs 1 to 10 (10 examples)test
set: examples with IDs 11 to 14 (4 examples)
You can see that all examples in a subset are consecutive (i.e. with consecutive IDs). This is

because Linear Sampling is used.
Breakpoints are inserted to make you understand the process. Here is what happens when

you run the process: First the ‘Golf’ data set is displayed with all rows uniquely identified using
the ID attribute. There are 14 rows with ids 1 to 14. Press the green-colored Run button to
continue.Now a Decision tree is shown. This was trained from the training set of the ‘Golf’ data
set. Hit the Run button to continue.The Decision tree was applied on the testing data. Here
you can see the results after application of the Decision Tree model. Have a look at IDs of the
testing data here. They are 11 to 14. Compare the label and prediction columns and you will
see that only 2 predictions out of 4 are correct (only ID 1 and 3 are correct predictions). Hit the
Run button again.Now the Performance Vector of the Decision tree is shown. As only 2 out of
4 predictions were correct, the accuracy is 50%. Press the Run button again.Now you can see a
different Decision tree. It was trained on the complete ‘Golf’ data set that is why it is different
from the previous decision tree.
You can run the same process with different values of sampling type parameter. If linear sam-

pling is used, as in our example process, you will see that IDs of examples in subsets will be con-
secutive values. If shuffled sampling is used you will see that IDs of examples in subsets will be
random values. If stratified sampling is used you will see that IDs of examples in subsets will be
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random values but the class distribution in the subsets will be nearly the same as in the whole
‘Golf’ data set.
To get an understanding of how objects are passed using through ports please study the Ex-

ample Process of Cross Validation operator.
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Wrapper Split Validation

Validat ion

exa per

a t t

A simple validation method to check the performance of a feature
weighting or selection wrapper.

Description
This operator evaluates the performance of feature weighting algorithms including feature se-
lection. The first inner operator is the weighting algorithm to be evaluated itself. It must return
an attribute weights vector which is applied on the data. Then a newmodel is created using the
second inner operator and a performance is retrieved using the third inner operator. This perfor-
mance vector serves as a performance indicator for the actual algorithm. This implementation
is described for the RandomSplitValidationChain.

Input Ports
example set in (exa) This input port expects an ExampleSet. Subsets of this ExampleSet will

be used as training and testing data sets.

Output Ports
performance vector out (per) The Model Evaluation subprocess must return a Performance

Vector in each iteration. This is usually generated by applying the model and measuring
its performance. Please note that the statistical performance calculated by this estima-
tion scheme is only an estimate (instead of an exact calculation) of the performance which
would be achieved with the model built on the complete delivered data set.

attribute weights out (att) TheAttributeWeighting subprocessmust returnanattributeweights
vector in each iteration. Pleasenote that the attributeweights vector built on the complete
input ExampleSet is delivered from this port.

Parameters
split ratio Relative size of the training set.

sampling type The Wrapper Split Validation operator can use several types of sampling for
building the subsets. Following options are available:

• linear_sampling The linear sampling simply divides the ExampleSet into partitions
without changing the order of the examples i.e. subsets with consecutive examples
are created.

• shuffled_sampling The shuffled sampling builds random subsets of the ExampleSet.
Examples are chosen randomly for making subsets.

• stratified_sampling The stratified sampling builds random subsets and ensures that
the class distribution in the subsets is the same as in the whole ExampleSet. For ex-
ample, in the case of a binominal classification, stratified sampling builds random
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subsets such that each subset contains roughly the same proportions of the two val-
ues of class labels.

• automatic The automated mode uses stratified sampling per default. If it isn’t ap-
plicable, e.g., if the ExampleSet doesn’t contain a nominal label, shuffled sampling
will be used instead.

use local random seed This parameter indicates if a local random seed should be used for ran-
domizing examples of a subset. Using the same value of the local random seedwill produce
the same subsets. Changing the value of this parameter changes theway examples are ran-
domized, thus subsets will have a different set of examples. This parameter is available
only if shuffled, stratified or automatic sampling is selected. It is not available for linear
sampling because it requires no randomization, examples are selected in sequence.

local random seed This parameter specifies the local randomseed. This parameter is available
only if the use local random seed parameter is set to true.
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Wrapper-X-Validation

Validat ion

exa per

a t t

This operator performs a cross-validation in order to evaluate the
performance of a feature weighting or selection scheme. It is
mainly used for estimating how accurately a scheme will perform
in practice.

Description

TheWrapper-X-Validation operator is a nested operator. It has three subprocesses: an Attribute
Weighting subprocess, aModel Building subprocess and aModel Evaluation subprocess. TheAt-
tributeWeighting subprocess contains the algorithm to be evaluated. Itmust return an attribute
weights vector which is then applied on the training data set. The Model Building subprocess
is used for training a new model in each iteration. This model is trained on the same training
data set that was used in the first subprocess. But the training data set for this subprocess does
not contain those attributes that had weight 0 in the weights vector of the first subprocess. The
trained model is then applied and evaluated in the Model Evaluation subprocess. The model is
tested on the testing data set. This subprocess must return a performance vector. This perfor-
mance vector serves as a performance indicator of the actual algorithm.
The input ExampleSet is partitioned into k subsets of equal size. Of the k subsets, a single

subset is retained as the testing data set (i.e. input of the third subprocess), and the remaining
k – 1 subsets are used as training data set (i.e. input of the first two subprocesses). The cross-
validation process is then repeated k times, with each of the k subsets used exactly once as the
testing data. The k results from the k iterations then can be averaged (or otherwise combined)
to produce a single estimation. The value k can be adjusted using the number of validations pa-
rameter. Please study the attached Example Process for more information.
Just as for learning, it is also possible that overfitting occurs during preprocessing. In order to

estimate the generalization performance of a preprocessing method RapidMiner supports sev-
eral validation operators for preprocessing steps. The basic idea is the same as for all other val-
idation operators with a slight difference: the first inner operator must produce a transformed
example set, the second must produce a model from this transformed data set and the third op-
erator must produce a performance vector of this model on a test set transformed in the same
way.

Input Ports

example set in (exa) This input port expects an ExampleSet. Subsets of this ExampleSet will
be used as training and testing data sets.

Output Ports

performance vector out (per) The Model Evaluation subprocess must return a Performance
Vector in each iteration. This is usually generated by applying the model and measuring
its performance. Two such ports are provided butmore can also be used if required. Please
note that the statistical performance calculated by this estimation scheme is only an es-
timate (instead of an exact calculation) of the performance which would be achieved with
the model built on the complete delivered data set.
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attribute weights out (att) TheAttributeWeightingsubprocessmust returnanattributeweights
vector in each iteration. Pleasenote that the attributeweights vector built on the complete
input ExampleSet is delivered from this port.

Parameters
leave one out (boolean) As thename suggests, the leave one out cross-validation involves us-

ing a single example from the original ExampleSet as the testing data, and the remaining
examples as the training data. This is repeated such that each example in the ExampleSet
is used once as the testing data. Thus, it is repeated ‘n’ number of times, where ‘n’ is the
total number of examples in the ExampleSet. This is the same as applying the Batch-X-
Validation operator with the number of validations parameter set equal to the number of
examples in the original ExampleSet. This is usually very expensive for large ExampleSets
from a computational point of view because the training process is repeated a large num-
ber of times (number of examples time). If set to true, the number of validations parameter
is ignored.

number of validations (integer) This parameter specifies the number of subsets the Exam-
pleSet should be divided into (each subset has an equal number of examples). Also the
same number of iterations will take place. If this is set equal to the total number of exam-
ples in the ExampleSet, it is equivalent to the Batch-X-Validation operator with the leave
one out parameter set to true.

sampling type (selection) TheBatch-X-Validationoperator canuse several types of sampling
for building the subsets. Following options are available:

• linear_sampling The linear sampling simply divides the ExampleSet into partitions
without changing the order of the examples i.e. subsets with consecutive examples
are created.

• shuffled_sampling The shuffled sampling builds random subsets of the ExampleSet.
Examples are chosen randomly for making subsets.

• stratified_sampling The stratified sampling builds random subsets and ensures that
the class distribution in the subsets is the same as in the whole ExampleSet. For ex-
ample, in the case of a binominal classification, stratified sampling builds random
subsets such that each subset contains roughly the same proportions of the two val-
ues of class labels.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomizing examples of a subset. Using the same value of the local random seed
will produce the same subsets. Changing the value of this parameter changes the way ex-
amples are randomized, thus subsets will have a different set of examples. This parameter
is available only if Shuffled or Stratified sampling is selected. It is not available for Linear
sampling because it requires no randomization, examples are selected in sequence.

local random seed (integer) This parameter specifies the local random seed. This parameter
is available only if the use local random seed parameter is set to true.

Tutorial Processes

Evaluating an attribute selection scheme

This Example Process starts with the Subprocess operator which provides an ExampleSet. A
breakpoint is inserted here so that you can have a look at the ExampleSet. You can see that there
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Figure 6.7: Tutorial process ‘Evaluating an attribute selection scheme’.

are 60examples, uniquely identifiedby the id attribute. There are6attributes in theExampleSet.
The Wrapper-X-Validation operator is applied on this ExampleSet for evaluating an attribute
selection scheme. The scheme to be evaluated is placed in the Attribute Weighting subprocess
of the Wrapper-X-Validation operator. The Optimize Selection operator is used in this Example
Process. Its subprocess is not discussed here for the sake of simplicity.
Have a look at the parameters of the Wrapper-X-Validation operator. The number of valida-

tions parameter is set to 6 and the sampling type parameter is set to ‘linear sampling’. Thus the
given ExampleSet will be broken into 6 subsets linearly (i.e. each subset will have consecutive
examples). The Wrapper-X-Validation operator will have 6 iterations. In every iteration 5 out
of 6 subsets will serve as the training data set and the remaining subset will serve as the testing
subset.
The following steps are followed in every iteration: TheAttributeWeighting subprocess trains

an attribute selection scheme using the training data set. The Model Building subprocess re-
ceives the training data set but with only those attributes that had non-zero weight in the re-
sultant weights vector of the first subprocess. A model is trained using this data set.The Model
Evaluation subprocess tests thismodel on the testing data set and delivers a performance vector.
Breakpoints are inserted at the followingplaces in theprocess: Before theAttributeWeighting

subprocess so that you can see the trainingdata set of the iteration.After theAttributeWeighting
subprocess so that youcan see theattributeweights vector.Before theModelBuilding subprocess
so that you can see the training data set (without attributes that had 0 weight) that will be used
for training the model.Before the Model Evaluation subprocess so that you can see the testing
data set of the iteration.
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6.1 Performance
Combine Performances

Performance

per per
This operator takes a performance vector as input and returns a
performance vector containing the weighted fitness value of the
specified criteria.

Description
This Combine Performances operator takes a performance vector as input and returns a perfor-
mance vector containing theweightedfitness value of the specified criteria. The user can specify
the weights of different criteria. This operator takes the weighted average of the values of the
specified criteria. It should be noted that some criteria values are considered positive by this
operator e.g. accuracy. On the other hand some criteria values (usually error related) are con-
sidered negative by this operator e.g. relative error. Please study the attached Example Process
for better understanding of this operator.

Input Ports
performance (per) This port expects a performance vector. A performance vector is a list of

performance criteria values.

Output Ports
performance (per) The performance vector containing the weighted fitness value of the spec-

ified criteria is returned through this port.

Parameters
default weight (real) This parameter specifies the default weight for all criteria that are not

assigned a weight through the criteria weights parameter.

criteria weights (list) Differentperformancecriteria canbeassigneddifferentweights through
thisparameter. The criteria that arenot assignedaweight through thisparameterwill have
the default weight (i.e. specified by the default weight parameter).

Tutorial Processes

Introduction to the Combine Performances operator

This Example Process startswith the Subprocess operator. The subprocess is used for generating
a sample performance vector. Therefore it is not necessary to understand the operators in the
subprocess. A breakpoint is inserted after the Subprocess operator so that you can have a look
at the performance vector. The performance vector has the following criteria values:
Accuracy: 0.250Absolute error: 0.750Root mean squared error: 0.866 It is important to note

that the accuracy is considered positive and the remaining two criteria are considered negative
in the calculations by the Combine Performances operator.
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Figure 6.8: Tutorial process ‘Introduction to the Combine Performances operator’.

The Combine Performances operator is applied on this performance vector. Have a look at
the criteriaweightsparameter of theCombinePerformancesoperator. The followingweights are
assigned to criteria: Accuracy: 2.0Absolute error: 1.0Rootmeansquarederror: 0.0Theweighted
fitness value is calculated by multiplying the weight with the corresponding value and finally
averaging the results. In this case the following calculation is performed: (2(0.250) + 1(-0.750)
+ 0(0.866)) / 3= (0.500 - 0.750 + 0.000) / 3= -0.083
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Extract Performance

Performance

exa per

exa

This operator can be used for deriving a performance measure (in
form of a performance vector) from the given ExampleSet.

Description

This operator can be used for generating a performance vector from the properties of the given
ExampleSet. This includes properties like the number of examples or number of attributes of
the input ExampleSet. Specific data value of the input ExampleSet can also be used as the value
of the performance vector. Various statistical properties of the input ExampleSet e.g. average,
min or max value of an attribute can also be used as the value of the performance vector. All
these options can be understood by studying the parameters and the attached Example Process.

Input Ports

example set (exa) This input port expects an ExampleSet. The performance vector value will
be extracted from this ExampleSet.

Output Ports

performance (per) This port delivers a performance vector. A performance vector is a list of
performance criteria values.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators.

Parameters

performance type (selection) Thisparameter indicates theway the inputExampleSet should
be used to define the performance vector.

• number_of_examples If this option is selected, the performance vector value is set
to the total number of examples in the input ExampleSet.

• number_of_attributes If this option is selected, the performance vector value is set
to the total number of attributes in the input ExampleSet.

• data_value If this option is selected, the performance vector value is set to the value
of the specified attribute at the specified index. The attribute is specified using the
attributenameparameter and the index is specifiedusing the example indexparameter.

• statistics If this option is selected, the performance vector value is set to the value
obtained by applying the selected statistical operation on the specified attribute. The
attribute is specified using the attribute name parameter and the statistical operation
is selected using the statistics parameter.
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statistics (selection) This parameter is only available when the performance type parameter is
set to ‘statistics’. This parameter allows you to select the statistical operation to be applied
on the attribute specified by the attribute name parameter.

attribute name (string) This parameter is only available when the performance type param-
eter is set to ‘statistics’ or ‘data value’. This parameter allows you to select the required
attribute.

attribute value (string) This parameter is only available when the performance type param-
eter is set to ‘statistics’ and the statistics parameter is set to ‘count’. This parameter is
used for specifying a particular value of the specified attribute. The performance vector
value will be set to the number of occurrences of this value in the specified attribute. The
attribute is specified by the attribute name parameter.

example index (integer) This parameter is only available when the performance type param-
eter is set to ‘data value’. This parameter allows you to select the index of the required
example of the attribute specified by the attribute name parameter.

optimization direction (selection) Thisparameter indicates if theperformancevalue should
be minimized or maximized.

Tutorial Processes

Introduction to the Extract Performance operator
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Figure 6.9: Tutorial process ‘Introduction to the Extract Performance operator’.

This is a very basic process that demonstrates the use of the Extract Performance operator.
The ‘Golf’ data set is loaded using the Retrieve operator. The Extract Performance operator is
applied on it. The performance type parameter is set to ‘statistics’, the statistics parameter is
set to ‘average’ and the attribute name parameter is set to ‘Temperature’. Thus the value of the
resultant performance vector will be the average of values of the Temperature attribute. The
average of the Temperature attribute in all 14 examples of the ‘Golf’ data set is 73.571. The
resultant performance vector and the ‘Golf’ data set can be seen in the Results Workspace. You
can see that the value of the performance vector is 73.571.
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Performance

Performance

lab

per

per

exa

This operator is used for performance evaluation. It delivers a list
of performance criteria values. These performance criteria are au-
tomatically determined in order to fit the learning task type.

Description

In contrast to the other performance evaluation operators like the Performance (Classification)
operator, the Performance (Binominal Classification) operator or the Performance (Regression)
operator, this operator canbeused for all typesof learning tasks. It automatically determines the
learning task type and calculates themost common criteria for that type. Formore sophisticated
performance calculations, you shoulduse theoperatorsmentionedabove. If noneof themmeets
your requirements, you can use Performance (User-Based) operator which allows you to write
your own performance measure.
The following criteria are added for binominal classification tasks:

• Accuracy

• Precision

• Recall

• AUC (optimistic)

• AUC (neutral)

• AUC (pessimistic)

The following criteria are added for polynominal classification tasks:

• Accuracy

• Kappa statistic

The following criteria are added for regression tasks:

• Root Mean Squared Error

• Mean Squared Error

Input Ports

labelled data (lab) This input port expects a labelled ExampleSet. The Apply Model operator
for example provides labeled data. Make sure that the ExampleSet has a label attribute and
a prediction attribute. See the Set Role operator for more details.

performance (per) This is an optional parameter. It requires a Performance Vector.

763



6. Validation

Output Ports
performance (per) This port delivers a Performance Vector (we call it output-performance-

vector fornow). ThePerformanceVector is a list ofperformancecriteria values. Theoutput-
performance-vector contains performance criteria calculated by this Performance oper-
ator (we call it calculated-performance-vector here). If a Performance Vector was also
fed at the input port (we call it input-performance-vector here), the criteria of the input-
performance-vectorarealsoadded in theoutput-performance-vector. If the input-performance-
vector and the calculated-performance-vector both have the same criteria but with dif-
ferent values, the values of the calculated-performance-vector are delivered through the
output port. This concept can be easily understood by studying the attached Example Pro-
cess.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
use example weights (boolean) This parameter allows example weights to be used for per-

formance calculations if possible. This parameter has no effect if no attribute has weight
role. Inorder to considerweightsof examples theExampleSet shouldhaveanattributewith
weight role. Several operators are available that assign weights e.g. the Generate Weights
operator. Please study the Set Roles operator for more information regardingweight roles.

Tutorial Processes

Assessing the performance of a prediction
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Figure 6.10: Tutorial process ‘Assessing the performance of a prediction’.

This process is composed of two Subprocess operators and one Performance operator. Double
click on the first Subprocess operator and you will see the operators within this subprocess. The
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first subprocess ‘Subprocess (labeled data provider)’ loads the ‘Golf’ data set using the Retrieve
operator and then learns a classificationmodel using the k-NN operator. Then the learnt model
is applied on the ‘Golf-Testset’ data set using the Apply Model operator. Then Generate Weight
operator is used to add an attribute with weight role. Thus, this subprocess provides a labeled
ExampleSet with a weight attribute. A breakpoint is inserted after this subprocess to show this
ExampleSet. It is provided at the labeled data input port of thePerformance operator in themain
process.
The second Subprocess operator ‘Subprocess (performance vector provider)’ loads the ‘Golf’

data set using the Retrieve operator and then learns a classification model using the k-NN op-
erator. Then the learnt model is applied on the ‘Golf’ data set using the Apply Model operator.
Then the Performance (Classification) operator is applied on the labeled data to produce a Per-
formanceVector. A breakpoint is inserted after this subprocess to show this PerformanceVector.
Note that this model was trained and tested on the same data set (’Golf’ data set), so its accu-
racy is 100%. Thus this subprocess provides a PerformanceVectorwith 100%accuracy and0.00%
classification error. This Performance Vector is connected to the performance input port of the
Performance operator in the main process.
When you run the process, first you will see an ExampleSet which is output of the first Sub-

process operator. Press the Run button again and you will see a Performance Vector. This is the
output of the second Subprocess operator. Press the Run button again and you will see various
criteria in the criterion selector window in the Results Workspace. These include classification
error, accuracy, precision, recall, AUC (optimistic), AUC and AUC (pessimistic). Now select ac-
curacy from the criterion selector window, its value is 71.43%. On the contrary the accuracy of
the input Performance Vector provided by the second subprocess was 100%. The accuracy of
the final Performance Vector is 71.43% instead of 100% because if the input Performance Vector
and the calculated Performance Vector both have the same criteria but with different values, the
values of the calculated Performance Vector are delivered through the output port. Now, note
that the classification error criterion is added to the criteria list because of the Performance Vec-
tor provided at the performance input port. Disable the second Subprocess operator and run the
same process again, you will see that the classification error criterion does not appear now. This
is because if a Performance Vector is fed at the performance input port, its criteria are also added
to the output Performance Vector.
Accuracy is calculated by taking the percentage of correct predictions over the total number

of examples. Correct prediction means examples where the value of the prediction attribute is
equal to the value of the label attribute. If you look at the ExampleSet in the ResultsWorkspace,
you can see that there are 14 examples in this data set. 10 out of 14 examples are correct pre-
dictions i.e. their label and prediction attributes have the same values. This is why the accuracy
was 71.43% (10 x 100 /14 = 71.43%). Now run the same process again but this time set the use
example weights parameter to true. Check the results again. They have changed now because
the weight of each example was taken into account this time. The accuracy is 68.89% this time.
If you take the percentage of the weight of the correct predictions and the total weight you get
the same answer (0.6889 x 100/1 = 68.89%). In this Example Process, using weights reduced the
accuracy but this is not always the case.
Note: This Example Process is just for highlighting different perspectives of the Performance

operator. It may not be very useful in real scenarios.
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Performance (Min-Max)

Performance

per per
This operator takes a performance vector and puts all criteria into
a min-max criterion which delivers the minimum instead of the
average or arbitrary weighted combinations.

Description

The Performance (Min-Max) operator wraps a min-max criterion around each performance cri-
terionof thegivenperformancevector. This criterionuses theminimumfitness achieved instead
of the average fitness or arbitrary weightings. Please note that the average values stay the same
and only the fitness values change.

Input Ports

performance (per) This input port expects a performance vector. A performance vector is a
list of performance criteria values.

Output Ports

performance (per) The resultant performance vector is returned through this port.

Parameters

minimum weight (real) This parameter defines the weight for the minimum fitness against
the average fitness.

Tutorial Processes

Introduction to the Performance (Min-Max) operator

Process

Subprocess

in ou t

ou t

Performance

per perinp res

res

Figure 6.11: Tutorial process ‘Introduction to the Performance (Min-Max) operator’.
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This Example Process starts with the Subprocess operator. The subprocess delivers a perfor-
mance vector. A breakpoint is inserted here so that you can have a look at the performance
vector. This performance vector is provided as input to the Performance (Min-Max) operator
which wraps a min-max criterion around each performance criterion of the given performance
vector. The resultant performance vector can be seen in the Results Workspace.
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Performance to Data

Performance to . . .

per exa

per

This operator is used to convert a performance vector as produced
by a Performance operator into an example set.

Description
The operator creates an example set which contains one row for each performance criterion in
the input data and a set of columns: the Criterion column contains the name of the criterion
whereas Value, Standard Deviation and Variance list the value and the statistical properties of
it.

Input Ports
performance vector (per) This port expects a Performance Vector. It is the output of the Val-

idation operator in the attached Example Process. The output of other Performance oper-
ators can also be used as input.

Output Ports
example set (exa) TheExampleSetwhich results from the conversionof thePerformanceVec-

tor.

performance vector (per) The performance vector that was given as input is passed without
changing to the output through this port. This is usually used to reuse the same perfor-
mance vector in further operators or to view it in the Results Workspace.

Tutorial Processes

Assessing the performance of a prediction

This process is composed from three parts: a Retrieve operator which retrieves the Sonar exam-
ple data set, a Cross Validation operator which evaluates a simple Naive Bayes model, and the
Performance to Data operator.
The performance to data operator simply converts the performance vector which is output

from the Cross Validation operator into an ExampleSet. You can see this ExampleSet and the
original Performance Vector in the Result view.

768



6.1. Performance

Process

Retr ieve

out

Cross Validation

exa mod

exa

tes

per

per

Performance to . . .

per exa

per

inp res

res

Figure 6.12: Tutorial process ‘Assessing the performance of a prediction’.

6.1.1 Predictive
Performance (Attribute Count)

Performance

exa

per

per

exa

This operator creates a performance vector containing the at-
tribute count of the input ExampleSet.

Description
This is a very simple operator. It takes an ExampleSet as input and returns a performance vector
that has the count of attributes in the given ExampleSet. Optionally, a performance vector can
be provided as input as well. In that case the ‘number of attributes’ criteria is appended to the
given performance vector.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Subprocess

operator in the attached Example Process.

performance (per) This optional port expects a performance vector. A performance vector is
a list of performance criteria values.

Output Ports
performance (per) The performance vector containing the ‘number of attributes’ criteria is

returned through this port.
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example set (exa) ExampleSet that was given as input is passed without any modifications to
the output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
optimization direction (selection) This is an expert parameter. It indicates if the fitness

should be maximal for the maximal or the minimal number of features.

Tutorial Processes

Generating a performance vector with the ’number of attributes’ criteria

Process

Subprocess

in ou t

ou t

ou t

Performance

exa

per

per

exa

inp res

res

Figure 6.13: Tutorial process ‘Generating a performance vector with the ’number of attributes’
criteria’.

This Example Process starts with the Subprocess operator. The subprocess delivers an Exam-
pleSet and a performance vector. A breakpoint is inserted here so that you can have a look at the
ExampleSet. You can see that the ExampleSet has four regular attributes. This ExampleSet is
provided as input to the Performance (Attribute Count) operator which returns a performance
vector with the ‘number of attributes’ criteria. As there were four attributes in the given Ex-
ampleSet, the ‘number of attributes’ criteria has value 4. Now connect the second output port
of the Subprocess operator to the performance input port of the Performance (Attribute Count)
operator. Run the process again, youwill see that this time the ‘number of attributes’ parameter
is appended to the given performance vector.
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Performance Binominal Classification

Performance

lab

per

per

exa

This Operator is used to statistically evaluate the strengths and
weaknesses of a binary classification, after a trained model has
been applied to labelled data.

Description
A binary classificationmakes predictions where the outcome has two possible values: call them
positive andnegative. Moreover, the prediction for each Examplemay be right orwrong, leading
to a 2x2 confusion matrix with 4 entries:

• TP - the number of “true positives”, positive Examples that have been correctly identified

• FP - the number of “false positives”, negative Examples that have been incorrectly iden-
tified

• FN - the number of “false negatives”, positive Examples that have been incorrectly iden-
tified

• TN - the number of “true negatives”, negative Examples that have been correctly identified

In the parameter section, numerous performance criteria are described, any of which can be
calculated in terms of the above variables.
If the model has a probabilistic scoring system where scores above a certain threshold are

identified as positive, then the elements of the confusion matrix will depend on the threshold.
To create an ROC graph and calculate the area under the curve (AUC), the threshold is varied
and a point (x, y) is plotted for each threshold value:

• y-axis - true positive rate = (True positive predictions)/(Number of positive Examples) =
TP / (TP + FN)

• x-axis - false positive rate = (False positive predictions)/(Number of negative Examples) =
FP / (FP + TN)

Differentiation
There are numerous performance Operators, and you should choose the one that is best suited
to your problem.

• Performance (Classification)
Choose this Operator when the label is nominal and it has more than two values.
See page 775 for details.

Input Ports
labeled data (lab) This input port expects a labeled ExampleSet. Make sure the ExampleSet

hasbotha labelAttribute andapredictionAttribute, and that the label is of typebinominal.

performance (per) This input port expects a performance vector. You need to connect a per-
formance vector to the input if you want to do multi-objective optimization.
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Output Ports
performance (per) This output port delivers a performance vector – a list of performance cri-

terion values based on the label and prediction Attributes of the input ExampleSet.

In the output, the performance criterion values from the input (if any) are combined with
the values from thisOperator; in case of overlap, the values from the input are overwritten.

example set (exa) TheExampleSet thatwas given as input is passed throughwithout changes.

Parameters
main criterion The main criterion is used when performance vectors are compared, e.g., pa-

rameter Optimization or Attribute selection. If not selected, the main criterion is the first
criterion in the output performance vector.

If performance vectors are not compared, the main criterion is ignored.

accuracy accuracy = (Correct predictions)/(Number of Examples) = (TP + TN) / (TP + FP + FN +
TN)

classification error classification error = (Incorrect predictions)/(Number of Examples) = (FP
+ FN) / (TP + FP + FN + TN)

kappa Cohen’s kappa = (po - pe)/(1 - pe)

where:

po = observed accuracy = (TP + TN) / (TP + FP + FN + TN)

pe = expected accuracy = [(TP + FP)(TP + FN) + (FN +TN)(FP + TN)] / [(TP + FP + FN +TN)^2]

AUC (optimistic) When the ROC graph is plotted, before calculating the area under the curve
(AUC), the predictions are sorted by score, from highest to lowest, and the graph is plotted
Example by Example. If two or more Examples have the same score, the ordering is not
well-defined; in this case, the optimistic version of AUCplots the positive Examples before
plotting the negative Examples.

AUC When the ROC graph is plotted, before calculating the area under the curve (AUC), the
predictions are sorted by score, from highest to lowest, and the graph is plotted Example
byExample. If twoormoreExamples have the same score, the ordering is notwell-defined.
The normal version of AUC calculates the area by taking the average of AUC (optimistic)
and AUC (pessimistic).

AUC (pessimistic) When the ROC graph is plotted, before calculating the area under the curve
(AUC), the predictions are sorted by score, from highest to lowest, and the graph is plot-
ted Example by Example. If two or more Examples have the same score, the ordering is
not well-defined; in this case, the pessimistic version of AUC plots the negative Examples
before plotting the positive Examples.

precision precision = (True positive predictions)/(All positive predictions) = TP / (TP + FP)

recall recall = (True positive predictions)/(Number of positive Examples) = TP / (TP + FN)

lift lift is the ratio of two quantities, representing the improvement over random sampling:

1. The probability of choosing a positive Example from the group of all positive predic-
tions: TP / (TP + FP)
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2. The probability of choosing a positive Example from the group of all Examples: (TP +
FN) / (TP + FP + FN + TN)

lift = [TP / (TP + FP)] / [(TP + FN) / (TP + FP + FN + TN)]

fallout fallout = (False positive predictions)/(Number of negative Examples) = FP / (FP + TN)

f measure F1 = 2 (precision * recall) / (precision + recall) = 2TP / (2TP + FP + FN)

false positive The number of false positive predictions: FP

false negative The number of false negative predictions: FN

true positive The number of true positive predictions: TP

true negative The number of true negative predictions: TN

sensitivity sensitivity = recall = (True positive predictions)/(Number of positive Examples) =
TP / (TP + FN)

specificity specificity = (True negative predictions)/(Number of negative Examples) = TN / (TN
+ FP)

youden Sometimes called informedness or DeltaP’.

J = sensitivity + specificity - 1

positive predictive value PPV = precision = (True positive predictions)/(All positive predic-
tions) = TP / (TP + FP)

negative predictive value NPV = (True negative predictions)/(All negative predictions) = TN
/ (TN + FN)

psep Sometimes called markedness or DeltaP.

psep = PPV + NPV - 1

skip undefined labels When this parameter is true, Examples not belonging to a defined class
are ignored.

comparator class The fully qualified classname of the PerformanceComparator implementa-
tion is specified here.

use example weights This parameter has no effect if no Attribute has the weight role.

Tutorial Processes

Separate mines from rocks

The Sonar data set contains 111 Examples obtained by bouncing sonar signals off a metal cylin-
der (a “mine”) at various angles and under various conditions, and 97 Examples obtained from
rocks under similar conditions. The transmitted sonar signal is a frequency-modulated chirp,
rising in frequency. The data set contains signals obtained from a variety of different aspect
angles, spanning 90 degrees for the cylinder and 180 degrees for the rock.
Each Example has 60 Attributes in the range 0.0 to 1.0. Each Attribute represents the energy

within a particular frequency band, integrated over a certain period of time. The integration
aperture for higher frequencies occur later in time, since these frequencies are transmitted later
during the chirp.
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Process

Retrieve Sonar

out

Nominal to Bino.. .

exa exa

ori

pre

Spli t  Data
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lab
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Performance
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per

per

exa

inp res
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Figure 6.14: Tutorial process ‘Separate mines from rocks’.

In the first Tutorial Process, a predictivemodel is created to identifymines, based on the sonar
signal. When you run the Process, the output is displayed in three steps:
1. The whole Sonar data set is displayed.
2. A subset of the Sonar data set is displayed, with predictions based on Neural Net.
3. AnROCgraph is displayed in red, togetherwith the threshold values in blue. To see the con-

fusionmatrix, click on “recall” or “false negative”, where youwill learn that themodel discovers
90% of the mines, with 4 false negatives (mines that were identified as rocks).
Because the input of the Operator Performance (Binominal Classification) demands labelled

data of type “binominal”, the label for theoriginal Sonar datamustfirst be converted from“nom-
inal” to “binominal” via the Operator Nominal to Binominal. This type conversion step is un-
necessary if the final Operator is Performance (Classification), which accepts a nominal label as
input.

Separate mines from rocks, with Cross Validation

Amore realistic perspective onmine discovery is achieved byusingCrossValidation. The second
Tutorial Process is similar to the first Tutorial Process, but now 5 different versions of theNeural
Net model are created, and the results are combined. The Operator Cross Validation takes the
place of Split Data, and Performance (Binominal Classification) is part of the testing subprocess.
The output is again an ROC graph, but this time the lines on the graph have a spread which

reflects theuncertainty inmodel building. If you click on “recall” to look at the confusionmatrix,
you will learn that the resultant model discovers 82% +/- 8% of the mines.
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Figure 6.15: Tutorial process ‘Separate mines from rocks, with Cross Validation’.

Performance (Classification)

Performance
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This operator is used for statistical performance evaluationof clas-
sification tasks. This operator delivers a list of performance crite-
ria values of the classification task.

Description
This operator should be used for performance evaluation of only classification tasks. Many other
performance evaluation operators are also available in RapidMiner e.g. Performance operator,
Performance (Binominal Classification) operator, Performance (Regression) operator etc. The
Performance (Classification) operator is used with classification tasks only. On the other hand,
the Performance operator automatically determines the learning task type and calculates the
most common criteria for that type. You can use the Performance (User-Based) operator if you
want to write your own performance measure.
Classification is a technique used to predict group membership for data instances. For ex-

ample, you may wish to use classification to predict whether the train on a particular day will
be ‘on time’, ‘late’ or ‘very late’. Predicting whether a number of people on a particular event
would be ‘below- average’, ‘average’ or ‘above-average’ is another example. For evaluating the
statistical performance of a classificationmodel the data set should be labeled i.e. it should have
an attribute with label role and an attribute with prediction role. The label attribute stores the
actual observed values whereas the prediction attribute stores the values of label predicted by
the classification model under discussion.
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Input Ports

labeled data (lab) This input port expects a labeled ExampleSet. The ApplyModel operator is
a goodexampleof suchoperators that provide labeleddata. Make sure that theExampleSet
has a label attribute and a prediction attribute. See the Set Role operator for more details
regarding label and prediction roles of attributes.

performance (per) This is an optional parameter. It requires a Performance Vector.

Output Ports

performance (per) ThisportdeliversaPerformanceVector (wecall itoutput-performance-vector
for now). The PerformanceVector is a list of performance criteria values. The Performance
vector is calculated on the basis of the label attribute and the prediction attribute of the in-
put ExampleSet. The output-performance-vector contains performance criteria calculated
by this Performance operator (we call it calculated-performance-vector here). If a Perfor-
manceVectorwas also fed at theperformance inputport (we call it input-performance-vector
here), criteria of the input-performance-vector are also added in the output-performance-
vector. If the input-performance-vector and the calculated-performance-vectorbothhave the
same criteria but with different values, the values of calculated-performance-vector are de-
livered through the output port. This concept can be easily understood by studying the
attached Example Process.

example set (exa) ExampleSet that was given as input is passed without changing to the out-
put through this port. This is usually used to reuse the same ExampleSet in further oper-
ators or to view the ExampleSet in the Results Workspace.

Parameters

main criterion The main criterion is used for comparisons and needs to be specified only for
processes where performance vectors are compared, e.g. attribute selection or other meta
optimization process setups. If no main criterion is selected, the first criterion in the re-
sulting performance vector will be assumed to be the main criterion.

accuracy (boolean) Relative number of correctly classified examples or in other words per-
centage of correct predictions

classification error (boolean) Relative number of misclassified examples or in other words
percentage of incorrect predictions.

kappa (boolean) Thekappa statistics for the classification. It is generally thought tobeamore
robust measure than simple percentage correct prediction calculation since it takes into
account the correct prediction occurring by chance.

weighted mean recall (boolean) Theweightedmean of all per class recallmeasurements. It
is calculated through class recalls for individual classes. Class recalls arementioned in the
last row of the matrix displayed in the Results Workspace.

weighted mean precision (boolean) The weightedmean of all per class precisionmeasure-
ments. It is calculated through class precisions for individual classes. Class precisions are
mentioned in the last column of the matrix displayed in the Results Workspace.
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spearman rho (boolean) The rank correlation between the actual and predicted labels, us-
ing Spearman’s rho. Spearman’s rho is a measure of the linear relationship between two
variables. The two variables in this case are label attribute and prediction attribute.

kendall tau (boolean) The rank correlation between the actual and predicted labels, using
Kendall’s tau. Kendall’s tau is ameasure of correlation, and someasures the strengthof the
relationship between two variables. The two variables in this case are the label attribute
and the prediction attribute.

absolute error (boolean) Average absolute deviation of the prediction from the actual value.
The values of the label attribute are the actual values.

relative error (boolean) Average relative error is the average of the absolute deviation of the
prediction from the actual value divided by the actual value. The values of the label at-
tribute are the actual values.

relative error lenient (boolean) Average lenient relative error is the average of the absolute
deviation of the prediction from the actual value divided by the maximum of the actual
value and the prediction. The values of the label attribute are the actual values.

relative error strict (boolean) Average strict relative error is the average of the absolute de-
viation of the prediction from the actual value divided by theminimum of the actual value
and the prediction. The values of the label attribute are the actual values.

normalized absolute error (boolean) The absolute error divided by the errormade if the av-
erage would have been predicted.

root mean squared error (boolean) The averaged root-mean-squared error.

root relative squared error (boolean) The averaged root-relative-squared error.

squared error (boolean) The averaged squared error.

correlation (boolean) Returns the correlation coefficient between the label and prediction at-
tributes.

squared correlation (boolean) Returns the squared correlation coefficient between the label
and prediction attributes.

cross entropy (boolean) The cross-entropy of a classifier, defined as the sum over the loga-
rithms of the true label’s confidences divided by the number of examples.

margin (boolean) Themargin of a classifier, defined as theminimal confidence for the correct
label.

soft margin loss (boolean) The average softmargin loss of a classifier, defined as the average
of all 1 - confidences for the correct label

logistic loss (boolean) The logistic loss of a classifier, defined as the average of ln(1+exp(-
[conf(CC)])) where ‘conf(CC)’ is the confidence of the correct class.

skip undefined labels (boolean) If set to true, examples with undefined labels are skipped.

comparator class (string) This is an expert parameter. The fully qualified classname of the
PerformanceComparator implementation is specified here.
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use example weights (boolean) This parameter allows example weights to be used for sta-
tistical performance calculations if possible. This parameter has no effect if no attribute
has weight role. In order to consider weights of examples the ExampleSet should have an
attribute with weight role. Several operators are available that assign weights e.g. Gener-
ate Weights operator. Study the Set Roles operator for more information regarding weight
role.

class weights This is an expert parameter. It specifies the weights ‘w’ for all classes. The Edit
List button opens a new window with two columns. The first column specifies the class
name and the second column specifies the weight for that class. If the weight of a class is
not specified, that class is assigned weight = 1.

Tutorial Processes

Use of performance port in Performance (Classification)

Process

Subprocess (labe.. .

in ou t

ou t

Subprocess (perf. . .

in ou t

ou t

Performance (Cl. . .

lab

per

per

exa

inp

res

res

res

Figure 6.16: Tutorial process ‘Use of performance port in Performance (Classification)’.

This Example Process is composed of two Subprocess operators and one Performance (Classi-
fication) operator. Double click on the first Subprocess operator and you will see the operators
within this subprocess. The first subprocess ‘Subprocess (labeled data provider)’ loads the ‘Golf’
data set using theRetrieve operator and then learns a classificationmodel using the k-NNopera-
tor. Then the learnedmodel is applied on ‘Golf-Testset’ data set using theApplyModel operator.
Then the Generate Weight operator is used to add an attribute with weight role. Thus, this sub-
process provides a labeled ExampleSet with weight attribute. The Breakpoint is inserted after
this subprocess to show this ExampleSet. This ExampleSet is provided at the labeled data input
port of the Performance (Classification) operator in the main process.
The second Subprocess operator ‘ Subprocess (performance vector provider) ‘ loads the’ Golf

‘ data set using the Retrieve operator and then learns a classification model using the k-NN op-
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erator. Then the learned model is applied on the’ Golf’ data set using the Apply Model opera-
tor. Then the Performance (Classification) operator is applied on the labeled data to produce a
Performance Vector. The Breakpoint is inserted after this subprocess to show this Performance
Vector. Note that this model was trained and tested on the same data set (Golf data set), so its
accuracy is 100%. Thus this subprocess provides a Performance Vector with 100% accuracy and
0.00% classification error. This Performance Vector is connected to the performance input port
of the Performance (Classification) operator in the main process.
When you run the process, first youwill see an ExampleSetwhich is the output of the first Sub-

process operator. Press the Run button again and now you will see a Performance Vector. This
is the output of the second Subprocess operator. Press the Run button again and you will see
various criteria in the criterion selector window in the Results Workspace. These include clas-
sification error, accuracy, weighted mean recall and weighted mean precision. Now select the
accuracy from the criterion selector window, its value is 71.43%. On the contrary the accuracy of
the input Performance Vector provided by the second subprocess was 100%. The accuracy of the
final PerformanceVector is 71.43% instead of 100%because if the input-performance-vector and
the calculated-performance-vector both have same criteria but with different values, the values
of the calculated-performance -vector are delivered through the output port. Now, note that
the classification error criterion is added to the criteria list because of the Performance Vector
provided at the performance input port. Disable the second Subprocess operator and run the
same process again, you will see that classification error criterion does not appear now. This is
because if a Performance Vector is fed at the performance input port, its criteria are also added
to the output-performance-vector.
The accuracy is calculated by taking the percentage of correct predictions over the total num-

ber of examples. Correct prediction means the examples where the value of the prediction at-
tribute is equal to the value of label attribute. If you look at the ExampleSet in the Results
Workspace, you can see that there are 14 examples in this data set. 10 out of 14 examples are
correct predictions i.e. their label and prediction attributes have the same values. This is why
accuracy was 71.43% (10 x 100 /14 = 71.43%). Now run the same process again but this time
set use example weights parameter to true. Check the results again. They have changed now
because the weight of each example was taken into account this time. The accuracy is 68.89%
this time. If you take the percentage of weight of correct predictions and the total weight you
get the same answer (0.6889 x 100/1 = 68.89%). In this Example Process, using weights reduced
the accuracy but this is not always the case.
The weighted mean recall is calculated by taking the average of recall of every class. As you

can see in the last row of the resultant matrix in the Results Workspace, class recall for ‘true no’
is 60% and class recall for ‘true yes’ is 77.78%. Thus weightedmean recall is calculated by taking
the average of these class recall values (((77.78%)+(60%))/2=68.89%).
Theweightedmeanprecision is calculated by taking the average of precision of every class. As

you can see in the last column of the resultant matrix in the Results Workspace, class precision
for ‘pred. no’ is 60% and class precision for ‘pred. yes’ is 77.78%. Thus weightedmean precision
is calculated by taking the average of these class precision values (((77.78%)+(60%))/2=68.89%).
These values are for the case when the use example weights parameter is set to false.
Note: ThisExampleProcess is just forhighlightingdifferentperspectivesofPerformance (Clas-

sification) operator. It may not be very useful in real scenarios.
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Performance (Costs)

Performance

exa exa
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This operator provides the ability to evaluate misclassification
costs for performance evaluation of classification tasks.

Description
The Performance (Costs) operator provides the ability to evaluatemisclassification costs. A cost
matrix should be specified through the costmatrix parameter. The costmatrix is similar in struc-
ture to a confusion matrix because it has predicted classes in one dimension and actual classes
on the other dimension. Therefore the cost matrix can denote the costs for every possible clas-
sification outcome: predicted label vs. actual label. Actually thismatrix is amatrix ofmisclassi-
fication costs because you can specify different weights for certain classes misclassified as other
classes. Weights can also be assigned to correct classifications but they are not taken into ac-
count for evaluating misclassification costs. The classes in the matrix are labeled as Class 1,
Class 2 etc where classes are numbered according to their order in the internal mapping. The
class order definition parameter allows you to specify the class order for the matrix in which case
classes are ordered according to the order specified in this parameter (instead of internal map-
pings). For a better understanding of this operator please study the attached Example Process.

Input Ports
example set (exa) This input port expects a labeled ExampleSet. The ApplyModel operator is

a goodexampleof suchoperators that provide labeleddata. Make sure that theExampleSet
has label and prediction attributes. Please see the Set Role operator for more details about
attribute roles.

Output Ports
example set (exa) The ExampleSet that was given as input is passed without changing to the

output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

performance (per) This port delivers a Performance Vector which has information about the
misclassification costs.

Parameters
cost matrix (string) This parameter is used for specifying the cost matrix. The cost matrix is

similar in structure to a confusion matrix because it has predicted classes in one dimen-
sion and actual classes on the other dimension. Therefore the cost matrix can denote the
costs for every possible classification outcome: predicted label vs. actual label. Actually
this matrix is a matrix of misclassification costs because you can specify different weights
for certain classes misclassified as other classes. Weights can also be assigned to correct
classifications but they are not taken into account for evaluating misclassification costs.
The classes in the matrix are labeled as Class 1, Class 2 etc where classes are numbered
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according to their order in the internal mapping. The class order definition parameter can
be used for specifying the class order for the matrix (instead of internal mappings).

class order definition (enumeration) The class orderdefinitionparameterallowsyou tospec-
ify the class order for the cost matrix in which case classes are ordered according to the
order specified in this parameter (instead of internal mappings).

Tutorial Processes

Measuring Misclassification costs of a classifier
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inp res
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Figure 6.17: Tutorial process ‘Measuring Misclassification costs of a classifier’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-
plied on it for training and testing a classification model. The Naive Bayes operator is applied
in the training subprocess of the Split Validation operator. The Naive Bayes operator trains a
classification model. The Apply Model operator is used in the testing subprocess to apply this
model. A breakpoint is inserted here so that you can have a look at the labeled ExampleSet. As
you can see, out of 4 examples of the testing data set only 1 has been misclassified. The mis-
classified example was classified as ‘class = yes’ while actually it was ‘class = no’.
The resultant labeled ExampleSet is used by the Performance (Costs) operator for measur-

ing the misclassification costs of the model. Have a look at the parameters of the Performance
(Costs) operator. The class order definition parameter specifies the order of classes in the cost
matrix. The classes ‘yes’ and ‘no’ are placed in first and second rows respectively. Thus class
‘yes’ is Class 1 and class ‘no’ is Class 2 in the cost matrix. Now have a look at the cost matrix in
the cost matrix parameter. The case where Class 2 (i.e. class = no) is misclassified as Class 1 (i.e.
class = yes) has been given weight 2.0. The case where Class 1 (i.e. class = yes) is misclassified
as Class 2 (i.e. class = no) has been given weight 1.0.
Now let us see how this costmatrix is used for evaluatingmisclassification costs of the labeled

ExampleSet. As 1 of the 4 classifications was wrong, one should expect the classification cost to
be 1/4 or 0.250. But as this misclassification has weight 2.0 (because class = no is misclassified
as class = yes) instead of 1.0 the cost for this misclassification is doubled. Therefore the cost in
this case is 0.500. The misclassification cost can be seen in the Results Workspace.
Now set the sampling type parameter of the Split Validation operator to ‘linear sampling’ and

run the process again. Have a look at the labeled ExampleSet generated by the Apply Model
operator. 2 out of 4 examples have been misclassified. One example with class = no has been
misclassified as class = yes (i.e. weight = 2.0) and one example with class = yes has been mis-
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classified as class = no (i.e. weight = 1.0). The resultant misclassification cost is ((1 x 1.0)+(1 x
2.0))/4 which results to 0.750. The misclassification cost can be seen in the Results Workspace.
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Performance (Ranking)

Performance

exa exa

per

This operator delivers a performance value representing costs for
the confidence rank of the true label.

Description
The Performance (Ranking) operator should be used for tasks, where it is not only important
that the real class is selected, but also that it receives a comparably high confidence.
This operator will sort the confidences for each label and depending on the rank position of

the real label, costs are generated. You can define these costs by the parameter ranking_costs.
The costs are entered for whole intervals, so you don’t have to enter a cost value for each rank.
These intervals are defined by their start rank and range either until the start of the next interval
or infinite. Everything before the first mentioned rank will receive costs of 0. The counting of
rank starts with 0, so the most confident label is rank 0.
The costs are entered on the right side of the table.
For example, if you want to assign costs of zero if the true label is predicted with the highest

confidence, 1 for the second place, 2 for the third and 10 for each following, you have to enter:
1 1
2 2
3 10

Input Ports
labeled data (lab) This input port expects a labeled ExampleSet. The ApplyModel operator is

a goodexampleof suchoperators that provide labeleddata. Make sure that theExampleSet
has a label attribute and a prediction attribute. See the Set Role operator for more details
regarding label and prediction roles of attributes.

Output Ports
example set (exa) ExampleSet that was given as input is passedwithout change to this output

port. This is usually used to reuse the same ExampleSet in further operators or to view the
ExampleSet in the Results Workspace.

performance (per) Thisportdelivers aPerformanceVector (wecall itoutput-performance-vector
for now). The PerformanceVector is a list of performance criteria values. The Performance
vector is calculated on the basis of the label attribute and the prediction attribute of the in-
put ExampleSet. The output-performance-vector contains performance criteria calculated
by this Performance operator (we call it calculated-performance-vector here). If a Perfor-
manceVectorwas also fed at theperformance inputport (we call it input-performance-vector
here), criteria of the input-performance-vector are also added in the output-performance-
vector. If the input-performance-vector and the calculated-performance-vectorbothhave the
same criteria but with different values, the values of calculated-performance-vector are de-
livered through the output port. This concept can be easily understood by studying the
attached Example Process.
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Parameters
ranking costs (list) Table defining the costs when the real label isn’t the one with the highest

confidence

Tutorial Processes

Applying the Performance (Ranking) operator on the Golf data set

Process

Retrieve Golf

out

Retrieve Golf-Te.. .

out

Decision Tree

t ra mod

exa

wei

Apply Model

mod

unl

lab

mod

Performance

exa exa

per

inp res

res

Figure 6.18: Tutorial process ‘Applying thePerformance (Ranking) operator on theGolf data set’.

The ‘Golf’ data set is loaded using theRetrieve operator. TheDecisionTree operator is applied
on it with default values for all parameters. The Tree model generated by the Decision Tree
operator is applied on the ‘Golf-Testset’ data set using the Apply Model operator. Labeled data
from the Apply Model operator is provided to the Performance (Ranking) operator. The ranking
costsparameter is configuredasdescribedabove. As result youcan see the costs of theprediction
made by the Apply Model operator.
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Performance (Regression)

Performance

lab

per

per

exa

This operator is used for statistical performance evaluation of re-
gression tasks and delivers a list of performance criteria values of
the regression task.

Description
This operator should be used for performance evaluation of regression tasks only. Many other
performance evaluation operators are also available in RapidMiner e.g. the Performance opera-
tor, Performance (Binominal Classification) operator, Performance (Classification) operator etc.
The Performance (Regression) operator is used with regression tasks only. On the other hand,
the Performance operator automatically determines the learning task type and calculates the
most common criteria for that type. You can use the Performance (User-Based) operator if you
want to write your own performance measure.
Regression is a technique used for numerical prediction and it is a statistical measure that

attempts to determine the strength of the relationship between one dependent variable ( i.e.
the label attribute) and a series of other changing variables known as independent variables
(regular attributes). Just like Classification is used for predicting categorical labels, Regression
is used for predicting a continuous value. For example, we may wish to predict the salary of
university graduates with 5 years of work experience, or the potential sales of a new product
given its price. Regression is often used to determine howmuch specific factors such as the price
of a commodity, interest rates, particular industries or sectors influence the price movement of
an asset. For evaluating the statistical performance of a regression model the data set should
be labeled i.e. it should have an attribute with label role and an attribute with prediction role.
The label attribute stores the actual observed values whereas the prediction attribute stores the
values of label predicted by the regression model under discussion.

Input Ports
labeled data (lab) This input port expects a labeled ExampleSet. The ApplyModel operator is

a goodexampleof suchoperators that provide labeleddata. Make sure that theExampleSet
has the label and prediction attribute. See the Set Role operator for more details regarding
the label and prediction roles of attributes.

performance (per) This is an optional parameter. It requires a Performance Vector.

Output Ports
performance (per) Thisportdelivers aPerformanceVector (wecall itoutput-performance-vector

for now). The PerformanceVector is a list of performance criteria values. The Performance
vector is calculated on the basis of the label and prediction attribute of the input Example-
Set. The output-performance-vector contains performance criteria calculated by this Per-
formance operator (we call it calculated-performance-vector here). If a Performance Vector
was also fed at the performance input port (we call it input-performance-vector here), the
criteria of the input-performance-vector are also added in the output-performance-vector.
If the input-performance-vector and the calculated-performance-vector both have the same
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criteria but with different values, the values of the calculated-performance-vector are de-
livered through the output port. This concept can be easily understood by studying the
Example Process of the Performance (Classification) operator.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
main criterion The main criterion is used for comparisons and needs to be specified only for

processes where performance vectors are compared, e.g. attribute selection or other meta
optimization process setups. If no main criterion is selected, the first criterion in the re-
sulting performance vector will be assumed to be the main criterion.

root mean squared error (boolean) The averaged root-mean-squared error.

absolute error (boolean) The average absolute deviation of the prediction from the actual
value. The values of the label attribute are the actual values.

relative error (boolean) The average relative error is the average of the absolute deviation of
the prediction from the actual value divided by actual value. Values of the label attribute
are the actual values.

relative error lenient (boolean) The average lenient relative error is the average of the ab-
solute deviation of the prediction from the actual value divided by the maximum of the
actual value and the prediction. The values of the label attribute are the actual values.

relative error strict (boolean) The average strict relative error is the average of the absolute
deviation of the prediction from the actual value divided by the minimum of the actual
value and the prediction. The values of the label attribute are the actual values.

normalized absolute error (boolean) The absolute error divided by the errormade if the av-
erage would have been predicted.

root relative squared error (boolean) The averaged root-relative-squared error.

squared error (boolean) The averaged squared error.

correlation (boolean) Returns the correlation coefficient between the label and prediction at-
tributes.

squared correlation (boolean) Returns the squared correlation coefficient between the label
and prediction attributes.

prediction average (boolean) Returns the average of all the predictions. All the predicted
values are added and the sum is divided by the total number of predictions.

spearman rho (boolean) The rank correlation between the actual and predicted labels, us-
ing Spearman’s rho. Spearman’s rho is a measure of the linear relationship between two
variables. The two variables in this case are the label and the prediction attribute.

kendall tau (boolean) The rank correlation between the actual and predicted labels, using
Kendall’s tau-b. Kendall’s tau is a measure of correlation, and so measures the strength
of the relationship between two variables. The two variables in this case are the label and
the prediction attribute.
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skip undefined labels (boolean) If set to true, examples with undefined labels are skipped.

comparator class (string) This is an expert parameter. Fully qualified classname of the Per-
formanceComparator implementation is specified here.

use example weights (boolean) This parameter allows exampleweights to beused for statis-
tical performance calculations if possible. This parameter has no effect if no attribute has
the weight role. In order to consider weights of examples the ExampleSet should have an
attribute with the weight role. Several operators are available that assign weights e.g. the
Generate Weights operator. Study the Set Roles operator for more information regarding
the weight role.

Tutorial Processes

Applying the Performance (Regression) operator on the Polynomial data set

Process

Retrieve Golf

out

Retrieve Golf-Te.. .

out

Decision Tree

t ra mod

exa

wei
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exa exa
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Figure 6.19: Tutorial process ‘Applying the Performance (Regression) operator on the Polyno-
mial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Filter Example Range
operator is applied on it. The first example parameter of the Filter Example Range parameter is
set to 1 and the last example parameter is set to 100. Thus the first 100 examples of the ‘Polyno-
mial’ data set are selected. The Linear Regression operator is applied on it with default values
of all parameters. The regression model generated by the Linear Regression operator is applied
on the last 100 examples of the ‘Polynomial’ data set using the Apply Model operator. Labeled
data from the Apply Model operator is provided to the Performance (Regression) operator. The
absolute error and prediction average parameters are set to true. Thus the Performance Vector
generated by the Performance (Regression) operator has information regarding the absolute er-
ror and prediction average in the labeled data set. The absolute error is calculated by adding the
difference of all the predicted values from actual values of the label attribute, and dividing this
sum by the total number of predictions. The prediction average is calculated by adding all the
actual label values and dividing this sum by the total number of examples. You can verify this
from the results in the Results Workspace.
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6.1.2 Segmentation
Cluster Count Performance

Performance

clu

per

clu

per

This operator creates a performance vector containing the ‘Num-
ber of clusters’ and ‘Cluster Number Index’ criteria from a cluster
model.

Description
This is a very simple operator. It takes a clustermodel as input and returns a performance vector
that has the ‘Number of clusters’ and ‘Cluster Number Index’ criteria. The ‘Number of clusters’
criteria contains the number of clusters. The ‘Cluster Number Index’ criteria builds a derived
index from the number of clusters by using the formula 1 - (k / n)with k as thwnumber of clusters
and n as the number of examples. This can be used for optimizing the coverage of a cluster result
with respect to thenumberof clusters. Optionally, aperformancevector canbeprovidedas input
as well. In that case the ‘Number of clusters’ and ‘Cluster Number Index’ criteria are appended
to the given performance vector.

Input Ports
cluster model (clu) This input port expects a cluster model. It is the output of the Subprocess

operator in the attached Example Process.

performance (per) This optional port expects a performance vector. A performance vector is
a list of performance criteria values.

Output Ports
cluster model (clu) The clustermodel that was given as input is passed without anymodifica-

tions to the output through this port. This is usually used to reuse the same cluster model
in further operators or to view the cluster model in the Results Workspace.

performance (per) The performance vector containing the ‘Number of clusters’ and ‘Cluster
Number Index’ criteria is returned through this port.

Tutorial Processes

Generating a performance vector with the ’Number of clusters’ criteria

This Example Process starts with the Subprocess operator. The subprocess delivers a cluster
model and a performance vector. A breakpoint is inserted here so that you can have a look at
the cluster model. You can see that the cluster model has two clusters. This cluster model is
providedas input to theClusterCountPerformanceoperatorwhich returns aperformance vector
with the ‘Number of clusters’ criteria. As there were two clusters in the given cluster model, the
‘Number of clusters’ criteria has value 2. Now connect the second output port of the Subprocess
operator to the performance input port of the Cluster Count Performance operator. Run the
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Process

Subprocess
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Figure 6.20: Tutorial process ‘Generating a performance vector with the ’Number of clusters’
criteria’.

process again, you will see that this time the ‘Number of clusters’ parameter is appended to the
given performance vector.
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Cluster Density Performance

Performance

exa

dis

per

clu

exa

per This operator is used for performance evaluation of the centroid
based clustering methods. This operator delivers a list of perfor-
mance criteria values based on cluster densities.

Description

The centroid based clustering operators like the K-Means and K-Medoids produce a centroid
cluster model and a clustered set. The centroid cluster model has information regarding the
clustering performed. It tells which examples are parts of which cluster. It also has informa-
tion regarding centroids of each cluster. The Cluster Density Performance operator takes this
centroid cluster model and clustered set as input and evaluates the performance of the model
based on the cluster densities. It is important to note that this operator also requires a Simi-
larityMeasure object as input. This operator is used for evaluation of non-hierarchical cluster
models based on the average within cluster similarity/distance. It is computed by averaging all
similarities / distances between each pair of examples of a cluster.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. It is a technique for extracting information
from unlabeled data and can be very useful in many different scenarios e.g. in a marketing ap-
plication we may be interested in finding clusters of customers with similar buying behavior.

Input Ports

example set (exa) This input port expects anExampleSet. It is output of theData to Similarity
operator in the attached Example Process.

distance measure (dis) This input port expects a SimilarityMeasure object. It is output of the
Data to Similarity operator in the attached Example Process.

performance vector (per) This optional input port expects a performance vector. A perfor-
mance vector is a list of performance criteria values.

cluster model (clu) This input port expects a centroid cluster model. It is output of the K-
Means operator in the attached Example Process. The centroid clustermodel has informa-
tion regarding the clustering performed. It tells which examples are part of which cluster.
It also has information regarding centroids of each cluster.

Output Ports

example set (exa) The ExampleSet that was given as input is passed without any modifica-
tions to the output through this port. This is usually used to reuse the same ExampleSet
in further operators or to view the ExampleSet in the Results Workspace.
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performance vector (per) The performance of the cluster model is evaluated and the resul-
tant performance vector is delivered through this port. A performance vector is a list of
performance criteria values.

Tutorial Processes

Evaluating the performance of the K-Means clustering model

Process

Ripley-Set

out

Clustering

exa clu

clu

Data to Similari ty

exa sim

exa

Performance

exa

dis

per

clu

exa

per

inp
res

res

Figure 6.21: Tutorial process ‘Evaluating the performance of the K-Means clustering model’.

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note that the label is loaded
too, but it is only used for visualization and comparison and not for building the clusters. A
breakpoint is inserted at this step so that you can have a look at the ExampleSet before the ap-
plication of the K-Means operator. The ‘Ripley-Set’ has two real attributes; ‘att1’ and ‘att2’. The
K-Means operator is applied on this data set with default values for all parameters. A breakpoint
is inserted at this step so that you can have a look at the results of the K-Means operator. You
can see that two new attributes are created by the K-Means operator. The id attribute is created
to distinguish examples clearly. The cluster attribute is created to show which cluster the ex-
amples belong to. As parameter k was set to 2, only two clusters are possible. That is why each
example is assigned to either ‘cluster_0’ or ‘cluster_1’.
The Data to Similarity operator is applied on the resultant ExampleSet. This generates a Sim-

ilarityMeasure object. The clustered ExampleSet, cluster model and the Similarity Measure ob-
ject are provided as input to the Cluster Density Performance operator. The Cluster Density
Performance operator evaluates the performance of this model and delivers a performance vec-
tor that has performance criteria values. The resultant performance vector can be seen in the
results workspace.
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Cluster Distance Performance

Performance

exa

clu

per

per

exa

clu

This operator is used for performance evaluation of centroid based
clustering methods. This operator delivers a list of performance
criteria values based on cluster centroids.

Description

The centroid based clustering operators like the K-Means and K-Medoids produce a centroid
cluster model and a clustered set. The centroid cluster model has information regarding the
clustering performed. It tells which examples are parts of which cluster. It also has information
regarding centroids of each cluster. The Cluster Distance Performance operator takes this cen-
troid clustermodel and clustered set as input and evaluates the performance of themodel based
on the cluster centroids. Two performancemeasures are supported: Average within cluster dis-
tance and Davies-Bouldin index. These performancemeasures are explained in the parameters.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. It is a technique for extracting information
from unlabeled data and can be very useful in many different scenarios e.g. in a marketing ap-
plication we may be interested in finding clusters of customers with similar buying behavior.

Input Ports

example set (exa) This input port expects an ExampleSet. It is output of the K-Medoids op-
erator in the attached Example Process.

cluster model (clu) This input port expects a centroid cluster model. It is output of the K-
Medoids operator in the attached Example Process. The centroid cluster model has in-
formation regarding the clustering performed. It tells which examples are part of which
cluster. It also has information regarding centroids of each cluster.

performance (per) This input port expects a Performance Vector.

Output Ports

performance (per) The performance of the cluster model is evaluated and the resultant Per-
formance Vector is delivered through this port. The Performance Vector is a list of perfor-
mance criteria values.

example set (exa) The ExampleSet that was given as input is passed without changing to the
output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

cluster model (clu) Thecentroidclustermodel thatwasgivenas input ispassedwithout chang-
ing to the output through this port. This is usually used to reuse the same centroid cluster
model in further operators or to view it in the Results Workspace.
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Parameters
main criterion (selection) This parameter specifies themain criterion to use for performance

evaluation.
• avg._within_centroid_distance The average within cluster distance is calculated by
averaging the distance between the centroid and all examples of a cluster.

• davies_bouldinThealgorithms thatproduceclusterswith low intra-clusterdistances
(high intra-cluster similarity) and high inter-cluster distances (low inter-cluster sim-
ilarity) will have a low Davies–Bouldin index, the clustering algorithm that produces
a collection of clusters with the smallest Davies–Bouldin index is considered the best
algorithm based on this criterion.

main criterion only (boolean) This parameter specifies if only the main criterion should be
delivered by the performance vector. The main criterion is specified by the main criterion
parameter

normalize (boolean) This parameter specifies if the results should be normalized. If set to
true, the criterion is divide by the number of features.

maximize (boolean) This parameter specifies if the results should be maximized. If set to
true, the result is not multiplied by minus one.

Tutorial Processes

Evaluating the performance of the K-Medoids clustering model

Process
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Figure 6.22: Tutorial process ‘Evaluating the performance of the K-Medoids clustering model’.

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note that the label is loaded
too, but it is only used for visualization and comparison and not for building the clusters itself.
A breakpoint is inserted at this step so that you can have a look at the ExampleSet before appli-
cation of the K-Medoids operator. The ‘Ripley-Set’ has two real attributes; ‘att1’ and ‘att2’. The
K-Medoids operator is applied on this data set with default values for all parameters. A break-
point is inserted at this step so that you can have a look at the results of the K-Medoids operator.
You can see that two new attributes are created by the K-Medoids operator. The id attribute is
created to distinguish examples clearly. The cluster attribute is created to show which cluster
the examples belong to. As parameter k was set to 2, only two clusters are possible. That is why
each example is assigned to either ‘cluster_0’ or ‘cluster_1’. Also note the Plot View of this data.
You can clearly see how the algorithm has created two separate groups in the Plot View. A clus-
ter model is also delivered through the cluster model output port. It has information regarding
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the clustering performed. Under the Folder View you can see members of each cluster in folder
format. You can see information regarding centroids under the Centroid Table andCentroid Plot
View tabs.
TheClusterDistancePerformanceoperator is applied tomeasure theperformanceof this clus-

teringmodel. The cluster model and clustered set produced by the K-Medoids operator are pro-
vided as input to the Cluster Distance Performance operator which evaluates the performance of
thismodel and delivers a performance vector that has performance criteria values. The resultant
performance vector can be seen in the results workspace.
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Item Distribution Performance

Performance

clu

per

clu

per

This operator is used for performance evaluation of flat clustering
methods. It evaluates a cluster model based on the distribution of
examples.

Description
The clustering operators like the K-Means and K-Medoids produce a flat cluster model and a
clustered set. The cluster model has information regarding the clustering performed. It tells
which examples are parts of which cluster. The Item Distribution Performance operator takes
this cluster model as input and evaluates the performance of the model based on the distribu-
tion of examples i.e. how well the examples are distributed over the clusters. Two distribution
measures are supported: Sum of Squares and Gini Coefficient. These distribution measures are
explained in the parameters. Flat clustering creates a flat set of clusters without any explicit
structure that would relate clusters to each other. Hierarchical clustering, on the other hand,
creates a hierarchy of clusters. This operator can only be applied onmodels produced by opera-
tors that produce flat cluster models e.g. K-Means or K-Medoids operators. It cannot be applied
on models created by the operators that produce a hierarchy of clusters e.g. the Agglomerative
Clustering operator.
Clustering is concerned with grouping together objects that are similar to each other and dis-

similar to the objects belonging to other clusters. It is a technique for extracting information
from unlabeled data and can be very useful in many different scenarios e.g. in a marketing ap-
plication we may be interested in finding clusters of customers with similar buying behavior.

Input Ports
cluster model (clu) This input port expects a flat cluster model. It is output of the K-Medoids

operator in the attached Example Process. The cluster model has information regarding
the clustering performed. It tells which examples are part of which cluster.

performance vector (per) This input port expects a Performance Vector.

Output Ports
cluster model (clu) The cluster model that was given as input is passed without changing to

theoutput through this port. This is usually used to reuse the sameclustermodel in further
operators or to view it in the Results Workspace.

performance vector (per) The performance of the cluster model is evaluated and the resul-
tant Performance Vector is delivered through this port. It is a list of performance criteria
values.

Parameters
measure (selection) This parameter specifies the item distribution measure to apply. It has

two options:
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• sumofsquares If this option is selected, the sum of squares is used as the item dis-
tribution measure.

• ginicoefficient The Gini coefficient (also known as the Gini index or Gini ratio) is a
measure of statistical dispersion. It measures the inequality among values of a fre-
quency distribution. A low Gini coefficient indicates a more equal distribution, with
0 corresponding to complete equality, while higher Gini coefficients indicate a more
unequal distribution, with 1 corresponding to complete inequality.

Tutorial Processes

Evaluating the performance of the K-Medoids clustering model

Process
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Figure 6.23: Tutorial process ‘Evaluating the performance of the K-Medoids clustering model’.

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note that the label is loaded
too, but it is only used for visualization and comparison and not for building the clusters them-
selves. A breakpoint is inserted at this step so that you can have a look at the ExampleSet before
the application of the K-Medoids operator. The ‘Ripley-Set’ has two real attributes; ‘att1’ and
‘att2’. The K-Medoids operator is applied on this data set with default values for all parameters.
A breakpoint is inserted at this step so that you can have a look at the results of the K-Medoids
operator. You can see that two new attributes are created by the K-Medoids operator. The id at-
tribute is created to distinguish examples clearly. The cluster attribute is created to showwhich
cluster the examples belong to. As parameter k was set to 2, only two clusters are possible. That
is why each example is assigned to either ‘cluster_0’ or ‘cluster_1’. A cluster model is also de-
livered through the cluster model output port. It has information regarding the clustering per-
formed. Under the Folder View you can see members of each cluster in folder format and under
the Centroid Table and Centroid Plot View tabs information regarding centroids.
The Item Distribution Performance operator is applied to measure the performance of this

clustering model on the basis of how well the examples are distributed over the clusters. The
cluster model produced by the K-Medoids operator is provided as input to the Item Distribution
Performanceoperatorwhichevaluates theperformanceof thismodel anddelivers aperformance
vector that has performance measured on the basis of example distribution. The resultant per-
formance vector can be seen in the results workspace.
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Map Clustering on Labels

Map Clustering o.. .

exa

clu

exa

clu

This operator converts the cluster attribute into a prediction at-
tribute.

Description

The Map Clustering on Labels operator expects a clustered ExampleSet and a cluster model as
input. Using these inputs, it estimates a mapping between the given clustering and prediction.
It adjusts the given clusters with the given labels and so estimates the best fitting pairs. The
resultant ExampleSet has a prediction attribute which is derived from the cluster attribute.

Input Ports

example set (exa) This input port expects a clustered ExampleSet. It is the output of the K-
Means operator in the attached Example Process.

cluster model (clu) This input port expects a cluster model. It is the output of the K-Means
operator in the attached Example Process.

Output Ports

example set (exa) The prediction attribute is derived from the cluster attribute and the resul-
tant ExampleSet is delivered through this port.

cluster model (clu) The clustermodel that was given as input is passed without anymodifica-
tions to the output through this port. This is usually used to reuse the same cluster model
in further operators or to view the cluster model in the Results Workspace.

Tutorial Processes

Introduction to the Map Clustering on Labels operator
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Figure 6.24: Tutorial process ‘Introduction to the Map Clustering on Labels operator’.
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The ‘Ripley-Set’ data set is loaded using the Retrieve operator. Note that the label is loaded
too, but it is only used for visualization and comparison and not for building the clusters. Be-
sides the label attribute the ‘Ripley-Set’ has two real attributes; ‘att1’ and ‘att2’. The K-Means
operator is applied on this data set with default values for all parameters. Run the process and
you will see that two new attributes are created by the K-Means operator. The id attribute is
created to distinguish examples clearly. The cluster attribute is created to show which cluster
the examples belong to. As parameter k was set to 2, only two clusters are possible. That is why
each example is assigned to either ‘cluster_0’ or ‘cluster_1’
This clustered ExampleSet and cluster model are provided as input to the Map Clustering on

Labels operator. The resultant ExampleSet can be seen it the Results Workspace. You can see
that the ExampleSet has a prediction attribute now. You can also observe that the values of this
attribute have been derived from the cluster attribute.
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6.1.3 Significance Tests
ANOVA

ANOVA

per sig

per

This operator is used for comparison of performance vectors. It
performs an analysis of variance (ANOVA) test to determine the
probability for the null hypothesis i.e. ‘the actual means are the
same’.

Description

ANalysis Of VAriance (ANOVA) is a statistical model in which the observed variance in a partic-
ular variable is partitioned into components attributable to different sources of variation. In its
simplest form, ANOVA provides a statistical test of whether or not the means of several groups
are all equal, and therefore generalizes t-test to more than two groups. Doing multiple two-
sample t-tests would result in an increased chance of committing a type I error. For this reason,
ANOVA is useful in comparing two, three, or more means. ‘False positive’ or Type I error is de-
fined as the probability that a decision to reject the null hypothesis will be made when it is in
fact true and should not have been rejected. RapidMiner provides the T-Test operator for per-
forming the t-test. Paired t-test is a test of the null hypothesis that the difference between two
responses measured on the same statistical unit has a mean value of zero.

Differentiation

• T-TestDoingmultiple two-sample t-tests would result in an increased chance of commit-
ting a type I error. For this reason, ANOVA is useful in comparing two, three, or more
means. See page 802 for details.

Input Ports

performance (per) This operator expects performance vectors as input it can have multiple
inputs. When one input is connected, another performance input port becomes available
which is ready to accept another input (if any). The order of inputs remains the same. The
performance vector supplied at the first input port of this operator is available at the first
performance output port of the operator.

Output Ports

significance (sig) The given performance vectors are compared and the result of the signifi-
cance test is delivered through this port.

performance (per) This operator can havemultiple performance output ports. When one out-
put is connected, another performance output port becomes available which is ready to
deliver another output (if any). The order of outputs remains the same. The performance
vector delivered at first performance input port of this operator is delivered at the first per-
formance output port of the operator.
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Parameters
alpha (real) Thisparameter specifies theprobability thresholdwhichdetermines if differences

are considered as significant. If a test of significance gives a p-value lower than the signif-
icance level alpha, the null hypothesis is rejected. It is important to understand that the
null hypothesis can never be proven. A set of data can only reject a null hypothesis or fail
to reject it. For example, if comparison of two groups reveals no statistically significant
difference between the two, it does not mean that there is no difference in reality. It only
means that there is not enough evidence to reject the null hypothesis (in other words, the
experiment fails to reject the null hypothesis).

Related Documents
• T-Test (page 802)

Tutorial Processes

Comparison of performance vectors using statistical significance tests

Root

Subprocess

in ou t

ou t

ou t

T-Test

per

per

per

sig

per

per

per ANOVA

per

per

per

sig

per

per

per

inp

res

res

res

res

res

Figure 6.25: Tutorial process ‘Comparison of performance vectors using statistical significance
tests’.

Many RapidMiner operators can be used to estimate the performance of a learner or a prepro-
cessing step etc. The result of these validation operators is a performance vector which collects

800



6.1. Performance

the values of a set of performance criteria. For each criterion, the mean value and standard de-
viation are given. The question is how these performance vectors can be compared? Statistical
significance tests like ANOVA or T-Test can be used to calculate the probability that the actual
mean values are different. This Example Process performs exactly the same task.
This Example Process starts with a Subprocess operator which provides two performance vec-

tors as output. Have a look at the inner operators of the Subprocess operator. The Generate
Data operator is used for generating an ExampleSet. The Multiply operator is used for produc-
ingmultiple copies of this ExampleSet. X-Validation operators are applied on both copies of the
ExampleSet. The first X-Validation operator uses the Support Vector Machine (LibSVM) opera-
torwhereas the secondX-Validationoperator uses the LinearRegressionoperator in the training
subprocess. The resultant performance vectors are the output of the Subprocess operator.
These performance vectors are compared using the T-Test and ANOVA operators respectively.

Theperformancevectors and the results of the significance tests are connected to the result ports
of the process and they can be viewed in the Results Workspace. Run the process and compare
the results. The probabilities for a significant difference are equal since only two performance
vectors were created. In this case the SVM is probably better suited for the data set at hand since
the actualmean values are probably different. The SVM is considered better because its p-values
is smaller than alpha which indicates a probably significant difference between the actual mean
values.
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T-Test

T-Test

per sig

per

This operator is used for comparison of performance vectors. This
operator performs a t-test to determine the probability for the null
hypothesis i.e. ‘the actual means are the same’.

Description
The T-Test operator determines if the null hypothesis (i.e. all actual mean values are the same)
holds for the given performance vectors. This operator uses a simple paired t-test to determine
the probability that the null hypothesis is wrong. Since a t-test can only be applied on two per-
formance vectors this test will be applied to all possible pairs. The result is a significancematrix.
Paired t-test is a test of the null hypothesis that the difference between two responses mea-

sured on the same statistical unit has a mean value of zero. For example, suppose we measure
the size of a cancer patient’s tumor before and after a treatment. If the treatment is effective,
we expect the tumor size for many of the patients to be smaller following the treatment. This is
often referred to as the ‘paired’ or ‘repeated measures’ t-test.
In case of this operator the dependent samples (or ‘paired’) t-tests consist of a pair of perfor-

mance vectors. Doingmultiple paired t-tests would result in an increased chance of committing
a type I error. ‘False positive’ or Type I error is defined as the probability that a decision to reject
the null hypothesis will be made when it is in fact true and should not have been rejected. It is
recommended to apply an additional ANOVA test to determine if the null hypothesis is wrong
at all. Please use the ANOVA operator for performing the ANOVA test.

Differentiation
• ANOVA Doing multiple two-sample t-tests would result in an increased chance of com-
mitting a type I error. For this reason, ANOVA is useful in comparing two, three, or more
means. See page 799 for details.

Input Ports
performance (per) This operator expects performance vectors as input and can havemultiple

inputs. When one input is connected, another performance input port becomes available
which is ready to accept another input (if any). The order of inputs remains the same. The
performance vector supplied at the first input port of this operator is available at the first
performance output port of the operator.

Output Ports
significance (sig) The given performance vectors are compared and the result of the signifi-

cance test is delivered through this port.

performance (per) This operator can havemultiple performance output ports. When one out-
put is connected, another performance output port becomes available which is ready to
deliver another output (if any). The order of outputs remains the same. The performance
vector delivered at the first performance input port of this operator is delivered at the first
performance output port of the operator.
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Parameters
alpha (real) Thisparameter specifies theprobability thresholdwhichdetermines if differences

are considered as significant. If a test of significance gives a p-value lower than the signif-
icance level alpha, the null hypothesis is rejected. It is important to understand that the
null hypothesis can never be proven. A set of data can only reject a null hypothesis or fail
to reject it. For example, if comparison of two groups reveals no statistically significant
difference between the two, it does not mean that there is no difference in reality. It only
means that there is not enough evidence to reject the null hypothesis (in other words, the
experiment fails to reject the null hypothesis).

Related Documents
• ANOVA (page 799)

Tutorial Processes

Comparison of performance vectors using statistical significance tests

Root

Subprocess

in ou t
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T-Test
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res
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Figure 6.26: Tutorial process ‘Comparison of performance vectors using statistical significance
tests’.

Many RapidMiner operators can be used to estimate the performance of a learner or a prepro-
cessing step etc. The result of these validation operators is a performance vector which collects
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the values of a set of performance criteria. For each criterion, the mean value and standard de-
viation are given. The question is how can these performance vectors be compared? Statistical
significance tests like ANOVA or T-Test can be used to calculate the probability that the actual
mean values are different. This Example Process performs exactly the same task.
This Example Process starts with a Subprocess operator which provides two performance vec-

tors as output. Have a look at the inner operators of the Subprocess operator. The Generate
Data operator is used for generating an ExampleSet. The Multiply operator is used for produc-
ingmultiple copies of this ExampleSet. X-Validation operators are applied on both copies of the
ExampleSet. The first X-Validation operator uses the Support Vector Machine (LibSVM) opera-
torwhereas the secondX-Validationoperator uses the LinearRegressionoperator in the training
subprocess. The resultant performance vectors are the output of the Subprocess operator.
These performance vectors are compared using the T-Test and ANOVA operators respectively.

Theperformancevectors and the results of the significance tests are connected to the result ports
of the process and they can be viewed in the Results Workspace. Run the process and compare
the results. The probabilities for a significant difference are equal since only two performance
vectors were created. In this case the SVM is probably better suited for the data set at hand since
the actual mean values are probably different. SVM is considered better because its p-value is
smaller than alpha which indicates a probably significant difference between the actual mean
values.
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6.2 Visual
Compare ROCs

Compare ROCs

exa exa

roc

This operator generates ROC charts for the models created by the
learners in its subprocess and plots all the charts in the same plot-
ter for comparison.

Description
The Compare ROCs operator is a nested operator i.e. it has a subprocess. The operators in the
subprocess must produce amodel. This operator calculates ROC curves for all thesemodels. All
the ROC curves are plotted together in the same plotter.
The comparison is based on the average values of a k-fold cross validation. Please study the

documentation of the Cross Validation operator for more information about cross validation.
Alternatively, this operator can use an internal split into a test and a training set from the given
data set in this case the operator behaves like the Split Validation operator. Please note that any
former predicted label of the given ExampleSet will be removed during the application of this
operator.
ROC curve is a graphical plot of the sensitivity, or true positive rate, vs. false positive rate (one

minus the specificity or true negative rate), for a binary classifier system as its discrimination
threshold is varied. The ROC can also be represented equivalently by plotting the fraction of
true positives out of the positives (TPR = true positive rate) vs. the fraction of false positives out
of the negatives (FPR = false positive rate).
ROC curves are calculated by first ordering the classified examples by confidence. Afterwards

all the examples are taken into account with decreasing confidence to plot the false positive rate
on the x-axis and the true positive rate on the y-axis. With optimistic, neutral and pessimistic
there are three possibilities to calculate ROC curves. If there ismore than one example for a con-
fidence with optimistic ROC calculation the correct classified examples are taken into account
before looking at the false classification. With pessimistic calculation it is the other way round:
wrong classifications are taken into account before looking at correct classifications. Neutral
calculation is a mix of both calculation methods described above. Here correct and false classi-
fications are taken into account alternately. If there are no examples with equal confidence or
all examples with equal confidence are assigned to the same class the optimistic, neutral and
pessimistic ROC curves will be the same.

Input Ports
example set (exa) This input port expects an ExampleSet with binominal label. It is the out-

put of the Retrieve operator in the attached Example Process. The output of other opera-
tors can also be used as input.

Output Ports
example set (exa) The ExampleSet that was given as input is passed without changing to the

output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.
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rocComparison (roc) The ROC curves for all the models are delivered from this port. All the
ROC curves are plotted together in the same plotter.

Parameters
number of folds (integer) This parameter specifies the number of folds to use for the cross

validation evaluation. If this parameter is set to -1 this operator uses split ratio and be-
haves like the Split Validation operator.

split ratio (real) This parameter specifies the relative size of the training set. It should be
between 1 and 0, where 1 means that the entire ExampleSet will be used as training set.

sampling type (selection) Several typesof sampling canbeused forbuilding the subsets. Fol-
lowing options are available:

• Linear samplingLinear sampling simplydivides theExampleSet intopartitionswith-
out changing the order of the examples i.e. subsets with consecutive examples are
created.

• Shuffled sampling Shuffled sampling builds random subsets of the ExampleSet. Ex-
amples are chosen randomly for making subsets.

• Stratified sampling Stratified sampling builds random subsets and ensures that the
class distribution in the subsets is the same as in the whole ExampleSet. For example
in the case of a binominal classification, Stratified sampling builds random subsets
so that each subset contains roughly the same proportions of the two values of class
labels.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomizing examples of a subset. Using the same value oflocal random seed will
produce the same subsets. Changing the value of this parameter changes the way exam-
ples are randomized, thus subsets will have a different set of examples. This parameter is
only available if Shuffled or Stratified sampling is selected. It is not available for Linear
sampling because it requires no randomization, examples are selected in sequence.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

use example weights (boolean) This parameter indicates if exampleweights should be con-
sidered. If this parameter is not set to true then weight 1 is used for each example.

roc bias (selection) This parameter determines how the ROC are evaluated i.e. correct pre-
dictions are counted first, last, or alternately. ROC curves are calculated by first ordering
the classified examples by confidence. Afterwards all the examples are taken into account
with decreasing confidence to plot the false positive rate on the x-axis and the true positive
rate on the y-axis. With optimistic, neutral and pessimistic there are three possibilities to
calculate ROC curves. If there are no examples with equal confidence or all examples with
equal confidence are assigned to the same class the optimistic, neutral and pessimistic
ROC curves will be the same.

• optimistic If there is more than one example for a confidence with optimistic ROC
calculation the correct classified examples are taken into account before looking at
the false classification.

• pessimisticWithpessimistic calculationwrong classifications are taken into account
before looking at correct classifications.
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• neutral Neutral calculation is a mix of both optimistic and pessimistic calculation
methods. Here correct and false classifications are taken into account alternately.

Tutorial Processes

Comparing different classifiers graphically by ROC curves

Root

Ripley-Set

out

Compare ROCs

exa exa

roc

inp

res

res

Figure 6.27: Tutorial process ‘Comparing different classifiers graphically by ROC curves’.

This process shows how several different classifiers could be graphically compared by means
of multiple ROC curves. The ‘Ripley-Set’ data set is loaded using the Retrieve operator. The
Compare ROCs operator is applied on it. Have a look at the subprocess of the Compare ROCs
operator. You can see that three different learners are applied i.e. Naive Bayes, Rule Induc-
tion and Decision Tree. The resultant models are connected to the outputs of the subprocess.
The Compare ROCs operator calculates ROC curves for all these models. All the ROC curves are
plotted together in the same plotter which can be seen in the Results Workspace.
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Create Lift Chart

Create Lift  Chart

exa

mod

exa

mod

li f

This operator generates a lift chart for the givenmodel and Exam-
pleSet based on the discretized confidences and a Pareto chart.

Description
The Create Lift Chart operator creates a lift chart based on a Pareto plot for the discretized con-
fidence values of the given ExampleSet andmodel. Themodel is applied on the ExampleSet and
a lift chart is produced afterwards. Please note that any predicted label of the given Example-
Set will be removed during the application of this operator. In order to produce reliable results,
this operator must be applied on data that has not been used to build the model, otherwise the
resulting plot will be too optimistic.
The lift chart measures the effectiveness ofmodels by calculating the ratio between the result

obtained with a model and the result obtained without a model. The result obtained without a
model is based on randomly selected records.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Generate Di-

rectMailingData operator in the attached Example Process. The output of other operators
can also be used as input.

model (mod) This input port expects a model. It is the output of the Naive Bayes operator in
the attached Example Process. The output of other operators can also be used as input.

Output Ports
example set (exa) The ExampleSet that was given as input is passed without changing to the

output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

model (mod) Themodel thatwasgivenas input ispassedwithout changing to theoutput through
this port. This is usually used to reuse the same model in further operators or to view the
model in the Results Workspace.

lift pareto chart (lif) For the given model and ExampleSet a lift chart is generated based on
thediscretized confidences andaPareto chart. This lift chart is delivered through this port.

Parameters
target class (string) This parameter indicates the target class for which the lift chart should

be produced.

binning type (selection) This parameter indicates the binning type of the confidences.
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number of bins (integer) This parameter specifies the number of bins the confidence should
be discretized into. This parameter is only available when the binning type parameter is
set to ‘simple’ or ‘frequency’.

size of bins (integer) This parameter specifies the number of examples that each bin should
contain when the confidence is discretized. This parameter is only available when the bin-
ning type parameter is set to ‘absolute’.

automatic number of digits (boolean) Thisparameter indicates if thenumberofdigits should
be automatically determined for the range names.

number of digits (integer) Thisparameter specifies theminimumnumberofdigits tobeused
for the interval names. If this parameter is set to -1 then the minimal number is deter-
mined automatically. This parameter is only available when the automatic number of digits
parameter is set to false.

show bar labels (boolean) This parameter indicates if the bars should display the size of the
bin together with the amount of the target class in the corresponding bin.

show cumulative labels (boolean) Thisparameter indicates if thecumulative lineplot should
display the cumulative sizes of the bins together with the cumulative amount of the target
class in the corresponding bins.

rotate labels (boolean) This parameter indicates if the labels of the bins should be rotated.

Tutorial Processes

Creating lift chart for direct mailing data

Root

Generate Direct . . .

out

Split  Validation

t ra mod

t ra

ave

ave

Recall

resinp res

res

Figure 6.28: Tutorial process ‘Creating lift chart for direct mailing data’.

The Direct Mailing Data operator is used for generating an ExampleSet with 10000 examples.
The Split Validation operator is applied on this ExampleSet. The split ratio parameter is set to
0.7 and the sampling type parameter is set to ‘shuffled sampling’. Here is an explanation of what
happens inside the Split Validation operator.
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The Split Validation operator provides a training data set through the training port of the
training subprocess. This training data set is used as input for the Naive Bayes operator. Thus
the Naive Bayes classification model is trained on this training data set.The Naive Bayes opera-
tor provides the Naive Bayes classification model as its output. This model is connected to the
model port of the training subprocess.The Naive Bayes model that was provided at the model
port of the training subprocess is delivered by the Split Validation operator at the model port of
the testing subprocess. Thismodel is provided as input at themodel port of the Create Lift Chart
operator.The Split validation operator provides the testing data set through the test set port of
the testing subprocess. This testing data set is provided as input to the Create Lift Chart op-
erator.The Create Lift Chart operator generates a lift chart for the given model and ExampleSet
based on the discretized confidences and aPareto chart. The lift chart is provided to theRemem-
ber operator to store it in the object store.The ApplyModel operator is provided with the testing
data set and themodel. The ApplyModel operator applies themodel on the testing data set and
the resultant labeled data set is delivered as output. This labeled data set is provided as input
to the Performance operator.The Performance operator evaluates the statistical performance of
the model through the given labeled data set and generates a performance vector which holds
information about various performance criteria.
Outside the Split Validation operator, the Recall operator is used for fetching the lift chart

from the object store. The lift chart is delivered to the output and it can be seen in the Results
Workspace.
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Lift Chart (Simple)

Lift  Chart (Simple)

mod

tes

l i f
This operator creates a lift chart which shows howmuch better the
model performs for each confidence segment than random guess-
ing.

Description
A lift chart shows how much better a machine learning model performs compared with a ran-
dom guess. It also shows you the point at which the predictions become less useful. This is in
particular useful if you can optimize for a cost-benefit ration as it often happens for marketing-
related use cases. For example, a lift chart can show you that to reach 80% of your respondents
you only need to reach out to 30% of your total address base.
The lift chart shows you 10 bins for your test data. Each bin is filledwith decreasing confidence

of the model for the target class. That means that the examples with highest confidence values
are in the first bin, then in the second, and so on. The chart consists of two parts. The bars show
you the correct percentage for the target class. For example, if the first bar in the lift chart shows
95%, this means that 95% of all examples in this confidence bin are actually from the desired
target class.
The second part of the chart is a line which shows you the cumulative coverage of the target

class if you would consider only examples of at least the confidence of the corresponding bar or
higher. A value of 60% at the third bar for example means that you covered 60% of the desired
target class at that point. But the third bar only represents 30% of your total population. That
means that thismodel would correctly identify 60%of the target with only using 30%of the total
population (the 30% with the highest confidence for this class). In contrast to this, a random
model would only achieve 30% of the target class.

Input Ports
model (mod) This input port expects a prediction model.

test data (tes) The test data to create the lift chart for. Needs a label attribute to comparewith
model predictions.

Output Ports
lift chart (lif) The lift chart for the given test data.

Tutorial Processes

Lift Chart for Naive Bayes on Titanic

This process creates a model on the Titanic data set. It first divides the data into a training
and testing part. The model is built on the training data. It is then delivered together with the
test data to the Lift Chart operator. Please note that you need to specify which class you are
interested in. You can do this in the parameters of this operator.
Examining the lift chart, we can see that you can correctly identify 47% of all survivors while

you are only looking at the first 20% of the passengers.
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Process

Retrieve Titanic . . .

out

Spli t  Data

exa par

par

par

Naive Bayes

t ra mod
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inp

res
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Figure 6.29: Tutorial process ‘Lift Chart for Naive Bayes on Titanic’.

Visualize Model by SOM

Visualize Model . . .

exa

mod

exa

mod

vis

This operator generates a SOM plot (by transforming arbitrary
number of dimensions to two) of the given ExampleSet and col-
orizes the landscape with the predictions of the given model.

Description

TheVisualizeModel by SOMoperator provides the visualization of arbitrarymodels with help of
thedimensionality reductionviaSOMofboth thedata set and thegivenmodel. Aself-organizing
map (SOM) or self-organizing feature map (SOFM) is a type of artificial neural network that is
trained using unsupervised learning to produce a low-dimensional (typically two-dimensional),
discretized representationof the input spaceof the trainingsamples, calledamap. Self-organizing
maps are different from other artificial neural networks in the sense that they use a neighbor-
hood function to preserve the topological properties of the input space. This makes SOMs use-
ful for visualizing low-dimensional views of high-dimensional data, akin to multidimensional
scaling. The model was first described as an artificial neural network by Teuvo Kohonen, and is
sometimes called a Kohonen map.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the De-
cision Tree operator in the attached Example Process. The output of other operators can
also be used as input.

model (mod) This input port expects a model. It is the output of the Decision Tree operator in
the attached Example Process. The output of other operators can also be used as input.
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Output Ports
example set (exa) The ExampleSet that was given as input is passed without changing to the

output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

model (mod) Themodel thatwasgivenas input ispassedwithout changing to theoutput through
this port. This is usually used to reuse the same model in further operators or to view the
model in the Results Workspace.

visualization (vis) The SOM visualization is returned through this port.

Tutorial Processes

Visualizing the Decision Tree by SOM

Process
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out
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exa
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inp res

res

res

res

Figure 6.30: Tutorial process ‘Visualizing the Decision Tree by SOM’.

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you canhave a look at the ExampleSet. TheDecisionTree operator is applied on this ExampleSet
and the resultant model is provided as input model to the Visualize Model by SOM operator.
The original ExampleSet is also provided as input. The ExampleSet, model and visualization
returned by the VisualizeModel by SOMoperator are connected to the output and can be viewed
in the Results Workspace.
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Execute Process

Execute Process

inp res This operator embeds a complete process (previously written into
a file) into the current process.

Description
This operator can be used to embed a complete process definition of a saved process into the cur-
rent process definition. The saved process will be loaded and executed when the current process
reaches this operator. Optionally, the input of this operator can be used as input for the embed-
ded process. In both cases, the output of the saved process will be delivered as output of this
operator. Please note that validation checks will not work for a process containing an operator
of this type since the check cannot be performed without actually loading the process. The use
of this operator can be easily understood by studying the attached Example Process.

Input Ports
input (inp) The Execute Process operator can have multiple inputs. When one input port is

connected, another input port becomes available which is ready to accept another input (if
any). The order of inputs remains the same. The object supplied at the first input port of
the Execute Process operator is available at the first input port of the embedded process.
Don’t forget to connect all inputs in correct order. Make sure that you have connected the
right number of ports.

Output Ports
result (res) The Execute Process operator can have multiple outputs. When one result port is

connected, another result port becomes available which is ready to deliver another output
(if any). The order of outputs remains the same. The Object delivered at the first output
port of the embedded process is delivered at the first result port of the Execute Process
operator. Don’t forget to connect all outputs in correct order. Make sure that you have
connected the right number of ports.

Parameters
process location The location of the process to be embedded is provided here.

use input (boolean) This is an expert parameter. It indicates if the input of this operator
should be used as input for the embedded process. This should always be set to true if
you want to provide input to the embedded process through the current process.

store output (boolean) This is an expert parameter. It indicates if the operator output should
be stored. This applies only if the context of the embedded process defines output loca-
tions.

815



7. Utility

propagate metadata recursively (boolean) This is anexpertparameter. It determineswhether
meta data is propagated through the included process.

cache process (boolean) This is an expert parameter. It determines if the process should be
loaded during execution. If it is checked, the process will not be loaded during the execu-
tion.

macros This is an expert parameter. It defines macros for this sub-process.

fail for unknown macros This is an expert parameter. It decides which macros you can de-
fine at the ‘macros’ list above. If checked, only macros defined in the embedded process’
context can be defined in the ‘macros’ list above.

Tutorial Processes

The process to be used as an embedded process in the next Example Process

Process

Decision Tree

t ra mod

exa

wei

Decision Tree (2)

t ra mod

exa

wei

inp

inp

inp

res

res

res

Figure 7.1: Tutorial process ‘The process to be used as an embedded process in the next Example
Process’.

This process does not use the Execute Process operator, rather it is used as an embedded pro-
cess in the second Example Process . This process uses the Decision Tree operator twice. In both
cases input is not provided to the operators in this process. The input ports of the operators are
connected with the input ports of the process, thus these operators will receive inputs via an-
other process as we shall see soon. Such a process cannot work at its own, because inputs are
missing. Only themod port is connected to the output in both operators. Alwaysmake sure that
the input ports of this process are connected in the right way whenever you want this process
to receive inputs from other processes.

Executing an embedded process

The Execute Process operator is used in this process. The process location parameter supplies
the location of the first Example Process. Make sure you provide the same location here that you
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Process
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Labor-Negotiat io. . .

out

Execute Process
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res

res

inp res
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Figure 7.2: Tutorial process ‘Executing an embedded process’.

used to save thefirst ExampleProcess. TheRetrieve operator is used twice, first it loads the ‘Golf’
data set and then it is used to load the ‘Labor-Negotiations’ data set. These data sets are sent
as input to the embedded process. The object connected to the first input port of the Execute
Process operator is received at the first input port of the embedded process. Thus the ‘Golf’ data
set is provided as input to the first Decision Tree operator. Similarly, the ‘Labor-negotiations’
data set is providedas input to the secondDecisionTreeoperator. Passing input to theembedded
process was possible because the use input parameter was checked. If you uncheck it and run
the process again, youwill get an errormessage. Outputs of the embedded process are delivered
as outputs of the Execute Process operator in the current process. The order of outputs remains
the same. TheDecisionTreemodel of the Labor-negotiations data set is connected to the second
res port of the first Example Process, thus it is available at the second res port of the Execute
Process operator in the current process.
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Multiply

Mult ip ly

inp ou t This Operator creates copies of a RapidMiner Object.

Description
The Operator takes the RapidMiner Object from the input port and delivers copies of it to the
output ports. Each connected port creates an independent copy. So changing one copy has no
effect on other copies.

Differentiation
Many Operators have an output port named original or throughput, which does not change the
input. By chainingOperators tooneormoreoriginal ports also copiesof anobject canbecreated.
But such a layout can get complicated very fast. TheMultiply Operator helps to better structure
a RapidMiner Process.

Input Ports
input (inp) The input that should be copied. It can be any RapidMiner Object.

Output Ports
output (out) The copy of the input object. As one output port is connected, another output

port is created for more copies. All ports deliver unchanged copies of the input object.

Tutorial Processes

Multiply an ExampleSet

In this tutorial Process the Multiply Operator creates two copies of the Titanic Example Set. All
missing values of the first copy are replaced by the average value and then 100 randomExamples
are selected. The second copy is not modified. This illustrates that the copies are independent
and changes on one copy are not applied on the other copies.
“‘
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Figure 7.3: Tutorial process ‘Multiply an ExampleSet’.

Schedule Process

Schedule Process

t h r t h r This operator schedules a process on a RapidMiner Server with
given input, output and macros.

Description

This operator starts a process which is given as a repository location on a RapidMiner Server.
The server instance of this repository will execute the process independently from the current
process, so that an own process context is available. This context, i.e. the input and output of
the process and the macros, can be defined as parameters as well.
Severaldifferent schedulemodesareavailablewhichdeterminewhen theprocesswill be started.

The modes now, once and offset are used to start the process once at a given time, whereby cron
schedule allows to execute the process periodically according to a given cron expression which
can be easily created by the cron editor.
It is necessary that the repository of the process which will be scheduled is a repository of a

RapidMiner Server instance. Although it is possible to schedule a process from a local Rapid-
Miner instance on a remote server, it is not possible to execute several process within a local
RapidMiner instance with this operator.

Input Ports

through (thr)

Output Ports

through (thr)
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Parameters
process entry (string) Avalidpath shouldbe specifiedhere inorder to execute aprocess. This

parameter references a process in a remote repository, i.e. a repository on a RapidMiner
Server.

process input (menu) The process input which will be provided to the process which will be
executed. This repository location has to be reachable by the process on the RapidMiner
Server instance.

process output (menu) Indicates where the process output shall be stored. This repository
location has to be reachable by the process on the RapidMiner Server instance.

macros (menu) The macros which will be accessible by the executed process.

schedule mode (selection) The mode defines the time when the selected process will be ex-
ecuted on the server.

• now The process will be executed immediately

• once The process will be executed at the date provided by the date parameter

• offsetTheprocesswill be executed after a given offset provided by the offset and time-
_unit parameters

• cron schedule The process will be executed periodically given a start and end date
and the cron expression

date (date) If the schedule mode once is selected this date parameter specifies the exact date
and time when the process will be started.

offset (integer) The offset to specify for the schedule mode offset. Combined with the param-
eter time_unit this sets the time from now to the start of the process.

time unit (selection) For the offsetmode this specifies the unit of time of the value defined in
the offset parameter. So if the offset is set to 10, this parameter defines if the process will
be started in 10 seconds, 10 minutes, 10 hours or 10 days.

expression (cron) If the schedule mode cron schedule is selected, the expression parameter
offers a cron value which can be added by hand or via the cron editor. This allows to start
the process periodically.

set start date (boolean) For a cron expression this parameter determines if a start date will
beused. This start date specifies the timewhen the cronexpression is activated to schedule
a process.

start date (date) The start date which specifies the date to start the scheduling of a process
via the cron expression defined in expression. This parameter is only in use if the set_start-
_date parameter is set to true.

set end date (boolean) For a cron expression this parameter determines if a end date will be
used. This end date specifies the timeuntil when the cron expression is activated to sched-
ule a process.

end date (date) The end date which specifies the date until the cron expression will be used
to schedule a process. This parameter is only in use if the set_end_date parameter is set to
true.
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Subprocess

Subprocess

in ou t

This operator introduces a process within a process. Whenever a
Subprocess operator is reached during a process execution, first
the entire subprocess is executed. Once the subprocess execution
is complete, the flow is returned to the process (the parent pro-
cess). A subprocess can be considered as a small unit of a process,
like in process, all operators and combination of operators can be
applied in a subprocess. That is why a subprocess can also be de-
fined as a chain of operators that is subsequently applied.

Description
Double click on the Subprocess operator to go inside the subprocess. The subprocess is then
shown in the same Process View. To go back to the parent process, click the blue-colored up
arrow button in the Process View toolbar. This works like files and folders work in operating
systems. Subprocesses can have subprocesses in them just like folders can have folders in them.
Theorder of execution in case of nested subprocesses is the sameas a depth-first-search through
a tree structure. When a Subprocess operator is reached, all operators inside it are executed and
then the execution flow returns to the parent process and the operator that is located after the
Subprocess operator (in the parent process) is executed. This description can be easily under-
stood by studying the attached Example Process.
A subprocess canbe considered as a simple operator chainwhich canhave anarbitrarynumber

of inner operators. The operators are subsequently applied and their output is used as input for
the succeeding operators. The input of the Subprocess operator is used as input for the first
operator in it and the output of the last operator in the subprocess is used as the output of the
Subprocess operator. Subprocessesmake aprocessmoremanageable but don’t forget to connect
all inputs andoutputs in correct order. Alsomake sure that youhave connected the right number
of ports at all levels of the chain.
Subprocesses are useful in many ways. They give a structure to the entire process. Process

complexity is reduced and they become easy to understand and modify. Many operators have
a subprocess as their integral parts e.g. the X-Validation operator which is also shown in the
attached Example Process. It should be noted that connecting the input of a Subprocess directly
to its output without applying any operator in between or using an empty Subprocess gives no
results.

Input Ports
input (inp) The Subprocess operator can have multiple inputs. When one input is connected,

another input port becomes available which is ready to accept another input (if any). The
order of inputs remains the same. TheObject supplied at the first input port of the subpro-
cess is available at the first input port of the nested chain (inside the subprocess). Subpro-
cesses make a process more manageable but don’t forget to connect all inputs in correct
order. Make sure that you have connected the right number of ports at all levels of the
chain.

Output Ports
output (out) The Subprocess operator can have multiple outputs. When one output is con-

nected, another output port becomes available which is ready to deliver another output (if
any). The order of outputs remains the same. The Object delivered at the first output port
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of the subprocess is delivered at the first output of the outer process. Subprocesses make
a process more manageable but don’t forget to connect all outputs in correct order. Make
sure that you have connected the right number of ports at all levels of the chain.

Tutorial Processes

Using subprocesses to structure a process

Process

Golf

out

Purchases

out

Subprocess 1

in 

in 

in 

ou t

ou t

ou t

ou t

ou t

inp res

res

res

res

res

Figure 7.4: Tutorial process ‘Using subprocesses to structure a process’.

The ‘Golf’ dataset is loaded using the Retrieve operator. It is attached to the first input of the
Subprocess operator. Double click on the Subprocess operator to see what is inside this subpro-
cess. The first input of the subprocess is attached with a Decision Tree operator. The output of
the Decision Tree operator is given to the first output port. Now, go back to the main process.
You will see that the first output port of the Subprocess operator is attached to the first result
port. This explains the result ‘Tree(decision tree(golf))’ in the Results Workspace. This is how
it works: The Golf data set enters the subprocess through the first input port, then the Decision
Tree operator is applied on it in the subprocess, the resulting model is delivered to the results
via the first output port of the subprocess.
During the main process, the Purchases data set is loaded using the Retrieve operator. It is

attached to the second input port of the Subprocess operator. Double click on the Subprocess
operator to see what is inside this subprocess. The second input port of the subprocess is at-
tached directly to the second output port without applying any operator. Now, go back to the
main process. You will see that the second output port of the Subprocess operator is attached
to the second result port. But, as no operator is applied to the Purchases data set in the Subpro-
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cess, it fails to produce any results (not even the result of the Retrieve operator is shown in the
Results Workspace). This explains why we have three results in the Results Workspace despite
the attachment of four outputs to the results ports in the main process.
In the subprocess, the Iris data set is loaded using the Retrieve operator. It is connected to

the Decision Tree operator and the resultant model is attached to the third output port of the
subprocess, which is in turn attached to the third results port in themain process. This explains
the result ‘Tree (decision tree (Iris))’ in the Results Workspace.
In the Subprocess, theWeighting data set is loaded using Retrieve operator. It is connected to

the X-Validation operator and the resultant Performance Vector is attached to the forth output
port of the Subprocess, which is in turn attached to the forth results port in the main process.
This explains the result ‘performanceVector (Performance)’ in the Results Workspace. The X-
Validation operator itself is composed of a subprocess; double click on theX-Validation operator
and you will see the subprocess within this operator. Explanation of what is going on inside X-
Validation would be a diversion here. This operator was added here just to show how various
operators can be composed of a subprocess. To knowmore about the X-Validation operator you
can read its description.
Note: This Example Process is just for highlighting different perspectives of Subprocess oper-

ator. It may not be very useful in real scenarios. The Example Process of Performance operator
is also a good example of the usage of the Subprocess operator.
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7.1 Scripting
Execute Program

Execute Program

i n

t h r

ou t

err

t h r

This operator simply executes a command in the shell of the un-
derlying operating system. It can execute any system command or
external program.

Description

This operator executes a system command. The command and all its arguments are specified
by the command parameter. Please note that the command is system dependent. The standard
output streamof theprocess canbe redirected to the logfile by enabling the log stdoutparameter.
The standard error streamof theprocess canbe redirected to the logfile by enabling the log stderr
parameter.
In Windows / MS DOS, simple commands should be preceded by ‘cmd /c’ call, e.g. ‘cmd /c

notepad’. Just writing ‘notepad’ in the command parameter will also work in case you are ex-
ecuting a program and not just a shell command. Then Windows opens a new shell, executes
the command, and closes the shell again. However, Windows 7may not open a new shell, it just
executes the command. Another option would be to precede the command with ‘cmd /c start’
which opens the shell and keeps it open. The rest of the process will not be executed until the
shell is closed by the user. Please study the attached Example Processes for more information.
CAUTION: Due to a Java bug onWindows / MS DOS the operator is only able to stop first level

child processes. For example: When stopping the operator that was started with a command
containing a preceeding ‘cmd /c’, only the direct child process (the shell) will be closed but pro-
cesses started by these shell will still be running detached from RapidMiner.
The Java ProcessBuilder is used for building and executing the command. Characters that have

special meaning on the shell e.g. the pipe symbol or brackets and braces do not have a special
meaning to Java. Please note, that this Java method parses the string into tokens before it is
executed. These tokens are not interpreted by a shell. If the desired command involves piping,
redirection or other shell features, it is best to create a small shell script to handle this.

Input Ports

in (in ) A file object sent to this port will be piped to the standard input (stdin) of the process.

through (thr) It is not compulsory to connect any object with this port. Any object connected
at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the Execute Program operator
is available at the first through output port.

824



7.1. Scripting

Output Ports
out (out) If connected, the standard output stream (stdout) generated by this process will be

delivered as a file object.

err (err) If connected, the standard error stream (stderr) generated by this process will be de-
livered as a file object.

through (thr) The objects that were given as input are passed without changing to the output
through this port. It is not compulsory to connect this port to any other port, the com-
mand is executed even if this port is left without connections. The Execute Program op-
erator can have multiple outputs. When one output is connected, another through output
port becomes available which is ready to deliver another output (if any). The order of out-
puts remains the same. The object delivered at the first through input port of the Execute
Program operator is delivered at the first through output port

Parameters
command (string) This parameter specifies the command to be executed.

log stdout (boolean) If set to true, the stdout stream (standard output stream) of the com-
mand is redirected to the log file. Only available if out port is not connected.

log stderr (boolean) If set to true, the stderr stream (standard error stream) of the command
is redirected to the log file. Only available if err port is not connected.

working directory (string) Defines the working directory for the command. If no working
directory is defined the working directory of the current RapidMiner process is used.

env variables (list) Allows to set environment variables for the specified command. If an en-
vironment variable is defined multiple times, the last defined variable will be used.

Tutorial Processes

Introduction to the Execute Program operator

This Example Process uses the Execute Program operator to execute commands in the shell of
Windows 7. Two Execute Program operators are used. The command parameter of the first Ex-
ecute Program operator is set to ‘cmd /c java -version’. The command parameter of the second
Execute Program operator is set to ‘cmd /c notepad’. When the process is executed, first the java
version is described in the log window. Then the notepad is opened. The process waits for the
notepad to close. The process proceeds when the notepad is closed by the user. Please note that
setting the command parameter to just ‘notepad’ would have also worked here.

Opening Internet Explorer by the Execute Program operator

This Example Process uses the Execute Program operator to open the Internet Explorer browser
by using the shell commands of Windows 7. The command parameter of the Execute Program
operator is set to ‘cmd /c start C:\”Program Files”\”Internet Explorer”\”iexplore.exe”’. When
the process is executed, the Internet Explorer browser opens. The process waits for the Internet
Explorer browser to be closed by the user. The process proceeds when the Internet Explorer
browser is closed.

825



7. Utility

Process

Execute Program

i n

t h r

ou t

err

t h r

Execute Program.. .

i n
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ou t

err

t h r

inp res

Figure 7.5: Tutorial process ‘Introduction to the Execute Program operator’.

Piping data through a shell command

This process demonstrates how data can be streamed into and out of the executed command. In
particular, we open the Iris data set, write it as a CSV file into an in-memory File Object. This
buffer is then passed to the Execute Programoperator which executes the “sort” command. This
sorts the input and returns it at the >out port. Another Read CSV operator parses the sorted
output.
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Figure 7.6: Tutorial process ‘Opening Internet Explorer by the Execute Program operator’.
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Figure 7.7: Tutorial process ‘Piping data through a shell command’.

Execute Python

Execute Python

inp ou t Executes a Python script.

Description

Before using this operator you need to specify the path to your Python installation under Tools
-> Preferences -> Python Scripting. Your Python installation must include the pandas module
since example sets get converted to pandas.DataFrames.
This operator executes the script specified as parameter. The arguments of the script corre-

spond to the input ports, where example sets are converted topandas.DataFrames. Analogously,
the values returned by the script are delivered at the output ports of the operator, where pan-
das.DataFrames are converted to example sets.
The console output of Python is shown in the Log View (View -> Show View -> Log).
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Input Ports

input (inp) The Script operator can have multiple inputs. An input must be either an example
set, a file object or a Python object which was generated by an ‘Execute Python’ operator.

Output Ports

output (out) The Script operator can havemultiple outputs. An output can be either an exam-
ple set, a file object or a Python object generated by this operator.

Parameters

script (text) ThePython script to execute. Define amethodwithname ‘rm_main’with asmany
arguments as connected input ports or alternatively a *args argument to use a dynamic
number of attributes. The return values of themethod ‘rm_main’ are delivered to the con-
nected output ports. If the method returns a tuple then the single entries of the tuple are
delivered to the output ports. Entries from the data type ‘pandas.DataFrames’ are con-
verted to example sets; files are converted to File Objects, other Python objects are se-
rialized and can be used by other ‘Execute Python’ operators or stored in the repository.
Serialized Python objects have to be smaller than 2 GB.

If you pass an example set to your script through an input port, themeta data of the exam-
ple set (types and roles) is available in the script. You can access it by reading the attribute
rm_metadata of the associated pandas.DataFrame, in our example data.

data.rm_metadata is a dictionary from attribute names to a tuple of attribute type and at-
tribute role.

You can influence the meta data of an example set that you return as a pandas.DataFrame
by setting the attribute rm_metadata. If youdon’t specify attribute types in this dictionary,
they will be determined using the data types in Python. You can specify your own roles or
use the standard roles of RapidMiner like ‘label’.

Formore information about themeta data handling in aPythonoperator check the tutorial
process ‘Meta data handling’ below.

Tutorial Processes

Clustering using Python

Random data is generated and then fed to the Python script. The script clusters the data in
Python using asmany clusters as are specified in themacro. The resulting ExampleSet contains
the cluster in the ‘cluster’ attribute.

Building a model and applying it using Python

This tutorial process uses the ‘Execute Python’ operators to first build a decision tree model us-
ing the ‘Deals’ data and then applying it to the ‘Deals Testset’ data. Before using the data, it
the nominal values are converted to unique integers. The first Python scripting operator ‘build
model’ builds the model and delivers it to its output port. The second Python scripting oper-
ator ‘apply model’ applies this model to the testset, adding a column called prediction. After
specifying the ‘label’ and ‘prediction’ columns with ‘Set Role’, the result can be viewed.
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Figure 7.8: Tutorial process ‘Clustering using Python’.

Creating a plot using Python and storing it in your repository

This tutorial process uses the ‘Execute Python’ operator to first fetch example data, then create
a plot and return both to the output ports. Please store the process in your repository. The data
are shown as example set and the plot is stored in the repository as image.

Reading an example set from a file using Python

This tutorial process uses the ‘Execute Python’ operator to save example data in a csv file. The
second ‘Execute Python’ operator receives this file, reads the data and returns a part of the data
to the output port. The result is an example set.

Meta data handling

This tutorial process shows how to access the meta data of incoming example sets inside a ‘Ex-
ecute Python’ operator. It also explains how to set the meta data for the outcoming example
sets.
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Figure 7.9: Tutorial process ‘Building a model and applying it using Python’.

Execute R

Execute R

inp ou t Executes a R script.

Description

Before using this operator you need to specify the path to your R installation under Tools ->
Preferences -> R Scripting. Your R installation has to include the ‘data.table’ package.
This operator executes the script specified as parameter. The arguments of the script cor-

respond to the input ports, where example sets are converted to data frames. Analogously, the
values returned by the script are delivered at the output ports of the operator, where data frames
are converted to example sets.
The console output of R is shown in the Log View (View -> Show View -> Log).

Input Ports

input (inp) The Script operator can have multiple inputs. An input must be either an example
set, a file object or an R object which was generated by an ‘Execute R’ operator.

Output Ports

output (out) The Script operator can havemultiple outputs. An output can be either an exam-
ple set, a file object or an R object generated by this operator.
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7.1. Scripting

Process
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Figure 7.10: Tutorial process ‘Creating a plot using Python and storing it in your repository’.

Parameters

script (text) The R script to execute. Define a function with name ‘rm_main’ with as many
arguments as connected input ports or alternatively the ellipsis arguments (’...’) to use a
dynamic number of attributes. The return values of the function ‘rm_main’ are delivered
to the connected output ports. Entries from the data type ‘data frame’ are converted to
example sets; files are converted to File Objects, other R objects are serialized and can be
used by other ‘Execute R’ operators or stored in the repository. Serialized R objects have
to be smaller than 2 GB.

If you pass an example set to your script through an input port, the meta data of the ex-
ample set (types and roles) is available in the script. You can access it by the metaData list
object inR.Thenamesof topcomponents in the list are identical to thearguments fromthe
rm_main() function. Eachcomponentwill contain thenameofall attributesdefinedby that
input argument and its type and role. To access or change a specific meta data entry use
metaData$inputArgument$attributeName$typeormetaData$inputArgument$attributeName$role.
Please note that changes to themeta data have to bemade with the ‘superassignment’ op-
erator <<-.

For more information about the meta data handling in an R operator check the tutorial
process ‘Meta data handling’ below.

Tutorial Processes
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res

Figure 7.11: Tutorial process ‘Reading an example set from a file using Python’.
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Figure 7.12: Tutorial process ‘Meta data handling’.

Training and applying a linear model in R

The polynomial data set is split in two parts. The first part is used by the ‘Execute R’ operator to
train a linear model in R. The calculated model is passed on to the second ‘Execute R’ operator
and applied there on the second part of the data set.

Generating probability density functions for different probability functions in R

This script generates sample points for some statistical density functions and returns them as
an example set.

Reading an example set from a file using R

This tutorial process uses the ‘Execute R’ operator to save example data in a csv file. The second
‘Execute R’ operator receives this file, reads the data and returns a part of the data to the output
port. The result is an example set.
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Figure 7.13: Tutorial process ‘Training and applying a linear model in R’.
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inp res

res

Figure 7.14: Tutorial process ‘Generating probability density functions for different probability
functions in R’.

Meta data handling

This tutorial process shows how to access the meta data of incoming example sets inside a ‘Ex-
ecute R’ operator. It also explains how to set the meta data for the outcoming example sets.
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Figure 7.15: Tutorial process ‘Reading an example set from a file using R’.
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Figure 7.16: Tutorial process ‘Meta data handling’.

Execute SQL

Execute SQL

t h r t h r This operator executes the specified SQL statement on the speci-
fied database.

Description

The Execute SQL operator executes the specified SQL statement on the specified SQL database.
The SQL query can be specified through the query parameter. If the SQL query is in a file then the
path of that file can be specified through the query file parameter. Please note that this operator
cannot be used for loading data fromdatabases. It can be used for executing SQL statements like
CREATE or ADD etc. In order to load data from an SQL database, please use the Read Database
operator. You need to have at least a basic understanding of databases, database connections
and queries in order to use this operator properly. Please go through the parameters and the
attached Example Process to understand the working of this operator.
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Differentiation
• Read Database The ReadDatabase operator is used for loading data from a database into
RapidMiner. The Execute SQL operator cannot be used for loading data from databases. It
can be used for executing SQL statements like CREATE or ADD etc on the database. See
page 52 for details.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the Execute SQL operator is
available at the first through output port.

Output Ports
through (thr) The objects that were given as input are passed without changing to the output

through this port. It is not compulsory to connect this port to any other port; the SQL com-
mand is executed even if this port is left without connections. The Execute SQL operator
can have multiple outputs. When one output is connected, another through output port
becomes available which is ready to deliver another output (if any). The order of outputs
remains the same. The object delivered at the first through input port of the Execute SQL
operator is delivered at the first through output port

Parameters
define connection (selection) This parameter indicates how thedatabase connection should

be specified. It gives you three options: predefined, url and jndi.

connection (selection) This parameter is only availablewhen the define connection parameter
is set to predefined. This parameter is used for connecting to a database using a predefined
connection. Youcanhavemanypredefinedconnections. Youcanchooseoneof themusing
the drop down list. You can add a new connections or modify previous connections using
the button next to the drop down list. Youmay also accomplish this by clicking onManage
Database Connections... from theToolsmenu in themainwindow. Anewwindowappears.
This window asks for several details e.g. Host, Port, Database system, schema, username
and password. The Test button in this new window will allow you to check whether the
connection can be made. Save the connection once the test is successful. After saving a
new connection, it can be chosen from the drop down list of the connection parameter. You
need to have a basic understanding of databases for configuring a connection.

database system (selection) This parameter is only available when the define connection pa-
rameter is set to url. This parameter is used for selecting the database system in use. It
can have one of the following values: MySQL, PostgreSQL, Sybase, HSQLDB, ODBCBridge
(e.g. Access), Microsoft SQL Server (JTDS), Ingres, Oracle.

database url (string) This parameter is only available when the define connection parameter
is set to url. This parameter is used for defining theURL connection string for the database,
e.g. ‘jdbc:mysql://foo.bar:portnr/database’.
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username (string) This parameter is only available when the define connection parameter is
set to url. This parameter is used for specifying the username of the database.

password (string) This parameter is only available when the define connection parameter is
set to url. This parameter is used for specifying the password of the database.

jndi name (string) This parameter is only available when the define connection parameter is
set to jndi. This parameter is used for specifying the JNDI name for a data source.

query (string) This parameter is used for specifying the SQL query which will be executed on
the specified database.

query file (filename) This parameter is used for selecting the file that contains the SQL query
which will be executed on the specified database. Long queries are usually stored in files.
Storing queries in files can also enhance reusability.

prepare statement (boolean) If checked, the statement is prepared, and ‘?’ can be filled in
using the parameters parameter.

parameters (enumeration) This parameter specifies the Parameters to insert into ‘?’ place-
holders when the statement is prepared.

Related Documents
• Read Database (page 52)

Tutorial Processes

Creating a new table in mySQL database

Process

Execute SQL

t h r t h r

inp res

Figure 7.17: Tutorial process ‘Creating a new table in mySQL database’.

The Execute SQL operator is used for creating a new table in an existingmySQL database. The
define connection parameter is set to predefined. The define connection parameter was config-
ured using the buttonnext to the drop down list. The nameof the connectionwas set to ‘mySQL-
conn’. The followingvalueswere set in the connectionparameter’swizard. TheDatabase system
was set to ‘mySQL’. The Host was set to ‘localhost’. The Port was set to ‘3306’. The Database
scheme was set to ‘golf’; this is the name of the database. The User was set to ‘root’. No pass-
word was provided. You will need a password if your database is password protected. Set all the
values and test the connection. Make sure that the connection works.
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The query parameter is set to the following query: ‘CREATE TABLE Weather(Temperature
INTEGER)’. This query creates a new table named Weather in the ‘golf’ database. This table
has one integer attribute named Temperature. Run the process, you will not see any results in
RapidMiner because this operator did not return anything. It simply executed the query on the
specified database. So, in order to see the changes you can open the database and verify that a
new table has been created.
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Execute Script

Execute Script

inp ou t

This operator executes Java code and/or Groovy scripts. This ba-
sically means that users can write their own operators directly
within the process by specifying Java code and/or a Groovy script
whichwill be interpretedandexecutedduring theprocess runtime.

Description
This is a very powerful operator because it allows you to write your own script. This operator
should be used if the task you want to perform through your script cannot be performed by ex-
isting RapidMiner operators because writing scripts can be time-consuming and error-prone.
Groovy is an agile and dynamic language for the Java Virtual Machine. It builds upon the

strengths of Java but has additional power features inspired by languages like Python, Ruby and
Smalltalk. Groovy integrates well with all existing Java classes and libraries because it compiles
straight to Java bytecode so you can use it anywhere you can use Java. For a complete reference
of Groovy scripts please refer to http://groovy.codehaus.org/.
In addition to the usual scripting code elements from Groovy, the RapidMiner scripting op-

erator defines some special scripting elements:

• If the standard imports parameter is set to true, all important types like Example, Exam-
pleSet, Attribute, Operator etc as well as themost important Java types like collections etc
are automatically imported and can directly be used within the script. Hence, there is no
need for importing them in your script. However, you can import any other class you want
and use it in your script.

• The current operator (the scripting operator for which you define the script) is referenced
by operator.
– Example: operator.log(”text”)

• All operatormethods like log (see above) that access the input or the complete process can
directly be used by writing a preceding operator.
– Example: operator.getProcess()

• Input of the operator canbe retrieved via the inputmethod getInput(Class)of the surround-
ing operator.
– Example: ExampleSet exampleSet = operator.getInput(ExampleSet.class)

• You can iterate over examples with the following construct:
– for (Example example : exampleSet) { ... }

• You can retrieve example values with the shortcut:
– In case of non-numeric values: String value = example[”attribute_name”];
– In case of numeric values: double value = example[”attribute_name”];

• You can set example values with the shortcut:
– In case of non-numeric values: example[”attribute_name”] = “value”;
– In case of numeric values: example[”attribute_name”] = 5.7;

Please study theattachedExampleProcesses forbetterunderstanding. Pleasenote thatScripts
written for this operatormay access Java code. Scriptsmay hence become incompatible in future
releases of RapidMiner.
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Input Ports
input (inp) The Script operator can have multiple inputs. When one input is connected, an-

other input port becomes available which is ready to accept another input (if any).

Output Ports
output (out) The Script operator can have multiple outputs. When one output is connected,

another output port becomes available which is ready to deliver another output (if any).

Parameters
script The script to be executed is specified through this parameter.

standard imports (boolean) If the standard imports parameter is set to true, all important
types like Example, ExampleSet, Attribute, Operator etc aswell as themost important Java
types like collections etc are automatically imported and can directly be used within the
script. Hence, there is no need for importing them in your script. However, you can import
any other class you want and use it in your script.

Tutorial Processes

Iterating over attributes for changing the attribute names to lower case

Process

Purchases

out

Execute Script

inp

inp

ou t

ou t

inp

res

res

Figure 7.18: Tutorial process ‘Iterating over attributes for changing the attribute names to lower
case’.

The ‘Purchases’ data set is loaded using the Retrieve operator. A breakpoint is inserted here
so that you can view the ExampleSet. Note that the names of all attributes of the ExampleSet are
in upper case letters. The Script operator is applied on the ExampleSet. The script changes the
attribute names to lower case letters. This can be verified by viewing the results in the Results
Workspace.
Here is a brief description of what happens in the script. First the input of the operator is

retrieved via the input method getInput(Class). Then the for loop iterates for all attributes and
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uses the toLowerCase() method to change the names of the attributes to lower case letters. At
the end, the modified ExampleSet is returned.
Please note that this is a very simple script, it was included here just to introduce you with

working of this operator. This operator can be used to perform very complex tasks.

Iterating over all examples for changing the attribute values to upper case

Process

Purchases

out

Execute Script

inp

inp

ou t

ou t

inp

res

res

Figure 7.19: Tutorial process ‘Iterating over all examples for changing the attribute values to
upper case’.

The ‘Purchases’ data set is loaded using the Retrieve operator. A Breakpoint is inserted here
so that you can view the ExampleSet. Note that the values of all attributes of the ExampleSet are
in lower case letters. The Script operator is applied on the ExampleSet. The script changes the
attribute values to upper case letters. This can be verified by viewing the results in the Results
Workspace.
Here is a brief description of what happens in the script. First the input of the operator is

retrieved via the inputmethod getInput(Class). Then the outer for loop iterates for all attributes
and stores the name of the current attribute in a string variable. Then the inner for loop iterates
over all the examples of the current attribute and changes the values from lower to upper case
using the toUpperCase() method. At the end, the modified ExampleSet is returned.
Please note that this is a very simple script, it was included here just to introduce you with

working of this operator. This operator can be used to perform very complex tasks.

Subtracting mean of numerical attributes from attribute values

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can view the ExampleSet. Note the values of the ‘Temperature’ and ‘Humidity’ attributes.
The Script operator is applied on the ExampleSet. The script subtracts themean of each numer-
ical attribute from all values of that attribute. This can be verified by viewing the results in the
Results Workspace.
Here is a brief description of what happens in the script. First the input of the operator is

retrieved via the inputmethod getInput(Class). Then the outer for loop iterates for all attributes
and stores the name of the current attribute in a string variable and the mean of this attribute
in a double type variable. Then the inner for loop iterates over all the examples of the current
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Root

Golf

out

Execute Script

inp

inp

ou t

ou t

inp

res

res

Figure 7.20: Tutorial process ‘Subtracting mean of numerical attributes from attribute values’.

attribute and subtracts themean from the current value of the example. At the end, themodified
ExampleSet is returned.
Please note that this is a very simple script, it was included here just to introduce you with

working of this operator. This operator can be used to perform very complex tasks.
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7.2 Process Control
Publish to App

Publish to App

sto sto
This operator stores the given object in theRapidMiner Server App
or the current RapidMiner Studio session. The stored object can be
retrieved by using the Recall from App operator.

Description
The Publish to App operator can be used to store the input object in the RapidMiner Server App
or the current RapidMiner Studio session. The name of the object is specified through the name
parameter. The stored object can later be retrieved via the Recall from App operator by using
the same name (i.e. the name that was used to store it with the Publish to App operator). When
an object was stored by the Publish to App operator once, it can be recalled at any point in the
RapidMiner Server App. But care should be taken that the execution order of operators is such
that the Publish toAppoperator for an object is executed before theRecall fromAppoperator for
that object. The combination of these two operators can be used to build complex RapidMiner
Server Apps, where an input object is stored once and used in completely different parts of the
App later on.

Differentiation
• Recall from App The Publish to App operator is always used in combination with the
Recall from App operator. The Publish to App operator stores the required object in the
RapidMiner Server App and the Recall from App operator retrieves the stored object when
required. See page 846 for details.

Input Ports
store (sto) Any object can be provided here. This objectwill be stored in theRapidMiner Server

App or the current RapidMiner Studio session.

Output Ports
stored (sto) Theobject thatwasgivenas input ispassedwithout changing to theoutput through

this port. It is not compulsory to attach this port to anyother port, the objectwill be cached
even if this port is left without connections.

Parameters
name (string) The name under which the input object is stored is specified through this pa-

rameter. The same name will be used for retrieving this object through the Recall from
App operator.

Related Documents
• Recall from App (page 846)
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Tutorial Processes

Introduction to Publish to App and Recall from App operators

Process

Golf

out

Validat ion

t ra mod

t ra

ave

ave

Recall from App

t h r res

th r

inp

res

res

Figure 7.21: Tutorial process ‘Introduction to Publish to App and Recall from App operators’.

This process uses the combination of the Publish to App and Recall from App operators to
display the testing data set of the Split Validation operator. The testing data set is present in
the testing subprocess of the Split Validation operator but it is not available outside the Split
Validation operator.
The ‘Golf’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-

plied on it. The test set size parameter is set to 5 and the training set size parameter is set to -1.
Thus the test set in the testing subprocess will be composed of 5 examples. The Default Model
operator is used in the training subprocess to train a model. The testing data set is available at
the tes port of the testing subprocess. The Publish to App operator is used to store the testing
data set in the RapidMiner Server App. The name and io object parameters are set to ‘Testset’
and ‘ExampleSet’ respectively. The Apply Model and Performance operator are applied in the
testing subprocess later. In the main process, the Recall from App operator is used to retrieve
the testing data set. The name and io object parameters of the Recall from App operator are set
to ‘Testset’ and ‘ExampleSet’ respectively to retrieve the object that was cached by the Publish
to App operator. The output of the Recall from App operator is connected to the result port of
the process. Therefore the testing data set can be seen in the Results view.
The operator Recall from App cannot be used to retrieve objects stored with the Remember

operator, and the operator Recall cannot be used to retrieve objects stored with the Publish to
App operator. They do not use the same storage.
The difference to the operators Remember and Recall is that Publish to App does not only

store an object for the process execution (as the Remember operator does), but for the lifetime
of a RapidMiner Server App. This means that the Recall from App operator could also be part of
another process in the same RapidMiner Server App and would retrieve the same object as long
as the process, which remembers the object for the App, was executed beforehand.
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Recall

Recall

res
This operator retrieves the specified object from the object store of
the process. The objects can be stored in the object store by using
the Remember operator.

Description
The Recall operator can be used for retrieving the specified object from the object store of the
process. The name of the object is specified through the name parameter. The io object parame-
ter specifies the class of the required object. The Recall operator is always used in combination
with the operators like the Remember operator. For Recall operator to retrieve an object, first it
is necessary that the object should be stored in the object store by using operators like the Re-
member operator. The name and class of the object are specified when the object is stored using
the Remember operator. The same name (in name parameter) and class (in io object parameter)
should be specified in the Recall operator to retrieve that object. The same stored object can be
retrieved multiple number of times if the remove from store parameter of the Recall operator is
not set to true. There is no scoping mechanism in RapidMiner processes therefore objects can
be stored (using Remember operator) and retrieved (using Recall operator) at any nesting level.
But care should be taken that the execution order of operators is such that the Remember oper-
ator for an object always executes before the Recall operator for that object. The combination
of these two operators can be used to build complex processes where an input object is used in
completely different parts or loops of the processes.

Differentiation
• Remember The Recall operator is always used in combination with the Remember op-
erator. The Remember operators stores the required object into the object store and the
Recall operator retrieves the stored object when required.
See page 849 for details.

Output Ports
result (res) The specifiedobject is retrieved from theobject store of theprocess and is delivered

through this output port.

Parameters
name (string) The name of the required object is specified through this parameter. This name

should be the same name that was used while storing the object in an earlier part of the
process.

io object (selection) The class of the required object is selected through this parameter. This
class should be the same class that was used while storing the object in an earlier part of
the process.

remove from store (boolean) If this parameter is set to true, the specified object is removed
from the object store after it has been retrieved. In such a case the object can be retrieved
just once. If this parameter is set to false, the object remains in the object store even after
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retrieval. Thus the object can be retrieved multiple number of times (by using the Recall
operator multiple number of times).

Related Documents
• Remember (page 849)

Tutorial Processes

Introduction to Remember and Recall operators

Process

Golf

out

Validat ion

t ra mod

t ra

ave

ave Recall

res

inp

res

res

Figure 7.22: Tutorial process ‘Introduction to Remember and Recall operators’.

This processuses the combinationof theRemember andRecall operators todisplay the testing
data set of the Split Validation operator. The testing data set is present in the testing subprocess
of the Split Validation operator but it is not available outside the Split Validation operator.
The ‘Golf’’ data set is loaded using the Retrieve operator. The Split Validation operator is

applied on it. The test set size parameter is set to 5 and the training set size parameter is set to -
1. Thus the test set in the testing subprocesswill be composed of 5 examples. TheDefaultModel
operator is used in the training subprocess to train a model. The testing data set is available at
the tes port of the testing subprocess. The Remember operator is used to store the testing data
set into the object store of the process. The Apply Model and Performance operator are applied
in the testing subprocess later. In the main process, the Recall operator is used to retrieve the
testing data set. Thenameand io object parameters of theRecall operator are set to ‘Testset’ and
‘ExampleSet’ respectively to retrieve the object that was stored by the Remember operator. The
output of the Recall operator is connect to the result port of the process. Therefore the testing
data set can be seen in the Results Workspace.
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Recall from App

Recall from App

t h r res

th r

This operator retrieves the specified object from a RapidMiner
Server App or the current RapidMiner Studio session. Ojects can
be stored by using the Publish to App operator.

Description
The Recall from App operator can be used for retrieving the specified object from a RapidMiner
ServerAppor the currentRapidMiner Studio session. Thenameof theobject is specified through
the name parameter. The Recall from App operator is always used in combination with the Pub-
lish to App operator. For the Recall from App operator to retrieve an object, first it is necessary
that the object has to be stored by using the Publish to App operator. The name of the object is
specified when the object is stored. The same name (in name parameter) should be specified in
the Recall from App operator to retrieve that object. The same object can be retrieved multiple
times, even from within another process, if the remove from app parameter of the Recall from
App operator is not set to true. When an object was stored by the Publish to App operator once,
it can be recalled at any point in the RapidMiner Server App or the current RapidMiner Studio
session. But care should be taken that the execution order of operators is such that the Publish
to App operator for an object always executes before the Recall from App operator for that ob-
ject. The combination of these two operators can be used to build complex RapidMiner Server
Appswhere an input object is stored once and used in completely different parts of the App later
on.

Differentiation
• Publish to AppTheRecall fromAppoperator is always used in combinationwith the Pub-
lish toAppoperator. ThePublish toAppoperator stores the input object in theRapidMiner
Server App and the Recall from App operator retrieves the stored object when required.
See page ?? for details.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the Recall from App operator
is available at the first through output port.

Output Ports
result (res) The specified object is retrieved from the RapidMiner Server App or the current

RapidMiner Studio session and is delivered through this output port.

through (thr) The objects that were given as input are passed without changing to the output
through this port. It is not compulsory to attach this port to any other port, the specified
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object is retrieved from the RapidMiner Server App even if this port is left without con-
nections. The Recall from App operator can have multiple outputs. When one output is
connected, another through output port becomes available which is ready to deliver an-
other output (if any). The order of outputs remains the same. The object delivered at the
first through input port of the Recall from App operator is delivered at the first through
output port

Parameters
name (string) The name of the required object is specified through this parameter. This name

should be the same name that was used while storing the object in an earlier call of the
operator Publish to App.

remove from dashboard (boolean) If this parameter is set to true, the specified object is
removed from the RapidMiner Server App or the current RapidMiner Studio session after
it has been retrieved. In such a case the object can be retrieved just once. If this parameter
is set to false, the object remains in the RapidMiner Server App even after retrieval. Thus
the object can be retrieved by multiple Recall from App operators.

Related Documents
• Publish to App (page ??)

Tutorial Processes

Introduction to Publish to App and Recall from App operators

Process

Golf

out

Validat ion

t ra mod

t ra

ave

ave

Recall from App

t h r res

th r

inp
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res

Figure 7.23: Tutorial process ‘Introduction to Publish to App and Recall from App operators’.

This process uses the combination of the Publish to App and Recall from App operators to
display the testing data set of the Split Validation operator. The testing data set is present in
the testing subprocess of the Split Validation operator but it is not available outside the Split
Validation operator.
The ‘Golf’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-

plied on it. The test set size parameter is set to 5 and the training set size parameter is set to -1.
Thus the test set in the testing subprocess will be composed of 5 examples. The Default Model
operator is used in the training subprocess to train a model. The testing data set is available at
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the tes port of the testing subprocess. The Publish to App operator is used to store the testing
data set in the RapidMiner Server App. The name and io object parameters are set to ‘Testset’
and ‘ExampleSet’ respectively. The Apply Model and Performance operator are applied in the
testing subprocess later. In the main process, the Recall from App operator is used to retrieve
the testing data set. The name and io object parameters of the Recall from App operator are set
to ‘Testset’ and ‘ExampleSet’ respectively to retrieve the object that was cached by the Publish
to App operator. The output of the Recall from App operator is connected to the result port of
the process. Therefore the testing data set can be seen in the Results view.
The operator Recall from App cannot be used to retrieve objects stored with the Remember

operator, and the operator Recall cannot be used to retrieve objects stored with the Publish to
App operator. They do not use the same storage.
The difference to the operators Remember and Recall is that Publish to App does not only

store an object for the process execution (as the Remember operator does), but for the lifetime
of a RapidMiner Server App. This means that the Recall from App operator could also be part of
another process in the same RapidMiner Server App and would retrieve the same object as long
as the process, which remembers the object for the App, was executed beforehand.
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Remember

Remember

sto sto
This operator stores the given object in the object store of the pro-
cess. The stored object can be retrieved from the store by using the
Recall operator.

Description
The Remember operator can be used to store the input object into the object store of the process
under the specified name. The name of the object is specified through the name parameter. The
io object parameter specifies the class of the object. The stored object can later be restored by
the Recall operator by using the same name and class (i.e. the name and class that was used to
store it using the Remember operator). There is no scopingmechanism in RapidMiner processes
therefore objects can be stored (using Remember operator) and retrieved (using Recall operator)
at any nesting level. But care should be taken that the execution order of operators is such that
the Remember operator for an object always executes before the Recall operator for that object.
The combination of these two operators can be used to build complex processes where an input
object is used in completely different parts or loops of the processes.

Differentiation
• Recall The Remember operator is always used in combination with the Recall operator.
The Remember operators stores the required object into the object store and the Recall
operator retrieves the stored object when required.

See page 844 for details.

Input Ports
store (sto) Any object can be provided here. This object will be stored in the object store of

the process. It should be made sure that the class of this object is selected in the io object
parameter.

Output Ports
stored (sto) Theobject thatwasgivenas input ispassedwithout changing to theoutput through

this port. It is not compulsory to attach this port to any other port, the object will be stored
even if this port is left without connections.

Parameters
name (string) The name under which the input object is stored is specified through this pa-

rameter. The samenamewill be used for retrieving this object through theRecall operator.

io object (selection) The class of the input object is selected through this parameter.

Related Documents
• Recall (page 844)
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Tutorial Processes

Introduction to Remember and Recall operators

Process
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Figure 7.24: Tutorial process ‘Introduction to Remember and Recall operators’.

This processuses the combinationof theRemember andRecall operators todisplay the testing
data set of the Split Validation operator. The testing data set is present in the testing subprocess
of the Split Validation operator but it is not available outside the Split Validation operator.
The ‘Golf’ data set is loaded using the Retrieve operator. The Split Validation operator is ap-

plied on it. The test set size parameter is set to 5 and the training set size parameter is set to -1.
Thus the test set in the testing subprocess will be composed of 5 examples. The Default Model
operator is used in the training subprocess to train a model. The testing data set is available at
the tes port of the testing subprocess. The Remember operator is used to store the testing data
set into the object store of the process. The name and io object parameters are set to ‘Testset’
and ‘ExampleSet’ respectively. The Apply Model and Performance operator are applied in the
testing subprocess later. In the main process, the Recall operator is used to retrieve the test-
ing data set. The name and io object parameters of the Recall operator are set to ‘Testset’ and
‘ExampleSet’ respectively to retrieve the object that was stored by the Remember operator. The
output of the Recall operator is connected to the result port of the process. Therefore the testing
data set can be seen in the Results Workspace.
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7.2.1 Loops
Loop

Loop

inp ou t

This operator loops over the subprocess as often as it is specified
in the parameter number of iterations. The iteration macro returns
the value of the current number of iteration.

Description

The operators in the subprocess are executed asmany times as defined in the parameter number
of iterations. By default, the input of each iteration will always be the original input data. This
can be changed with the reuse results parameter, which changes the output of each iteration to
be the input of the next iteration. For obvious reasons, this will limit the loop to run in a single
thread and not make use of more CPU cores.

Input Ports

input (inp) This port receives an IOObject which is passed on to the inner process for each it-
eration. If the reuse results parameter is selected, all subsequent iterations after the first
one will use the results of the output ports of the previous iteration.

Output Ports

output (out) This port collects every result that is provided by the inner process. If reuse results
is selected, only the result of the last iteration will be returned. Otherwise, a collection of
all results of each iteration will be returned. The order of the ports is the same inside and
outside the operator.

Parameters

number of iterations (integer) The number of iterations specifies how often the subprocess
will be executed.

iteration macro (string) The name of the iteration macro which can be accessed in the sub-
process.

reuse results (boolean) Set whether to reuse the results of each iteration as the input of the
next iteration. If set to true, the output of each iteration is used as input for the next iter-
ation. For obvious reasons, this will limit the loop to run in a single thread and not make
use of more CPU cores. If set to false, the input of each iteration will be the original input
of the loop.

enable parallel execution (boolean) This parameter enables the parallel execution of the
subprocess. Please disable the parallel execution if you run into memory problems.
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Figure 7.25: Tutorial process ‘Using a basic loop’.

Tutorial Processes

Using a basic loop

The ‘Deals’ data set is loaded using the Retrieve operator and supplied to the Loop operator.
Inside the Loop operator, nothing else is done than returning the input as result after waiting

for 1 second and adding an attribute based on the current iteration of the loop.
The result of the process is a collection of the results of each iteration.

Reusing results in a loop

Process
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Figure 7.26: Tutorial process ‘Reusing results in a loop’.

The ‘Deals’ data set is loaded using the Retrieve operator and supplied to the Loop operator.
Inside the Loop operator, nothing else is done than returning the input as result after waiting

for 1 second and adding an attribute based on the current iteration of the loop.
The results of each iteration are reused as the input of the next iteration, so the final result

of the Loop operator is not a collection of each iteration result, but rather the result of the final
iteration.
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7.2. Process Control

Loop Attribute Subsets

Loop Subsets

exa exa

This operator iterates over its subprocess for all possible combi-
nations of regular attributes in the input ExampleSet. Optionally,
the minimum and maximum number of attributes in a combina-
tion can be specified by the user.

Description
The Loop Attribute Subsets operator is a nested operator i.e. it has a subprocess. The subpro-
cess of the Loop Attribute Subsets operator executes n number of times, where n is the number
of possible combinations of the regular attributes in the given ExampleSet. The user can spec-
ify the minimum and maximum number of attributes in a combination through the respective
parameters; in this case the value of n will change accordingly. So, if an ExampleSet has three
regular attributes say a, b and c. Then this operator will execute 7 times; once for each attribute
combination. The combinations will be {a},{b},{c},{a,b},{a,c},{b,c} and {a,b,c}. Please study the
attached Example Process for more information.
This operator can be useful in combination with the Log operator and, for example, a perfor-

mance evaluation operator. In contrast to the brute force feature selection, which performs a
similar task, this iterative approach needs much less memory and can be performed on larger
data sets.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
example set (exa) TheExampleSet thatwas given as input is delivered through this portwith-

out any modifications.

Parameters
use exact number (boolean) If this parameter is set to true, then the subprocess will be ex-

ecuted only for combinations of a specified length i.e. specified number of attributes. The
length of combinations is specified by the exact number of attributes parameter.

exact number of attributes (integer) This parameter determines the exact number of at-
tributes to be used for the combinations.

min number of attributes (integer) Thisparameterdetermines theminimumnumberof at-
tributes to be used for the combinations.

limit max number (boolean) If this parameter is set to true, then the subprocess will be exe-
cuted only for combinations that have less than or equal tom number of attributes; where
m is specified by the max number of attributes parameter.

max number of attributes (integer) This parameter determines the maximum number of
attributes to be used for the combinations.
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Tutorial Processes

Introduction to the Loop Attribute Subsets operator

Process

Golf

out

Loop Subsets

exa exa

inp

res

res

Figure 7.27: Tutorial process ‘Introduction to the Loop Attribute Subsets operator’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet before the application of the Loop Attribute Subsets op-
erator. You can see that the ExampleSet has four regular attributes. The Loop Attribute Subsets
operator is applied on this ExampleSet with default values of all parameters. As no limit is ap-
plied on the minimum and maximum number of attributes in a combination, the subprocess
of this operator will execute for all possible combinations of the four regular attributes. Have
a look at the subprocess of the Loop Attribute Subsets operator. The Log operator is applied
there to store the names of attributes of each iteration in the Log table. Execute the process
and shift to the Results Workspace. Check the Table View of the Log results. You will see the
names of attributes of each iteration. As there were 4 attributes there are 15 possible non-null
combinations.
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7.2. Process Control

Loop Attributes

Loop Attributes

inp ou t

This operator selects a subset (one ormore attributes) of the input
ExampleSet and iterates over its subprocess for all the selected at-
tributes. The subprocess can access the attribute of current itera-
tion by a macro.

Description
The Loop Attributes operator has a number of parameters that allow you to select the required
attributes of the input ExampleSet. Once the attributes are selected, the Loop Attributes opera-
tor applies its subprocess for each attribute i.e. the subprocess executesnnumber of timeswhere
n is the number of selected attributes. In all iterations the attribute of the current iteration can
be accessed using the macro specified in the iteration macro parameter. You need to have ba-
sic understanding of macros in order to apply this operator. Please study the documentation
of the Extract Macro operator for basic understanding of macros. The Extract Macro operator is
also used in the attached Example Process. Formore information regarding subprocesses please
study the Subprocess operator.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
example set (exa) The resultantExampleSet, orCollectionofExampleSets isdelivered through

this port.

Parameters
attribute filter type (selection) This parameter allows you to select the attribute selection

filter; the method you want to use for selecting attributes. It has the following options:

• all This option simply selects all the attributes of the ExampleSet, no attributes are
removed. This is the default option.

• single This option allows the selection of a single attribute. When this option is se-
lected another parameter (attribute) becomes visible in the Parameters panel.

• subset This option allows the selection of multiple attributes through a list. All at-
tributes of ExampleSet are present in the list; required attributes can be easily se-
lected. This option will not work if the meta data is not known. When this option is
selected another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for the
attribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
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belong to the numeric type. The user should have a basic understanding of type hi-
erarchy when selecting attributes through this option. When this option is selected
some other parameters (value type, use value type exception) become visible in the
Parameters panel.

• block_type This option is similar in working to the value_type option. This option
allows the selection of all the attributes of a particular block type. It should be noted
that block types may be hierarchical. For example value_series_start and value_series-
_end block types both belong to the value_series block type. When this option is se-
lected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric_value_filterWhen this option is selected another parameter (numeric con-
dition) becomes visible in the Parameters panel. All numeric attributes whose exam-
ples all satisfy the mentioned numeric condition are selected. Please note that all
nominal attributes are also selected irrespective of the given numerical condition.

attribute (string) The required attribute can be selected from this option. The attribute name
canbe selected fromthedropdownboxof theattributeparameter if themetadata is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list, which is the list of selected attributes that will make it to the output port; all
other attributes will be removed.

regular expression (string) Theattributeswhosenamematch this expressionwill be selected.
Regular expression is very powerful tool but needs a detailed explanation to beginners. It
is always good to specify the regular expression through the edit and preview regular expres-
sion menu. This menu gives a good idea of regular expressions and it also allows you to
try different expressions and preview the results simultaneously. This will enhance your
concept of regular expressions.

use except expression (boolean) If enabled, an exception to the first regular expression can
be specified. When this option is selected another parameter (except regular expression)
becomes visible in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, numeric, integer, real, text, bi-
nominal, polynominal, file_path, date_time, date, time.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. the value type param-
eter’s value. One of the following types can be selected here: nominal, numeric, integer,
real, text, binominal, polynominal, file_path, date_time, date, time.
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block type (selection) The Block type of attributes to be selected can be chosen from a drop
down list. One of the following types can be chosen: single_value, value_series, value-
_series_start, value_series_end, value_matrix, value_matrix_start, value_matrix_end, value-
_matrix_row_start.

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type. One of the
following block types can be selected here: single_value, value_series, value_series_start,
value_series_end, value_matrix, value_matrix_start, value_matrix_end, value_matrix_row-
_start.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is mention here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

invert selection (boolean) If this parameter set to true, it acts as a NOT gate, it reverses the
selection. In that case all the selected attributes are removed and previously removed at-
tributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is re-
moved prior to selection of this parameter. After selection of this parameter ‘att1’ will be
removed and ‘att2’ will be selected.

include special attributes (boolean) Special attributesareattributeswith special roleswhich
identify the examples. In contrast regular attributes simply describe the examples. Spe-
cial attributes are: id, label, prediction, cluster, weight and batch. By default all special
attributes are delivered to the output port irrespective of the conditions in the Select At-
tribute operator. If this parameter is set to true, Special attributes are also tested against
conditions specified in the Select Attribute operator and only those attributes are selected
that satisfy the conditions.

attribute name macro (string) This parameter specifies the name of themacro which holds
the name of the current attribute in each iteration.

reuse results (boolean) Set whether to reuse the results of each iteration as the input of the
next iteration. If set to true, the output of each iteration is used as input for the next iter-
ation. For obvious reasons, this will limit the loop to run in a single thread and not make
use of more CPU cores. If set to false, the input of each iteration will be the original input
of the loop.

enable parallel execution (boolean) This parameter enables the parallel execution of the
subprocess. Please disable the parallel execution if you run into memory problems.

Tutorial Processes

Generating new attributes in the Loop Attributes operator

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet before application of the Loop Attributes operator. Have
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Process
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Figure 7.28: Tutorial process ‘Generating new attributes in the Loop Attributes operator’.

a look at the parameters of the Loop Attributes operator. The attribute filter type parameter is
set to ‘value type’ and the value type parameter is set to ‘numeric’ and the include special at-
tributes parameter is set to true. Thus all numeric attributes are selected from the ‘Golf’ data
set i.e. the Temperature and Humidity attributes are selected. Therefore the subprocess of the
Loop Attributes operator will iterate twice. In each iteration the current attribute can be ac-
cessed by the ‘loop_attribute’ macro defined by the iteration macro parameter. Now have a look
at the subprocess of the Loop Attributes operator. The Extract Macro operator is applied first.
The parameters of the Extract Macro operator are adjusted such that the ‘avg’ macro holds the
average or mean of the attribute of the current iteration. Please note how the ‘loop_attribute’
macro is used in parameters of the Extract Macro operator. Next, the Generate Attributes op-
erator is applied. It generates a new attribute from the attribute of the current iteration. The
new attribute holds the deviation of examples from the mean of that attribute. The mean was
stored in the ‘avg’ macro. Please note carefully the use of macros in the function descriptions
parameter of the Generate Attributes operator.
Thus the subprocess of the Loop Attributes operator executes twice, once for each value of se-

lectedattributes. In thefirst iterationanewattribute is createdwith thename ‘Deviation(Temperature)’
which holds the deviations of the Temperature values from the mean of the Temperature at-
tribute. In the second iteration a new attribute is created with the name ‘Deviation(Humidity)’
which holds the deviations of the Humidity values from the mean of the Humidity attribute.
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Loop Batches

Loop Batches

exa exa
This operator creates batches from the input ExampleSet and ex-
ecutes its subprocess on each of these batches. This can be useful
for applyingoperators onvery largedata sets that are inadatabase.

Description
This operator groups the examples of the input ExampleSet into batches of the specified size and
executes the inner operators on all batches subsequently. This can be useful for very large data
sets which cannot be loaded into memory and must be handled in the database. In such cases,
preprocessing methods or model applications and other tasks can be performed on each batch
and the results can be written into the database table (by using the Write Database or Update
Database operators). Note that the output of this operator is not composed of the results of the
subprocess. In fact the subprocess does not need to deliver any output since it operates on a
subset view of the input ExampleSet. Thus this operator returns the input ExampleSet without
any modifications. The results of the subprocess are not directly accessible, they can be written
into a database or a file during the execution of this process. The results of the last batch can be
accessed using Remember/Recall operators.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-

erator in the attached Example Process. The output of other operators can also be used as
input.

Output Ports
example set (exa) TheExampleSet thatwas given as input is delivered through this portwith-

out any modifications.

Parameters
batch size (integer) This parameter specifies the number of examples in a batch.

Tutorial Processes

Introduction to the Loop Batches operator

The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that you
can have a look at the ExampleSet before the application of the Loop Batches operator. You can
see that the ExampleSet has 150 examples. The Loop Batches operator is applied on this Exam-
pleSet. The batch size parameter is set to 50. Given that there are 150 examples and the batch
size is 50, there will be 3 (i.e. 150/50) iterations of this operator. Have a look at the subprocess
of the Loop Batches operator. The Remember operator is applied there to store the examples of
each iteration into the object table as an ExampleSet. A breakpoint is inserted before the Re-
member operator so that you can have a look at the examples of each iteration. On execution
of process, you will see three iterations of the Loop Batches operator. You can see that the first
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Figure 7.29: Tutorial process ‘Introduction to the Loop Batches operator’.

iteration has examples from id_1 to id_50. Similarly the consequent iterations have examples
id_51 to id_100 and id_101 to id_150. At the end, the Recall operator is used for fetching the ob-
jects stored by the Remember operator. The Recall operator can only fetch the examples of the
last batch because the previous batches were overridden by the consequent batches.
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Loop Clusters

Loop Clusters

exa

in 

ou t This operator iterates over its subprocess for each cluster in the
input ExampleSet. In each iteration the subprocess receives ex-
amples belonging to the cluster of that iteration.

Description
The Loop Clusters operator is a nested operator i.e. it has a subprocess. The subprocess of the
Loop Clusters operator executes n number of times, where n is the number of clusters in the
given ExampleSet. It is compulsory that the given ExampleSet should have a cluster attribute.
Numerous clustering operators are available in RapidMiner that generate a cluster attribute e.g.
the K-Means operator. The subprocess executes on examples of one cluster in an iteration, on
examples of the next cluster in next iteration and so on. Please study the attached Example
Process for better understanding.

Input Ports
example set (exa) This input port expects an ExampleSet. It is compulsory that the Example-

Set should have an attribute with cluster role. It is output of the K-Means operator in the
attached Example Process.

in (in ) This operator can have multiple in input ports. When one input is connected, another
in input port becomes available which is ready to accept another input (if any). The order
of inputs remains the same. The object delivered at first in port of the operator is available
at first in port of the subprocess. Don’t forget to connect all outputs in correct order. Make
sure that you have connected the right number of ports at all levels of the chain.

Output Ports
out (out) This operator can have multiple out output ports. When one output is connected,

another outoutput port becomes availablewhich is ready to deliver another output (if any).
The order of outputs remains the same. The object delivered at first out port of subprocess
is delivered at first out output port of the outer process. Don’t forget to connect all outputs
in correct order. Make sure that you have connected the right number of ports at all levels
of the chain.

Tutorial Processes

Introduction to the Loop Clusters operator

The ‘Ripley-Set’ data set is loaded using the Retrieve operator. The K-Means operator is applied
on it for generating a cluster attribute. A breakpoint is inserted here so that you can have a
look at the clustered ExampleSet. You can see that there is an attribute with cluster role. It has
two possible values i.e. cluster_0 and cluster_1. This means that there are two clusters in the
ExampleSet. The Loop Clusters operator is applied next. The subprocess of the Loop Clusters
operator executes twice; once for each cluster. Have a look at the subprocess of the LoopClusters
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Figure 7.30: Tutorial process ‘Introduction to the Loop Clusters operator’.

operator. The Log operator is applied in the subprocess. A breakpoint is inserted before the Log
operator so that you can see the examples of each iteration. In the first iteration youwill see that
all examples belong to cluster_1 while in the second iteration all examples belong to cluster_0.
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Loop Collection

Loop Collection

col ou t
This operator iterates over a collection of objects. It is a nested
operator and its subprocess executes once for each object of the
given collection.

Description
Objects can be grouped into a collection using the Collect operator. In the Process View, collec-
tions are indicated by double lines. The Loop Collection operator loops over its subprocess once
for every object in the input collection. The output of this operator is also a collection, any addi-
tional results of the subprocess can also be delivered through its output ports (as collections). If
the unfold parameter is set to true then the output will be the union of all elements of the input
collections.
Collections can be useful when youwant to apply the same operations on a number of objects.

The Collect operator will allow you to collect the required objects into a single collection, the
LoopCollection operatorwill allow you to iterate over all collections andfinally you can separate
the input objects from collection by individually selecting the required element by using the
Select operator.

Input Ports
collection (col) This input port expects a collection. It is the output of the Collect operator in

the attached Example Process.

Output Ports
output (out) This operator can havemultiple outputs. When one output is connected, another

output port becomes available which is ready to deliver another output (if any). The order
of outputs remains the same. The object supplied at the first output port of the subprocess
of the Loop Collection operator is delivered through the first output port of this operator.
The objects are delivered as collections.

Parameters
set iteration macro (boolean) This parameter specifies if a macro should be defined for the

loop. Themacro valuewill increment after every iteration. Thenameand start value of the
macro can be specified by the macro name and macro start value parameters respectively.

macro name (string) This parameter is only available when the set iteration macro parameter
is set to true. This parameter specifies the name of the macro.

macro start value (integer) This parameter is only available when the set iterationmacro pa-
rameter is set to true. This parameter specifies the starting value of the macro. The value
of the macro increments after every iteration of the loop.

unfold (boolean) Thisparameter specifieswhether collections receivedat the inputports should
be unfolded. If the unfold parameter is set to true then the output will be the union of all
elements of the input collections.
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Figure 7.31: Tutorial process ‘Introduction to collections’.

This Example Process explains a number of important ideas related to collections. This Ex-
ample Process shows how objects can be collected into a collection, then some preprocessing
is applied on the collection and finally individual elements of the collection are separated as
required.
The ‘Golf’ and ‘Golf-Testset’ data sets are loaded using the Retrieve operator. Both Example-

Sets are provided as inputs to the Subprocess operator. The subprocess performs some prepro-
cessing on the ExampleSets and then returns them through its output ports. The first output
port returns the preprocessed ‘Golf’ data set which is then used as training set for the Decision
Tree operator. The second output port delivers the preprocessed ‘Golf-Testset’ data set which
is used as testing set for the Apply Model operator which applies the Decision Tree model. The
performance of this model is measured and it is connected to the results port. The training and
testing ExampleSets can also be seen in the Results Workspace.
Now have a look at the subprocess of the Subprocess operator. First of all, the Collect oper-

ator combines the two ExampleSets into a single collection. Note the double line output of the
Collect operator which indicates that the result is a collection. Then the Loop Collection oper-
ator is applied on the collection. The Loop Collection operator iterates over the elements of the
collection and performs some preprocessing (renaming an attribute in this case) on them. You
can see in the subprocess of the Loop Collection operator that the Rename operator is used for
changing the name of the Temperature attribute to ‘New Temperature’. It is important to note
that this renaming is performed on both ExampleSets of the collection. The resultant collection
is supplied to the Multiply operator which generates two copies of the collection. The first copy
is used by the Select operator (with index parameter = 1) to select the first element of collec-
tion i.e. the preprocessed ‘Golf’ data set. The second copy is used by the second Select operator
(with index parameter = 2) to select the second element of the collection i.e. the preprocessed
‘Golf-Testset’ data set.
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Loop Data Sets

Loop Data Sets

exa out This operator iterates over its subprocess for every ExampleSet
given at its input ports.

Description
The subprocess of the LoopData Sets operator executesnnumber of timeswheren is the number
of ExampleSets provided as input to this operator. You must have basic understanding of Sub-
processes in order to understand this operator. For more information regarding subprocesses
please study the Subprocess operator. For each input ExampleSet the Loop Data Sets operator
executes the inner operators of the subprocess like an operator chain. This operator can be used
to conduct a process consecutively on a number of different data sets. If the only best param-
eter is set to true then only the results generated during the iteration with best performance
are delivered as output. For this option it is compulsory to attach a performance vector to the
performance port in the subprocess of this operator. The Loop Data Sets operator uses this per-
formance vector to select the iteration with best performance.

Input Ports
example set (exa) This operator can have multiple inputs. When one input is connected, an-

other input port becomes available which is ready to accept another ExampleSet (if any).
The order of inputs remains the same. The ExampleSet supplied at the first input port of
this operator is available at the first input port of the nested chain (inside the subprocess).
Do not forget to connect all inputs in correct order. Make sure that you have connected
the right number of ports at the subprocess level.

Output Ports
output (out) The Loop Data Sets operator can have multiple output ports. When one output is

connected, another output port becomes available which is ready to deliver another output
(if any). The order of outputs remains the same. The Object delivered at the first output
port of the subprocess is delivered at the first output of the outer process. Do not forget to
connect all outputs in correct order. Make sure that you have connected the right number
of ports at all levels of the chain.

Parameters
only best (boolean) If the only best parameter is set to true then only the results generated

during the iteration with the best performance are delivered as output. For this option it
is compulsory to attach a performance vector to the performance port in the subprocess
of this operator. The Loop Data Sets operator uses this performance vector to select the
iteration with the best performance.

Tutorial Processes
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Figure 7.32: Tutorial process ‘Selecting the ExampleSet with best performance’.

This Example Process explains the usage of the only best parameter of the Loop Data Sets
operator. The ‘Golf’, ‘Golf-Testset’ and ‘Iris’ data sets are loaded using the Retrieve operator.
All these ExampleSets are provided as input to the Loop Data Sets operator. Have a look at the
subprocess of the Loop Data Sets operator. The Split Validation operator is used for training
and testing a K-NN model on the given ExampleSet. The Split Validation operator returns the
performancevector of themodel. This performancevector is usedby theLoopDataSets operator
for finding the iteration with the best performance. The results of the iteration with the best
performance are delivered because the only best parameter is set to true.
When this process is executed, the ‘Iris’ data set is delivered as result. This is because the

iteration with the ‘Iris’ data set had the best performance vector. If you insert a breakpoint after
the Split Validation operator and run the process again, you can see that the ‘Golf’, ‘Golf-Testset’
and ‘Iris’ data sets have 25%, 50% and 93.33% accuracy respectively. As the iteration with ‘Iris’
data set had the best performance its results are returned by this operator (remember only best
parameter is set to true). This operator can also return other objects like a model etc.
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Loop Examples

Loop Examples

exa exa

out

This operator iterates over its subprocess for all the examples of
the given ExampleSet. The subprocess can access the index of the
example of the current iteration by a macro.

Description

The subprocess of the Loop Examples operator executes n number of times where n is the total
number of examples in the given ExampleSet. In all iterations, the index of the example of the
current iteration can be accessed using themacro specified in the iterationmacroparameter. You
need to have a basic understanding of macros in order to apply this operator. Please study the
documentation of the Extract Macro operator for a basic understanding of macros. The Extract
Macro operator is also used in the attached Example Process. For more information regarding
subprocesses please study the Subprocess operator.
One important thing to note about this operator is the behavior of the example set output

port of its subprocess. The subprocess is given the ExampleSet provided at the outer example set
input port in the first iteration. If the example set output port of the subprocess is connected the
ExampleSet delivered here in the last iteration will be used as input for the following iteration.
If it is not connected the original ExampleSet will be delivered in all iterations.
It is important tonote that the subprocess of theLoopExamples operator is executed for all ex-

amples of thegivenExampleSet. If youwant to iterate for possible values of aparticular attribute
please use the Loop Values operator. The subprocess of the Loop Values operator is executed for
all possible values of the selected attribute. Suppose the selected attribute has three possible
values and the ExampleSet has 100 examples. The Loop Values operator will iterate only three
times (not 100 times); once for each possible value of the selected attribute. The Loop Examples
operator, on the other hand, will iterate 100 times on this ExampleSet.

Input Ports

example set (exa) This input port expects anExampleSet. It is the output of theExtractMacro
operator in the attached Example Process. The output of other operators can also be used
as input.

Output Ports

example set (exa) TheExampleSet that is connectedat the example setoutputportof the inner
subprocess is delivered through this port. If no ExampleSet is connected then the original
ExampleSet is delivered.

output (out) The Loop Examples operator can havemultiple output ports. When one output is
connected, another output port becomes available which is ready to deliver another output
(if any). The order of outputs remains the same. The Object delivered at the first output
port of the subprocess is delivered at the first output of the outer process. Don’t forget to
connect all outputs in correct order. Make sure that you have connected the right number
of ports at all levels of the chain.
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Parameters
iteration macro (string) This parameter specifies the name of the macro which holds the in-

dex of the example of the current iteration in each iteration.

Tutorial Processes
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Figure 7.33: Tutorial process ‘Subtracting the average of an attribute from all examples’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. The Extract Macro operator is applied on it. The Ex-
tract Macro operator generates amacro named ‘avg_temp’ which stores the average value of the
Temperature attribute of the ‘Golf’ data set. The Loop Examples operator is applied next. The
Loop Examples operator iterates over all the examples of the ‘Golf’ data set and sets the value
of the Temperature attribute in each example to the difference of the average value (stored in
‘avg_temp’ macro) from the existing value of the Temperature attribute. The iteration macro
parameter of the Loop Examples operator is set to ‘example’. Thus in each iteration of the sub-
process the index of the current example can be accessed by the ‘example’ macro.
Have a look at the subprocess of the Loop Examples operator. The Extract Macro operator is

applied first to store the value of the Temperature attribute of the example of the current it-
eration in a macro named ‘temp’. Then the Generate Macro operator is applied to generate a
new macro from the ‘temp’ macro. The name of the new macro is ‘new_temp’ and it stores the
difference of the current temperature value (stored in ‘temp’ macro) and the average tempera-
ture value (stored in ‘avg_temp’ macro). Finally the Set Data operator is applied. The example
index parameter is set to ‘%{example}’ to access the example of the current iteration. The value
parameter is set to ‘%{new_temp}’ to store the value of the ‘new_temp’ macro in the current
example.
This subprocess is executed once for each example and in every iteration it replaces value of

the Temperature attribute of the example of that iteration with the value of ‘new_temp’ macro.
The resultant ExampleSet can be seen in the Results Workspace. You can see that all values of
the Temperature attribute have been replaced with new values.
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Loop Files

Loop Files

inp ou t
This operator executes the inner process tasks on every selected
file.

Description
With this operator you can select and filter files of a directory and execute the inner process on
every selected file. Macros can be used to extract the file name, file path and file type.
In contrast to the core operator this advanced implementation allows the parallel execution of

the innerprocesses. Youcanactivate theBackgroundProcessesPanel andchange theConcurrency
Level or use the operator Set Concurrency Level.

Input Ports
in (in ) This port expects an IOObject which is passed on to the inner process without being

altered. It will be reproduced if used. If you want to execute an inner loop, you have to
connect the operators of the subprocesswith the inner loop input port. In thefirst iteration
it delivers the IOObject of the in input port.

Output Ports
output collector (out) This port collects every result of the inner process. It will be repro-

duced if used.

Parameters
directory (string) Select the directory from where to start scanning for files.

This parameter is only available if the file set port is not connected.

filter type (selection) Specifies how to filter file names. You can either use standard, com-
mand shell like glob filtering or a regular expression.

filter by glob (string) ”Specifies a glob expression which is used as filter for the file and direc-
tory names.
Here is a short overview:

• * : any number of characters
• **: same as ‘*’, but crosses directory boundaries. Useful to match complete paths.
• ? : matches exactly one char
• {}: contains collections that are separated by ‘,’. The glob filter will try to match the
string to any of the strings in the collection.
: contains a range of chars or a single char (e.g.[a-z]).

• String(*): \*
• String(?): \?
• String(**): \*\*
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filter by regex (string) ”Specifies a regular expression which is used as filter for the file and
directory names, e.g. ‘a.*b’ for all files starting with ‘a’ and ending with ‘b’. Ignored if
empty.”,

recursive (boolean) Set whether to recursively search every directory. If set to true, the op-
erator will include files inside sub-directories (and sub-sub-directories ...) of the selected
directory.

enable macros (boolean) If thisparameter is enabled, youcannameandextract threemacros
(for file name, file type and file folder)and use them in your subprocess.

macro for file name (string) If filled, a macro with this name will be set to the name of the
current entry. To get access on the full path including the containing directory, combine
this with the folder macro. Can be left blank.

macro for file type (string) Will be set to the file’s extension. Can be left blank.

macro for file folder (string) If filled, a macro with this name will be set to the containing
folder of the current file. To get access on the full path you can combine this with the
name macro. Can be left blank.

reuse results (boolean) Set whether to reuse the results of each iteration as the input of the
next iteration. If set to true, the output of each iteration is used as input for the next iter-
ation. Enabling this parameter will force the operator to NOT run in a parallel fashion. If
set to false, the input of each iteration will be the original input.”,

enable parallel execution (boolean) This parameter enables the parallel execution of the
inner processes. Please disable the parallel execution if you either run into memory prob-
lems or if you need an inner loop. The end result will be propagated to the outside process
and can be used in the usual way.

Tutorial Processes
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Figure 7.34: Tutorial process ‘Generating an ExampleSet with names of all files in a directory’.

This Example Process shows how the Loop Files operator can be used for iterating over files
in a directory. You need to have at least a basic understanding of macros and logs in order to
understand this process completely. The goal of this process is to simply provide the list of all
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files in the specified directory in form of an ExampleSet. This process starts with the Loop Files
operator. All parameters are used with default values. The Log operator is used in the subpro-
cess of the Loop Files operator to store the name of the files in the log table in every iteration.
The Provide Macro As Log Value operator is used before the Log operator to make the file name
macro of the Loop Files operator available to the Log operator. The name of the file namemacro
(specified through the file name macro parameter) is ‘file_name’, therefore the macro name pa-
rameter of the Provide Macro As Log Value operator is set to ‘file_name’. After the execution of
the Loop Files operator, names of all the files in the specified directory are stored in the log ta-
ble. To convert this data into an ExampleSet, the Log to Data operator is applied. The resultant
ExampleSet is connected to the result port of the process and it can be viewed in the Results
Workspace. As the path of the RapidMiner repository was specified in the directory parameter
of the Loop Files parameter, the ExampleSet has the names of all the files in your RapidMiner
repository. You can see names of all the files including files with ‘.properties’ and ‘.rmp’ exten-
sions. If you want only the file names with ‘.rmp’ extension, you can set the filter parameter to
‘.*rmp’.
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Loop Labels

Loop Labels

exa out This operator iterates over its subprocess for each attribute with
label role in the input ExampleSet.

Description
The Loop Labels operator is a nested operator i.e. it has a subprocess. The subprocess of the
Loop Labels operator executes n number of times, where n is the number of attributes with label
role in the given ExampleSet. The important thing to note here is that one ExampleSet cannot
have more than one attributes with label role. The trick is that this operator executes for each
attributewhose ‘role name’ startswith the string ‘label’. So, if an ExampleSet has attributeswith
role label, label2 and label3, then the subprocess of this operator will execute three times on it.
The result of this operator is a collection of objects. Please study the attached Example Process
for better understanding.

Input Ports
example set (exa) This input port expects an ExampleSet. It is output of the Set Role operator

in the attached Example Process.

Output Ports
out (out) This operator can havemultiple out output ports. When one output is connected, an-

other out output port becomes available which is ready to deliver another output (if any).
The order of outputs remains the same. The object delivered at the first out port of subpro-
cess is delivered at the first out output port of the outer process. Do not forget to connect
all outputs in correct order. Make sure that you have connected the right number of ports
at all levels of the chain.

Tutorial Processes

Introduction to the Loop Labels operator

The ‘Golf’ data set is loadedusing theRetrieveoperator. Abreakpoint is insertedhere so that you
can have a look at the ExampleSet. You can see that the ExampleSet has an attribute with label
role i.e. the ‘Play’ attribute. The Set Role operator is applied on this ExampleSet to change the
roles of the ‘Wind’ and ‘Outlook’ attributes to ‘label2’ and ‘label3’ respectively. A breakpoint is
inserted here so that you canhave a look at the ExampleSet before application of the Loop Labels
operator. TheLoopLabelsoperator is appliedon theExampleSet. Thereare threeattributeswith
label roles therefore the subprocess of the Loop Labels operator will be executed three times;
once for each label attribute. The results of each iterationwill bemerged into a collectionwhich
will be delivered as the result of this operator.
Have a look at the subprocess of the Loop Labels operator. The Decision Tree operator is ap-

plied there with default values of all parameters. In each iteration a Decision Tree will be gener-
ated for the current label. These trees will be returned in form of a collection by the Loop Labels
operator. The resultant collection can be seen in the Results Workspace.
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7.2. Process Control

Process

Golf

out

Set Role

exa exa

ori

Loop Labels
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Figure 7.35: Tutorial process ‘Introduction to the Loop Labels operator’.

Loop Parameters

Loop Parameters

inp ou t

This Operator iterates over its subprocess for all the defined pa-
rameter combinations. The parameter combinations can be set by
the wizard provided in parameters.

Description

The Loop Parameters Operator is a nested Operator. It executes the subprocess for all com-
binations of selected values of the parameters. This can be very useful for plotting or logging
purposes and sometimes for simply configuring the parameters for the inner Operators as a sort
ofmeta step. Any results of the subprocess are delivered through the outputports. ThisOperator
can be run in parallel.
The entire configuration of this Operator is done through the edit parameter settings param-

eter. Complete description of this parameter can be found in the parameters section.
The inner performance port can be used to log the performance of the inner subprocess. When

it is connected, a log is created automatically to capture the number of the run, the parameter
settings and themain criterion or all criteria of the delivered performance vector, depending on
the parameter log all criteria. Please note that if no results are delivered at the end of a process,
the log tables still can be seen in the Results View even if it is not automatically shown.
Please note that this Operator has two modes: synchronized and non-synchronized. They

depend on the setting of the synchronize parameter. In the latter, all parameter combinations
are generated and the subprocess is executed for each combination. In the synchronized mode,
no combinations are created but the parameter values are treated as a list of combinations. For
the iterationover a single parameter there is nodifferencebetweenbothmodes. Pleasenote that
the number of parameter possibilities must be the same for all parameters in the synchronized
mode. As an Example, having two boolean parameters A and B (both with true(t)/false(f) as
possible parameter settings) will produce four combinations in non-synchronizedmode (t/t, f/t,
t/f, f/f) and two combinations in synchronized mode (t/t, f/f).
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7. Utility

If the synchronize parameter is not set to true, selecting a large number of parameters and/or
large number of steps (or possible values of parameters) results in a huge number of combina-
tions. For example, if you select 3 parameters and 25 steps for each parameter then the total
number of combinations would be above 17576 (i.e. 26 x 26 x 26). The subprocess is executed
for all possible combinations. Running a subprocess for such a huge number of iterations will
take a lot of time. So always carefully limit the parameters and their steps.

Differentiation
• Optimize Parameters (Grid)
The Optimize Parameters (Grid) Operator executes the subprocess for all combinations
of selected values of the parameters and then delivers the optimal parameter values. The
LoopParametersOperator, in contrast to theoptimizationOperators, simply iterates through
all parameter combinations. This might be especially useful for plotting purposes.

See page ?? for details.

Tutorial Processes

Iterating through the parameters of the SVM Operator

Process
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Figure 7.36: Tutorial process ‘Iterating through the parameters of the SVM Operator’.

The ‘Weighting’ data set is loadedusing theRetrieveOperator. The LoopParametersOperator
is applied on it. Have a look at the Edit Parameter Settings parameter of the Loop Parameters
Operator. You can see in the Selected Parameters window that the C and gamma parameters
of the SVM Operator are selected. Click on the SVM.C parameter in the Selected Parameters
window, you will see that the range of the C parameter is set from 0.001 to 100000. 11 values
are selected (in 10 steps) logarithmically. Now, click on the SVM.gamma parameter in the Se-
lected Parameters window, you will see that the range of the gamma parameter is set from 0.001
to 1.5. 11 values are selected (in 10 steps) logarithmically. There are 11 possible values of two
parameters, thus there are 121 ( i.e. 11 x 11) combinations. The subprocess will be executed
for all combinations of these values because the synchronize parameter is set to false, thus it
will iterate 121 times. In every iteration, the value of the C and/or gamma parameters of the
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7.2. Process Control

SVM(LibSVM) Operator is changed. The value of the C parameter is 0.001 in the first iteration.
The value is increased logarithmically until it reaches 100000 in the last iteration. Similarly, the
value of the gamma parameter is 0.001 in the first iteration. The value is increased logarithmi-
cally until it reaches 1.5 in the last iteration.
Have a look at the subprocess of the Loop Parameters Operator. First the data is split into two

equal partitions using the Split Data Operator. The SVM (LibSVM) Operator is applied on one
partition. The resultant classification model is applied using an Apply Model Operator on the
other partition. The statistical performance of the SVM model on the testing partition is mea-
suredusing thePerformance (Classification)Operator. At the end the LoopParametersOperator
automatically logs the parameter settings and performance.
The log contains the following four things:
The iteration numbers of the Loop Parameters Operator are counted. This is stored in a col-

umn named ‘Iteration’.
The classificationerror of theperformanceof the testingpartition is logged ina columnnamed

‘classification error’.
The value of the C parameter of the SVM (LibSVM) Operator is stored in a column named

‘SVM.C’.
The value of the gammaparameter of the SVM (LibSVM)Operator is stored in a columnnamed

‘SVM.gamma’.
Run the process and turn to the Results View. Now have a look at the values logged by the

Loop Parameters Operator.

Parameters
edit parameter settings (menu) Theparameters are selected through the edit parameter set-

tings menu. You can select the parameters and their possible values through this menu.
This menu has an Operators window which lists all the operators in the subprocess of this
Operator. When you click on any Operator in the Operators window, all parameters of
that Operator are listed in the Parameters window. You can select any parameter through
the arrow keys of the menu. The selected parameters are listed in the Selected Parame-
ters window. Only those parameters should be selected for which you want to iterate the
subprocess. This Operator iterates through parameter values in the specified range. The
range of every selected parameter should be specified. When you click on any selected pa-
rameter (parameter in Selected Parameters window), the Grid/Range and Value List option
is enabled. These options allow you to specify the range of values of the selected param-
eters. TheMin andMax fields are for specifying the lower and upper bounds of the range
respectively. As all values within this range cannot be checked, the steps field allows you
to specify the number of values to be checked from the specified range. Finally the scale
option allows you to select the pattern of these values. You can also specify the values in
form of a list.

error handling (selection) Thisparameter allowsyou to select themethod forhandlingerrors
occurring during the execution of the inner process. It has the following options:

• fail_on_error In case an error occurs, the execution of the process will fail with an
error message.

• ignore_error In case an error occurs, the error will be ignored and the execution of
the process will continue with the next iteration.

log performance (boolean) This parameter will only be visible if the inner performance port
is connected. If it is connected, the main criterion of the performance vector will be auto-
matically logged with the parameter set if this parameter is set to true.
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log all criteria (boolean) This parameter allows for more logging. If set to true, all perfor-
mance criteria will be logged.

synchronize (boolean) This Operator has two modes: synchronized and non-synchronized.
They depend on the setting of this parameter. If it is set to false, all parameter combina-
tions are generated and the inner Operators are applied for each combination. If it is set
to true, no combinations are created but the parameter values are treated as a list of com-
binations. For the iteration over a single parameter there is no difference between both
modes. Please note that the number of parameter possibilities must be the same for all
parameters in the synchronized mode.

enable parallel execution (boolean) This parameter enables the parallel execution of the
subprocess. Please disable the parallel execution if you run into memory problems.

Input Ports
input (inp) This Operator can have multiple inputs. When one input is connected, another

input port becomes available which is ready to accept another input (if any). The order of
inputs remains the same. The Object supplied at the first input port of this Operator is
available at the first input port of the nested chain (inside the subprocess). Do not forget
to connect all inputs in correct order. Make sure that you have connected the right number
of ports at the subprocess level.

Output Ports
output (out) Any results of the subprocess are delivered through the output ports. This Oper-

ator can have multiple outputs. When one output port is connected, another output port
becomes available which is ready to deliver another output (if any). The order of outputs
remains the same. The Object delivered at the first output port of the subprocess is deliv-
ered at the first outputport of the Operator. Don’t forget to connect all outputs in correct
order. Make sure that you have connected the right number of ports.

Related Documents
• Optimize Parameters (Grid) (page ??)

• Optimize Parameters (Quadratic) (page 677)

• Optimize Parameters (Evolutionary) (page 669)
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Loop Values

Loop Values

inp ou t
This operator iterates over its subprocess for all the possible values
of the selected attribute. The subprocess can access the attribute
value of the current iteration by a macro.

Description
The Loop Values operator has a parameter named attribute that allows you to select the required
attribute of the input ExampleSet. Once the attribute is selected, the Loop Values operator ap-
plies its subprocess for each possible value of the selected attribute i.e. the subprocess executes
n number of times where n is the number of possible values of the selected attribute. In all iter-
ations the attribute value of the current iteration can be accessed using the macro specified in
the iterationmacro parameter. You need to have basic understanding ofmacros in order to apply
this operator. Please study the documentation of the Extract Macro operator for basic under-
standing of macros. The Extract Macro operator is also used in the attached Example Process.
For more information regarding subprocesses please study the Subprocess operator.
It is important to note that the subprocess of the LoopValues operator executes for all possible

values of the selected attribute. Suppose the selected attribute has three possible values and the
ExampleSet has 100 examples. The Loop Values operator will iterate only three times (not 100
times); once for each possible value of the selected attribute. This operator is usually applied
on nominal attributes.

Input Ports
example set (exa) This input port expects an ExampleSet. It is the output of the Subprocess

operator in the attached Example Process. The output of other operators can also be used
as input.

Output Ports
output (out) The Loop Values operator can have multiple outputs. When one output is con-

nected, another output port becomes available which is ready to deliver another output
(if any). The order of outputs remains the same. The Object delivered at first output port
of subprocess is delivered at first output of the outer process. Don’t forget to connect all
outputs in correct order. Make sure that you have connected the right number of ports at
all levels of the chain.

Parameters
attribute (string) The required attribute can be selected from this option. The attribute name

canbe selected fromthedropdownboxof theattributeparameter if themetadata is known.

iteration macro (string) This parameter specifies thenameof themacrowhichholds the cur-
rent value of the selected attribute in each iteration.

reuse results (boolean) Set whether to reuse the results of each iteration as the input of the
next iteration. If set to true, the output of each iteration is used as input for the next iter-
ation. For obvious reasons, this will limit the loop to run in a single thread and not make
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use of more CPU cores. If set to false, the input of each iteration will be the original input
of the loop.

enable parallel execution (boolean) This parameter enables the parallel execution of the
subprocess. Please disable the parallel execution if you run into memory problems.

Tutorial Processes

The use of the Loop Values operator in complex preprocessing

Root

Subprocess

in ou t

ou t

Loop Values

inp

inp

ou t

ou t

Append

exa

exa

merinp res

res

Figure 7.37: Tutorial process ‘The use of the Loop Values operator in complex preprocessing’.

This Tutorial Process will cover a number of concepts of macros including redefining macros,
the macro of the Loop Values operator and the use of the Extract Macro operator. This process
startswitha subprocesswhich isused togeneratedata. What ishappening inside this subprocess
is not relevant to the use of macros, so it is not discussed here. A breakpoint is inserted after
this subprocess so that you can view the ExampleSet. You can see that the ExampleSet has 12
examples and 2 attributes: ‘att1’ and ‘att2’. ‘att1’ is nominal and has 3 possible values: ‘range1’,
‘range2’ and ‘range3’. ‘att2’ has real values.
The Loop Values operator is applied on the ExampleSet. The attribute parameter is set to

‘att1’ therefore the Loop Values operator iterates over the values of the specified attribute (i.e.
att1) and applies the inner operators on the given ExampleSet while the current value can be
accessed via the macro defined by the iteration macro parameter which is set to ‘loop_value’,
thus the current value can be accessed by specifying %{loop_value} in the parameter values. As
att1 has 3 possible values, Loop Values will iterate 3 times, once for each possible value of att1.
Here is an explanation of what happens inside the LoopValues operator. It is providedwith an

ExampleSet as input. The Filter Examples operator is applied on it. The condition class param-
eter is set to ‘attribute value filter’ and the parameter string is set to ‘att1 =%{loop_value}’. Note
the use of the loop_value macro here. Only those examples are selected where the value of att1
is equal to the value of the loop_value macro. A breakpoint is inserted here so that you can view
the selected examples. Then the Aggregation operator is applied on the selected examples. It
is configured to take the average of the att2 values of the selected examples. This average value
is stored in a new ExampleSet in the attribute named ‘average(att2)’. A breakpoint is inserted
here so that you can see the average of the att2 values of the selected examples. The Extract
Macro operator is applied on this new ExampleSet to store this average value in a macro named
‘current_average’. The originally selected examples are passed to the Generate Attributes op-
erator that generates a new attribute named ‘att2_abs_avg’ which is defined by the expression
‘abs(att2 - %{current_average})’. Note the use of the current_average macro here. Its value is
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subtracted from all values of att2 and stored in a new attribute named ‘att2_abs_avg’. The Resul-
tant ExampleSet is delivered at the output of the Loop Values operator. A breakpoint is inserted
here so that you can see the ExampleSet with the ‘att2_abs_avg’ attribute. This output is fed to
the Append operator in the main process. It merges the results of all the iterations into a single
ExampleSet which is visible at the end of this process in the Results Workspace.
Here is what you see when you run the process.
ExampleSet generated by the first Subprocess operator. Then the process enters the Loop

Value operator and iterates 3 times.
Iteration 1: ExampleSet where the ‘att1’ value is equal to the current value of the loop_value

macro i.e. ‘range1’Averageof ‘att2’ values for the selectedexamples. Theaverage is -1.161.ExampleSet
with ‘att2_abs_avg’ attribute for iteration 1. Iteration 2: ExampleSet where the ‘att1’ value is
equal to the current value of the loop_value macro i.e. ‘range2’Average of ‘att2’ values for the
selected examples. The average is -1.656.ExampleSet with ‘att2_abs_avg’ attribute for iteration
2.
Iteration 3: ExampleSet where the ‘att1’ value is equal to the current value of the loop_value

macro i.e. ‘range3’Average of ‘att2’ values for the selected examples. The average is 1.340.Ex-
ampleSet with ‘att2_abs_avg attribute’ for iteration 3. Now the process comes out of the Loop
Values operator and the Append operator merges the final ExampleSets of all three iterations
into a single ExampleSet that you can see in the Results Workspace.
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Loop and Average

Loop and Average

in ave This operator iterates over its subprocess the specified number of
times and delivers the average of the inner results.

Description

The Loop and Average operator is a nested operator i.e. it has a subprocess. The subprocess of
the Loop and Average operator executes n number of times, where n is the value of the iterations
parameter specified by the user. The subprocess of this operator must always return a perfor-
mance vector. These performance vectors are averaged and returned as result of this operator.
For more information regarding subprocesses please study the Subprocess operator.

Differentiation

• Loop and Deliver Best This operator iterates over its subprocess the specified number
of times and delivers the results of the iteration that has the best performance. See page
882 for details.

Input Ports

in (in ) This operator can have multiple inputs. When one input is connected, another in port
becomes available which is ready to accept another input (if any). The order of inputs re-
mains the same. The Object supplied at the first in port of this operator is available at the
first in port of the nested chain (inside the subprocess). Do not forget to connect all in-
puts in correct order. Make sure that you have connected the right number of ports at the
subprocess level.

Output Ports

averagable (ave) This operator can have multiple averagable output ports. When one output
is connected, another averagable output port becomes available which is ready to deliver
another output (if any). The order of outputs remains the same. The Average Vector deliv-
ered at the first averagable port of the subprocess is delivered at the first averagable output
port of the outer process. Don’t forget to connect all outputs in correct order. Make sure
that you have connected the right number of ports at all levels of the chain.

Parameters

iterations (integer) This parameter specifies the number of iterations of the subprocess of
this operator.

average performances only (boolean) This parameter indicates if only performance vec-
tors or all types of averagable result vectors should be averaged.
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Related Documents
• Loop and Deliver Best (page 882)

Tutorial Processes

Taking average of performance vectors

Process

Golf

out

Loop and Average

in 

in 

ave

ave

inp

res

res

Figure 7.38: Tutorial process ‘Taking average of performance vectors’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Loop And Average operator is
applied on it. The iterations parameter is set to 3; thus the subprocess of the Loop And Average
operator will be executed three times. A performance vector will be generated in every iteration
and the average of these performance vectors will be delivered as the result of this operator.
Have a look at the subprocess of the Loop And Average operator. The Split Validation op-

erator is used for training and testing a Naive Bayes model. A breakpoint is inserted after the
Split Validation operator so that the performance vector can be seen in each iteration. Run the
process. You will see the performance vector of the first iteration. It has 25% accuracy. Keep
continuing the process; you will see the performance vectors of the second and third iterations
(with 75% and 100% accuracy respectively). The Loop and Average operator takes the average
of these three results and delivers it through its output port. The average of these three results
is 66.67% (i.e. (25% + 75% + 100%) / 3). The resultant average vector can be seen in the Results
Workspace.
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Loop and Deliver Best

Loop and Deliver. . .

in per

ou t

This operator iterates over its subprocess the specified number of
times and delivers the results of the iteration that has the best per-
formance.

Description

The Loop and Deliver Best operator is a nested operator i.e. it has a subprocess. The subprocess
of the Loop and Deliver Best operator executes n number of times, where n is the value of the
iterations parameter specified by the user. The subprocess of this operator must always return
a performance vector. The best performance vector from these performance vectors is returned
as result of this operator. For more information regarding subprocesses please study the Sub-
process operator.

Differentiation

• Loop and Average This operator iterates over its subprocess the specified number of
times and delivers the average of the inner results. See page 880 for details.

Input Ports

in (in ) This operator can have multiple inputs. When one input is connected, another in port
becomes available which is ready to accept another input (if any). The order of inputs re-
mains the same. The Object supplied at the first in port of this operator is available at the
first in port of the nested chain (inside the subprocess). Do not forget to connect all in-
puts in correct order. Make sure that you have connected the right number of ports at the
subprocess level.

Output Ports

performance (per) The best performance vector of all the performance vectors is returned
from this port.

out (out) This operator can have multiple out output ports. When one output is connected,
another outoutput port becomes availablewhich is ready to deliver another output (if any).
The order of outputs remains the same. The object delivered at the first out port of the
subprocess is delivered at the first out port of the outer process. Don’t forget to connect
all outputs in correct order. Make sure that you have connected the right number of ports
at all levels of the chain.

Parameters

iterations (integer) This parameter specifies the number of iterations of the subprocess of
this operator.
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enable timeout (boolean) This parameter specifies if the processing should be aborted after
the time specified in the timeoutparameter. Pleasenote that theprocessing is aborted after
completion of the running iteration.

timeout (integer) The timeout (in minutes) is specified through this parameter.

Related Documents
• Loop and Average (page 880)

Tutorial Processes

Delivering the best performance vector

Process
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Loop and Deliver. . .

in 

in 

per

ou t

inp

res

res

Figure 7.39: Tutorial process ‘Delivering the best performance vector’.

The ‘Golf’ data set is loaded using theRetrieve operator. The Loop andDeliver Best operator is
applied on it. The iterations parameter is set to 3; thus the subprocess of the Loop and Deliver
Best operator will be executed three times. A performance vector will be generated in every
iteration and thebest of theseperformance vectorswill be delivered as the result of this operator.
Have a look at the subprocess of the Loop and Deliver Best operator. The Split Validation

operator is used for training and testing a Naive Bayes model. A breakpoint is inserted after the
Split Validation operator so that the performance vector can be seen in each iteration. Run the
process. You will see that the performance vector of the first iteration has 25% accuracy. Keep
continuing the process; you will see the performance vectors of the second and third iterations
(with 75% and 100% accuracy respectively). The Loop andDeliver Best operator returns the best
of these three results through its output port. Thebest of these three results is theonewith100%
accuracy. The resultant performance vector can be seen in the Results Workspace.
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7.2.2 Branches
Branch

Branch

con

inp

inp

This operator consists of two subprocesses but it executes only one
subprocess at a time depending upon the condition. This operator
is similar to the ‘if-then-else’ statement, where one of the two op-
tions is selected depending upon the results of the specified con-
dition. It is important to have understanding of subprocesses in
order to use this operator effectively.

Description
The Branch operator tests the condition specified in the parameters (mostly through the con-
dition type and condition value parameters) on the object supplied at the condition input port. If
the condition is satisfied, the first subprocess i.e. the ‘Then’ subprocess is executed otherwise
the second subprocess i.e. the ‘Else’ subprocess is executed.
It is very important to have a good understanding of use of subprocesses in RapidMiner to un-

derstand this operator completely. A subprocess introduces a process within a process. When-
ever a subprocess is reached during a process execution, first the entire subprocess is executed.
Once the subprocess execution is complete, the flow is returned to the process (the parent pro-
cess). A subprocess can be considered as a small unit of a process, like in a process, all operators
and combination of operators can be applied in a subprocess. That is why a subprocess can also
be defined as a chain of operators that is subsequently applied. For more detail about subpro-
cesses please study the Subprocess operator.
Double-click on theBranchoperator to go inside andview the subprocesses. The subprocesses

are then shown in the same Process View. Here you can see two subprocesses: ‘Then’ and ‘Else’
subprocesses. The ‘Then’ subprocess is executed if the condition specified in the parameters
results true. The ‘Else’ subprocess is executed if the condition specified in the parameters results
false. To go back to the parent process, click the blue-colored up arrow button in the Process
View toolbar. This works like files and folders work in operating systems. Subprocesses can have
subprocesses in them just like folders can have folders in them.
The Branch operator is similar to the Select Subprocess operator because they both havemul-

tiple subprocesses but only one subprocess is executed at a time. The Select Subprocess opera-
tor can have more than two subprocesses and the subprocess to be executed is specified in the
parameters. On the contrary, The Branch operator has only two subprocesses and the subpro-
cess to be executed depends upon the result of the condition specified in the parameters. The
condition is specified through the condition type and condition value parameters. Macros can be
provided in the condition value parameter. Thus the subprocess to be executed can be controlled
by using macros. If this operator is placed in any Loop operator this operator will be executed
multiple number of times. True power of this operator comes into playwhen it is usedwith other
operators like various Macro and Loop operators. For example, if this operator is placed in any
Loop operator and the condition value parameter is controlled by a macro then this operator can
be used to dynamically change the process setup. This might be useful in order to test different
layouts.

Input Ports
condition (con) Any object can be supplied at this port. The condition specified in the param-

eters is tested on this object. If the condition is satisfied the ‘Then’ subprocess is executed
otherwise the ‘Else’ subprocess is executed
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input (inp) The Branch operator can have multiple inputs. When one input is connected, an-
other input port becomes available which is ready to accept another input (if any). The
order of inputs remains the same. The Object supplied at the first input port of the Branch
operator is available at thefirst inputport of thenested chain (inside the subprocess).Don’t
forget to connect all inputs in correct order. Make sure that you have connected the right
number of ports at all levels of the chain.

Output Ports
input (inp) TheBranchoperator canhavemultiple outputs. Whenoneoutput is connected, an-

other input port becomes available which is ready to deliver another output (if any). The
order of outputs remains the same. The Object delivered at the first input port of sub-
process is delivered at the first input of the Branch operator. Don’t forget to connect all
outputs in correct order. Make sure that you have connected the right number of ports at
all levels of the chain.

Parameters
condition type (selection) The type of condition is selected through this parameter.

condition value The value of the selected condition type is specified through this parame-
ter. The condition type and condition value parameters together specify the condition state-
ment. This condition will be tested on the object provided at the condition input port.

io object (selection) This parameter is only available when the condition type parameter is set
to ‘input exists’. This parameter specifies the class of the object which should be checked
for existence.

return inner output (boolean) This parameter indicates if the outputs of the inner subpro-
cess should be delivered through this operator.

Tutorial Processes

Applying different subprocesses on Golf data set depending upon the performance
value

The ‘Golf’ data set is loaded using the Retrieve operator. The Default Model operator is applied
on it. The resultant model is applied on the ‘Golf-Testset’ data set through the Apply Model
operator. Theperformanceof thismodel ismeasuredby thePerformanceoperator. Abreakpoint
is inserted here so that you can have a look at this performance vector. You can see that its
accuracy value is 64.29%. It is provided at the condition port of the Branch operator. Thus the
condition specified in the parameters of the Branch operator will be tested on this performance
vector. The ‘Golf’ data set is also provided to the Branch operator (through the first input port).
Now have a look at the subprocesses of the Branch operator. The ‘Then’ subprocess simply

connects the condition port to the input port without applying any operator. Thus If the condi-
tion specified in the parameters is true, the condition object i.e. the performance vector will be
delivered by the Branch operator. The ‘Else’ subprocess does not use the object at the condition
port. Instead, it applies the K-NN operator on the object at the first input port i.e. the ‘Golf’
data set. Thus If the condition specified in the parameters is false, the K-NN operator will be
applied on the object at the first input port i.e. the ‘Golf’ data set and the resultant model will
be delivered by the Branch operator.
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Figure 7.40: Tutorial process ‘Applying different subprocesses on Golf data set depending upon
the performance value’.

Now have a look at the parameters of the Branch operator. The condition type parameter
is set to ‘min performance value’ and the condition value parameter is set to 70. Thus if the
performance of the performance vector is greater than 70, the condition will be true.
Overall in this process, The Default Model is trained on the ‘Golf’ data set, if its performance

on the ‘Golf-Testset’ data set ismore that 70% theperformance vectorwill be deliveredotherwise
the K-NN model trained on the ‘Golf’ data set will be delivered.
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Select Subprocess

Select Subprocess

inp ou t

This operator consists of multiple subprocesses but it executes
only one subprocess at a time. This operator is similar to a switch,
where numerous options exist but only one option is selected at a
time. It is important to have a goodunderstanding of subprocesses
in order to use this operator effectively.

Description
It is very important tohaveagoodunderstandingof theuseof subprocesses inRapidMiner toun-
derstand this operator completely. A subprocess introduces a process within a process. When-
ever a subprocess is reached during a process execution, first the entire subprocess is executed.
Once the subprocess execution is complete, flow is returned to the process (the parent process).
A subprocess can be considered as a small unit of a process, like in a process, all operators and
combination of operators can be applied in a subprocess. That is why a subprocess can also be
definedas a chainof operators that is subsequently applied. Formoredetails about subprocesses
please study the Subprocess operator.
Double-click on the Select Subprocess operator to go inside and view the subprocesses. The

subprocesses are then shown in the same Process View. Here you can see the options to add or
remove subprocesses. To go back to the parent process, click the blue-colored up arrow button
in the Process View toolbar. This works like files and folders work in operating systems. Sub-
processes can have subprocesses in them just like folders can have folders in them.
The Select Subprocess operator consists of multiple subprocesses but it executes only one

subprocess at a time. The number of subprocesses can be easily controlled. You can easily add
or remove subprocesses. The process to be executed is selected by the select which parameter.
Macros can be provided in the select which parameter. Thus the subprocess to be executed can be
controlled by using macros. If this operator is placed in any Loop operator this operator will be
executed multiple number of times. The true power of this operator comes into play when it is
used with other operators like various Macro and Loop operators. For example, if this operator
is placed in any Loop operator and the select which parameter is controlled by a macro then this
operator can be used to dynamically change the process setup. This might be useful in order
to test different layouts, e.g. the gain by using different preprocessing steps or the quality of a
certain learner.

Input Ports
input (inp) The Select Subprocess operator can have multiple inputs. When one input is con-

nected, another input port becomes available which is ready to accept another input (if
any). The order of inputs remains the same. The Object supplied at the first input port of
the Select Subprocess operator is available at the first input port of the nested chain (in-
side the subprocess).Don’t forget to connect all inputs in correct order. Make sure that you
have connected the right number of ports at all levels of the chain.

Output Ports
output (out) The Select Subprocess operator can have multiple outputs. When one output is

connected, another output port becomes available which is ready to deliver another output
(if any). The order of outputs remains the same. The Object delivered at the first output
port of subprocess is delivered at the first output of the Select Subprocess operator. Don’t
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forget to connect all outputs in correct order. Make sure that you have connected the right
number of ports at all levels of the chain.

Parameters
select which (integer) This parameter indicates which subprocess should be applied. True

powerof this operator comes intoplaywhen the selectwhichparameter is specified through
a macro.

Tutorial Processes

Applying different classification operators on Golf data set using the Select
Subprocess operator

Process
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Figure 7.41: Tutorial process ‘Applying different classification operators on Golf data set using
the Select Subprocess operator’.

The ‘Golf’ data set is loaded using the Retrieve operator. The Select Subprocess operator is
applied on it. Double-click on the Select Subprocess operator to see the subprocesses in it. As
you can see, there are four subprocesses:
Subprocess 1: The k-NN operator is applied on the input and the resulting model is passed to

the output. Subprocess 2: The Naive Bayes operator is applied on the input and the resulting
model is passed to the output. Subprocess 3: The Decision Tree operator is applied on the input
and the resulting model is passed to the output. Subprocess 4: The input is directly connected
to the output.
Only one of these subprocesses can be executed at a time. The subprocess to be executed can

be controlled by the select which parameter. The select which parameter is set to 1, thus the
first subprocess will be executed. When you run the process you will see the model created by
the k-NN operator in the Results workspace. To execute the second subprocess set the select
which parameter to 2 and run the process again. You will see the model generated by the Naive
Bayes operator in the Results Workspace. To execute the third subprocess set the select which
parameter to 3 and run the process again. You will see the model generated by the Decision
Tree operator in the Results Workspace. To execute the fourth subprocess set the select which
parameter to 4 and run the process again. Now you will see the ‘Golf’ data set in the Results
Workspace because no operator was applied in the fourth subprocess.
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7.2.3 Collections
Collect

Collect

inp col This operator combinesmultiple input objects into a single collec-
tion.

Description

The Collect operator combines a variable number of input objects into a single collection. It is
important to know that all input objects should be of the same IOObject class. In the Process
View, collections are indicated by double lines. If the input objects are collections themselves
then the output of this operator would be a collection of collections. However if the unfold pa-
rameter is set to true then the output will be the union of all elements of the input collections.
After combining objects into a collection, the Loop Collection operator can be used to iterate
over this collection. The Select operator can be used to retrieve the required element of the
collection.
Collections can be useful when youwant to apply the same operations on a number of objects.

The Collect operator will allow you to collect the required objects into a single collection, the
LoopCollection operatorwill allow you to iterate over all collections andfinally you can separate
the input objects from collection by individually selecting the required element by using the
Select operator.

Input Ports

input (inp) This operator can have multiple inputs. When one input is connected, another in-
put port becomes available which is ready to accept another input (if any). The order of
inputs remains the same. The object supplied at the first input port of the Collect operator
becomes the first element of the resultant collection. It is important to note that all input
objects should be of the same IOObject class.

Output Ports

collection (col) All the input objects are combined into a single collection and the resultant
collection is delivered through this port.

Parameters

unfold (boolean) This parameter is only applicable when the input objects are collections.
This parameter specifies whether collections received at the input ports should be un-
folded. If the input objects are collections themselves and the unfold parameter is set to
false, then the output of this operator would be a collection of collections. However if the
unfold parameter is set to true then the outputwill be the union of all elements of the input
collections.
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Tutorial Processes
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Figure 7.42: Tutorial process ‘Introduction to collections’.

This Example Process explains a number of important ideas related to collections. This Ex-
ample Process shows how objects can be collected into a collection, then some preprocessing
is applied on the collection and finally individual elements of the collection are separated as
required.
The ‘Golf’ and ‘Golf-Testset’ data sets are loaded using the Retrieve operator. Both Example-

Sets are provided as inputs to the Subprocess operator. The subprocess performs some prepro-
cessing on the ExampleSets and then returns them through its output ports. The first output
port returns the preprocessed ‘Golf’ data set which is then used as training set for the Decision
Tree operator. The second output port delivers the preprocessed ‘Golf-Testset’ data set which
is used as testing set for the Apply Model operator which applies the Decision Tree model. The
performance of this model is measured and it is connected to the results port. The training and
testing ExampleSets can also be seen in the Results Workspace.
Now have a look at the subprocess of the Subprocess operator. First of all, the Collect oper-

ator combines the two ExampleSets into a single collection. Note the double line output of the
Collect operator which indicates that the result is a collection. Then the Loop Collection oper-
ator is applied on the collection. The Loop Collection operator iterates over the elements of the
collection and performs some preprocessing (renaming an attribute in this case) on them. You
can see in the subprocess of the Loop Collection operator that the Rename operator is used for
changing the name of the Temperature attribute to ‘New Temperature’. It is important to note
that this renaming is performed on both ExampleSets of the collection. The resultant collection
is supplied to the Multiply operator which generates two copies of the collection. The first copy
is used by the Select operator (with index parameter = 1) to select the first element of collec-
tion i.e. the preprocessed ‘Golf’ data set. The second copy is used by the second Select operator
(with index parameter = 2) to select the second element of the collection i.e. the preprocessed
‘Golf-Testset’ data set.
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Flatten Collection

Flatten Collection

col f la This operator receives a ‘collection of collections’ and unions all
content into a single collection.

Description
The Flatten Collection operator receives a ‘collection of collections’ and unions the content of
each collection into a single collection. For example, if your collection object contains three
collections which contain 5 objects each; this operator will return a single collection with 15
objects. Operators like the Collect operator can produce collections and ‘collections of collec-
tions’. In the Process View, collections are indicated by double lines.
Collections can be useful when youwant to apply the same operations on a number of objects.

The Collect operator allows you to collect the required objects into a single collection, the Loop
Collection operator allows you to iterate over all collections and finally you can separate the
input objects froma collection by individually selecting the required element by using the Select
operator.

Input Ports
collection (col) This port expects a collection object. This operator can be useful when this

object is a collection of collections.

Output Ports
flat (fla) The given collection object is flattened and delivered through this port.

Tutorial Processes

Introduction to Flatten Collection operator

Process

Subprocess

in ou t

ou t

Flatten Collection

col f lainp res

res

Figure 7.43: Tutorial process ‘Introduction to Flatten Collection operator’.

This Example Process starts with the Subprocess operator which delivers a collection of col-
lections. A breakpoint is inserted here so that you can have a look at this object. You can see
that this object has two collections. These collections have 3 ExampleSets each. The Flatten
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Collection operator is applied on this object to flatten the collection into a single collection of
6 ExampleSets. The resultant flattened collection object can be seen in the Results Workspace.
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Select

Select

col sel This operator returns the specified single object from the given
collection of objects.

Description

Operators like the Collect operator combine a variable number of input objects into a single
collection. In the Process View, collections are indicated by double lines. The Select operator
can be used for selecting an individual object from this collection. The index parameter specifies
the index of the required object. If the objects of the given collection are collections themselves
the output of this operator would be the collection at the specified index. However if the unfold
parameter is set to true the index refers to the index in the flattened list, i.e. the list obtained
from the input list by replacing all nested collections by their elements.
Collections can be useful when youwant to apply the same operations on a number of objects.

The Collect operator will allow you to collect the required objects into a single collection, the
LoopCollection operatorwill allow you to iterate over all collections andfinally you can separate
the input objects from a collection by individually selecting the required element by using the
Select operator.

Input Ports

collection (col) This port expects a collection of objects as input. Operators like the Collect
operator combine a variable number of input objects into a single collection.

Output Ports

selected (sel) The object at the index specified by the index parameter is returned through this
port.

Parameters

index (integer) This parameter specifies the index of the required object within the collection
of objects.

unfold (boolean) This parameter is only applicable when the objects of the given collection
are collections themselves. This parameter specifies whether collections received at the
input ports should be considered unfolded for selection. If the input objects are collections
themselves and the unfold parameter is set to false, then the index parameter will refer to
the collection at the specified index. However if the unfold parameter is set to true then
the index refers to the index in the flattened list, i.e. the list obtained from the input list
by replacing all nested collections by their elements.

Tutorial Processes
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Figure 7.44: Tutorial process ‘Introduction to collections’.

Introduction to collections

This Example Process explains a number of important ideas related to collections. It shows how
objects can be collected into a collection, then some preprocessing is applied on the collection
and finally individual elements of the collection are separated as required.
The ‘Golf’ and ‘Golf-Testset’ data sets are loaded using the Retrieve operator. Both Example-

Sets are provided as inputs to the Subprocess operator. The subprocess performs some prepro-
cessing on the ExampleSets and then returns them through its output ports. The first output
port returns the preprocessed ‘Golf’ data set which is then used as training set for the Decision
Tree operator. The second output port delivers the preprocessed ‘Golf-Testset’ data set which
is used as testing set for the Apply Model operator which applies the Decision Tree model. The
performance of this model is measured and it is connected to the results port. The training and
testing ExampleSets can also be seen in the Results Workspace.
Now have a look at the subprocess of the Subprocess operator. First of all, the Collect oper-

ator combines the two ExampleSets into a single collection. Note the double line output of the
Collect operator which indicates that the result is a collection. Then the Loop Collection oper-
ator is applied on the collection. The Loop Collection operator iterates over the elements of the
collection and performs some preprocessing (renaming an attribute in this case) on them. You
can see in the subprocess of the Loop Collection operator that the Rename operator is used for
changing the name of the Temperature attribute to ‘New Temperature’. It is important to note
that this renaming is performed on both ExampleSets of the collection. The resultant collection
is supplied to the Multiply operator which generates two copies of the collection. The first copy
is used by the Select operator (with index parameter = 1) to select the first element of the collec-
tion i.e. the preprocessed ‘Golf’ data set. The second copy is used by the second Select operator
(with index parameter = 2) to select the second element of the collection i.e. the preprocessed
‘Golf-Testset’ data set.
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7.2.4 Exceptions
Handle Exception

Handle Exception

in ou t

This is a nested operator that is used for exception handling. This
operator executes the operators in its Try subprocess and returns
its results if there is no error. If there is an error in the Try subpro-
cess, the Catch subprocess is executed instead and its results are
returned.

Description

The Handle Exception operator is a nested operator i.e. it has two subprocesses: Try and Catch.
This operator first tries to execute the Try subprocess. If there is no error i.e. the execution
is successful, then this operator returns the results of the Try subprocess. In case there is any
error the process is not stopped. Instead, the Catch subprocess is executed and its results are
delivered by this operator. The error message can be saved using the exception macro parame-
ter. This Try/Catch concept is like the exception handling construct used inmany programming
languages. You need to have a basic understanding of macros if you want to save the error mes-
sage using the exception macro. Please study the documentation of the Extract Macro operator
for basic understanding of macros. For more information regarding subprocesses please study
the Subprocess operator. Please use this operator with care since it will also cover unexpected
errors.

Input Ports

in (in ) This operator can have multiple inputs. When one input is connected, another in port
becomes available which is ready to accept another input (if any). The order of inputs re-
mains the same. The Object supplied at the first in port of this operator is available at the
first in port of the nested chain (inside the subprocess). Do not forget to connect all inputs
in the correct order. Make sure that you have connected the right number of ports at the
subprocess level.

Output Ports

out (out) This operator can have multiple out ports. When one output is connected, another
out port becomes available which is ready to deliver another output (if any). The order of
outputs remains the same. The Object delivered at the first out port of the subprocess is
delivered at the first out port of the outer process. Don’t forget to connect all outputs in
the correct order. Make sure that you have connected the right number of ports at all levels
of the chain.

Parameters

exception macro (string) Thisparameter specifies thenameof themacrowhichwill store the
error message (if any). This macro can be accessed by other operators by using ‘%{macro-
_name}’ syntax.
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Tutorial Processes

Using Try/Catch for exception handling

Process
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Figure 7.45: Tutorial process ‘Using Try/Catch for exception handling’.

The goal of this Example Process is to deliver the ‘Iris’ data set after renaming its attributes. In
case there is an error, the original ‘Iris’ data set should be delivered alongwith the errormessage.
The ‘Iris’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that

you can have a look at the ExampleSet. You can see that there are four regular attributes a1, a2,
a3 and a4. TheHandle Exceptionoperator is appliednext. Have a look at the subprocesses of this
operator. TheRenameoperator is applied in theTry subprocess for renaming the attributes. The
old name and new name parameters of the Rename operator are deliberately left empty which
is an error because these are mandatory parameters. The Catch subprocess takes the original
ExampleSet and applies the Log operator and delivers the ExampleSet without modifications to
the output. The Log operator is used for recording the error message in case there is an error.
Execute the process and switch to the Results Workspace. You can see that the attributes of

theExampleSet havenot been renamed. This is because therewas an error in theTry subprocess,
therefore itwas not executed. The errormessage can be seen in the logwhich says that values for
mandatory parameters of the Rename operator were not provided. The original ExampleSet can
be seen in the Results Workspace because when the Handle Exception operator encountered an
error in the Try subprocess, it stopped its execution and executed the Catch subprocess instead
and delivered its results.
Now set the old name and new name parameters of the Rename operator to ‘label’ and ‘new-

_label’ respectively and run the process again. This time you can see that the attributes have
been renamed and there is no error message. This is so because the Handle Exception operator
first tried to execute the Try subprocess. Since there was no error in it, its results were delivered
and the Catch subprocess was not executed.
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Throw Exception

Throw Exception

t h r t h r This operator throws an exception every time it is executed.

Description
The Throw Exception operator will throw an exception with an user-definedmessage as soon as
it is executed. This will cause the process to fail. It can be useful if e. g. a certain result is equal
to a failure.

Input Ports
through (thr) Data delivered to this port will be passed to the output port without any modi-

fication. Whenever an input port gets occupied, two new input and output ports become
available. The order remains the same. Data delivered at the first input port is available at
the first output port. It’s not necessary to connect this port, the exception will be thrown
anyway.

Output Ports
through (thr) Provides the data which was delivered at the corresponding input port without

any changes. Whenever an input port gets occupied, two new input and output ports be-
come available. The order remains the same. Data delivered at the first input port is avail-
able at the first output port. It’s not necessary to connect this port, the exception will be
thrown anyway.

Parameters
message (string) The errormessage that should be shown/logged is specified through this pa-

rameter.

Tutorial Processes

Throw exeption if no examples passed

The ‘Iris’ data set is loaded with the Retrieve operator. The Filter Examples operator is applied
on the data and filters examples of the attribute a1 that have a value greater than 10.
The ExampleSet is passed on to a Branch operator. If there is at least one example, the data is

passed on without changing. If there are zero examples, the Throw Exception operator makes
the process fail with the entered message. Because the filter condition applies on no example
of the data set, the process will fail i.e. the Throw Exeption operator will be executed.
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Figure 7.46: Tutorial process ‘Throw exeption if no examples passed’.

7.3 Macros
Extract Macro

Extract Macro

exa exa

This operator can be used to define a single macro which can be
used by %{macro_name} in parameter values of succeeding opera-
tors of the current process. The macro value will be derived from
the input ExampleSet. A macro can be considered as a value that
can be used by all operators of the current process that come af-
ter the macro has been defined. This operator can also be used to
re-define an existing macro.

Description
This operator can be used to define a single macro which can be used in parameter values of
succeeding operators of the current process. Once the macro has been defined, the value of
that macro can be used as parameter values in coming operators by writing the macro name in
%{macro_name} format in the parameter value where ‘macro_name’ is the name of the macro
specified when it was defined. In the Extract Macro operator the macro name is specified by the
macro parameter. The macro will be replaced in the value strings of parameters by the macro’s
value. This operator can also be used to re-define an existing macro.
This operator sets the value of a single macro from properties of a given input ExampleSet.

This includes properties like the number of examples or number of attributes of the input Exam-
pleSet. Specific data value of the input ExampleSet can also be used to set the value of themacro
which can be set using various statistical properties of the input ExampleSet e.g. average, min
or max value of an attribute. All these options can be understood by studying the parameters
and the attached Example Processes. The Set Macro operator can also be used to define amacro
but it does not set the value of the macro from properties of a given input ExampleSet.

Macros

A macro can be considered as a value that can be used by all operators of the current process
that come after it has been defined. Whenever using macros, make sure that the operators are
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in the correct sequence. It is compulsory that the macro should be defined before it can be used
in parameter values. The macro is one of the advanced topics of RapidMiner, please study the
attached Example Processes to develop a better understanding of macros.
There are also some predefined macros:

• %{process_name}: will be replaced by the nameof the process (without path and extension)

• %{process_file}: will be replaced by the file name of the process (with extension)

• %{process_path}: will be replaced by the complete absolute path of the process file

• Several other shortmacrosalsoexist, e.g. %{a} for thenumberof times thecurrentoperator
was applied.

Please note that other operators like many of the loop operators (e.g. Loop Values , Loop
Attributes) also add specific macros.

Input Ports
example set input (exa) This input port expects an ExampleSet. The macro value will be ex-

tracted from this ExampleSet

Output Ports
example set output (exa) The ExampleSet that was given as input is passed without chang-

ing to the output through this port. This is usually used to reuse the same ExampleSet in
further operators. It is not compulsory to attach this port to any other port, Macro value
is set even if this port is left without connections.

Parameters
macro (string) This parameter is used to name the macro and can be accessed in succeeding

operators of current process by writing the macro name in %{macro_name} format, where
‘macro_name’ is the name of the macro specified by this parameter.

macro type This parameter indicates the way the input ExampleSet should be used to define
the macro.

• number_of_examples If this option is selected, the macro value is set to the total
number of examples in the input ExampleSet.

• number_of_attributes If this option is selected, the macro value is set to the total
number of attributes in the input ExampleSet.

• data_value If thisoption is selected, themacrovalue is set to thevalueof the specified
attribute at the specified index. The attribute is specified using the attribute name
parameter and the index is specified using the example index parameter.

• statistics If this option is selected, the macro value is set to the value obtained by
applying the selected statistical operation on the specified attribute. The attribute is
specified using the attribute name parameter and the statistical operator is selected
using the statistics parameter.

statistics This parameter is only available when themacro type parameter is set to ‘statistics’.
This parameter allows you to select the statistical operator to be applied on the attribute
specified by the attribute name parameter.
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attribute name (string) Thisparameter is only availablewhen themacro typeparameter is set
to ‘statistics’ or ‘data value’. This parameter allows you to select the required attribute.

attribute value (string) This parameter is only available when the macro type parameter is
set to ‘statistics’ and the statistics parameter is set to ‘count’. This parameter is used to
specify a particular value of the specified attribute. The macro value will be set to the
number of occurrences of this value in the specified attribute. The attribute is specified by
the attribute name parameter.

example index (integer) This parameter is only available when the macro type parameter is
set to ‘data value’. This parameter allows you to select the index of the required example of
the attribute specified by the attribute name parameter and the optional additional macros
parameter.

additional macros This parameter is only available when the macro type parameter is set to
‘data value’. This optional parameter allows you to add an unlimited amount of additional
macros. Note that the value for the example index parameter is used for all macros in this
list.

Related Documents
• Extract Macro from Annotation (page ??)

Tutorial Processes

Introduction to the Extract Macro operator

This is a very basic process that demonstrates the use of macros and the Extract Macro oper-
ator. The ‘Golf’ data set is loaded using the Retrieve operator. The Extract Macro operator is
applied on it. The macro is named ‘avg_temp’. The macro type parameter is set to ‘statistics’,
the statistics parameter is set to ‘average’ and the attribute name parameter is set to ‘Temper-
ature’. Thus the value of the avg_temp macro is set to the average of values of the ‘Golf’ data
set’s Temperature attribute. Which in all 14 examples of the ‘Golf’ data set is 73.571. Thus the
value of the avg_temp macro is set to 73.571. In this process, wherever %{avg_temp} is used in
parameter values, it will be replaced by the value of the avg_temp macro i.e. 73.571. Note that
the output port of the Extract Macro operator is not connected to any other operator but still
the avg_temp macro has been created.
The ‘Golf-Testset’ data set is loaded using the Retrieve operator. The Filter Examples operator

is applied on it. The condition class parameter is set to ‘attribute value filter’. The parameter
string parameter is set to ‘Temperature > %{avg_temp}’. Note the use of the avg_temp macro.
When this process is run, %{avg_temp} will be replaced by the value of the avg_temp macro i.e.
73.571. Thus only those examples of the Golf-Testset data set will make it to the output port
where the value of the Temperature attribute is greater than average value of the Temperature
attribute values of the Golf data set (i.e. 73.571). You can clearly verify this by seeing the results
in the Results Workspace.

Redefining a macro using the Extract Macro operator

The focus of this Example Process is to show how macros can be redefined using the Extract
Macrooperator. Thisprocess is almost the sameas thefirstExampleProcess. Theonlydifference
is that after the avg_temp macro has been defined, the same macro is redefined using the ‘Golf’
data set and the Extract Macro operator. The ‘Golf’ data set is loaded again and it is provided to
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Figure 7.47: Tutorial process ‘Introduction to the Extract Macro operator’.

the second Extract Macro operator. In this Extract Macro operator themacro parameter is set to
‘avg_temp’ and themacro type parameter is set to ‘number of examples’. As the avg_tempmacro
already exists, no newmacro is created; the already existing macro is redefined. As the number
of examples in the ‘Golf’ data set is 14, avg_temp is redefined as 14. Thus in the Filter Examples
operator the value of the Temperature attribute of the ‘Golf-Testset’ data set is compared with
14 instead of 73.571. This can be verified by seeing the results in the Results workspace. Please
note that macros are redefined depending on their order of execution.

use of Extract Macro in complex preprocessing

This Example Process is also part of the RapidMiner tutorial. It is included here to show the
usage of the ExtractMacro operator in complex preprocessing. This process will cover a number
of concepts of macros including redefining macros, the macro of the Loop Values operator and
the use of the Extract Macro operator. This process starts with a subprocess which is used to
generate data. What is happening inside this subprocess is not relevant to the use of macros,
so it is not discussed here. A breakpoint is inserted after this subprocess so that you can view
the ExampleSet. You can see that the ExampleSet has 12 examples and 2 attributes: ‘att1’ and
‘att2’. ‘att1’ is nominal and has 3 possible values: ‘range1’, ‘range2’ and ‘range3’. ‘att2’ has real
values.
The Loop Values operator is applied on the ExampleSet and iterates over the values of the

specified attribute (i.e. att1) and applies the inner operators on the given ExampleSet while the
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Figure 7.48: Tutorial process ‘Redefining a macro using the Extract Macro operator’.

current value can be accessed via the macro defined by the iteration macro parameter which is
set to ‘loop_value’, thus the current value can be accessed by specifying %{loop_value} in the
parameter values. As att1 has 3 possible values, Loop Values will iterate 3 times, once for each
possible value of att1.
Here is an explanation of what happens inside the LoopValues operator. It is providedwith an

ExampleSet as input. The Filter Examples operator is applied on it. The condition class param-
eter is set to ‘attribute value filter’ and the parameter string is set to ‘att1 =%{loop_value}’. Note
the use of the loop_value macro here. Only those examples are selected where the value of att1
is equal to the value of the loop_value macro. A breakpoint is inserted here so that you can view
the selected examples. Then the Aggregation operator is applied on the selected examples. It
is configured to take the average of the att2 values of the selected examples. This average value
is stored in a new ExampleSet in the attribute named ‘average(att2)’. A breakpoint is inserted
here so that you can see the average of the att2 values of the selected examples. The Extract
Macro operator is applied on this new ExampleSet to store this average value in a macro named
‘current_average’. The originally selected examples are passed to the Generate Attributes op-
erator that generates a new attribute named ‘att2_abs_avg’ which is defined by the expression
‘abs(att2 - %{current_average})’. Note the use of the current_average macro here. Its value is
subtracted from all values of att2 and stored in a new attribute named ‘att2_abs_avg’. The Resul-
tant ExampleSet is delivered at the output of the Loop Values operator. A breakpoint is inserted
here so that you can see the ExampleSet with the ‘att2_abs_avg’ attribute. This output is fed to
the Append operator in the main process. It merges the results of all the iterations into a single
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Figure 7.49: Tutorial process ‘use of Extract Macro in complex preprocessing’.

ExampleSet which is visible at the end of this process in the Results Workspace.
Here is what you see when you run the process.
ExampleSet generated by the Generate Data subprocess. Then the process enters the Loop

Value operator and iterates 3 times.
Iteration 1: ExampleSet where the ‘att1’ value is equal to the current value of the loop_value

macro i.e. ‘range1’Averageof ‘att2’ values for the selectedexamples. Theaverage is -1.161.ExampleSet
with ‘att2_abs_avg’ attribute for iteration 1. Iteration 2: ExampleSet where the ‘att1’ value is
equal to the current value of the loop_value macro i.e. ‘range2’Average of ‘att2’ values for the
selected examples. The average is -1.656.ExampleSet with ‘att2_abs_avg’ attribute for iteration
2.
Iteration 3: ExampleSet where the ‘att1’ value is equal to the current value of the loop_value

macro i.e. ‘range3’Average of ‘att2’ values for the selected examples. The average is 1.340.Ex-
ampleSet with ‘att2_abs_avg attribute’ for iteration 3. Now the process comes out of the Loop
Values operator and the Append operator merges the final ExampleSets of all three iterations
into a single ExampleSet that you can see in the Results Workspace.
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Generate Macro

Generate Macro

t h r t h r

This operator can be used to calculate new macros from existing
macros. Amacro can be used by writing%{macro_name} in param-
eter valuesof succeedingoperatorsof the currentprocess. AMacro
can be considered as a value that can be used by all operators of the
current process that come after the macro has been defined. This
operator can also be used to re-define existing macros.

Description
This operator can be used to definemacros which can be used in parameter values of succeeding
operators of the current process. Once the macro has been defined, the value of that macro
can be used as parameter value in coming operators by writing the macro name in %{macro-
_name} format in the parameter value where ‘macro_name’ is the name of the macro specified
when it was defined. In Generate Macro operator macro names and function descriptions are
specified in the function descriptions parameters. Themacro will be replaced in the value strings
of parameters by the macro’s value. This operator can also be used to re-define existing macros
by specifying the name of that macro as name in the function descriptions parameter.
A large number of operations and functions is supported, which allows you to write rich ex-

pressions. For a list of operations and functions and their descriptions open the Edit Expression
dialog. Complicated expressions can be created by using multiple operations and functions.
Parenthesis can be used to nest operations. Since RapidMiner 6.0.3 the operator will fail if an
expression is not valid so that you can correct it. The description of all operations follows this
format:
This operator also supports various constants (for example ‘INFINITY’, ‘PI’ and ‘e’). Again you

can find a complete list in the Edit Expression dialog. You can also use strings in operations but
the string values should be enclosed in double quotes (”).
The functionsavailable in theGenerateMacrooperator behaveanalogously to the functionsof

the Generate Attributes operator. Please study the Example Process of the Generate Attributes
operator to understand the use of these functions.

Macros

Macro can be considered as a value that can be used by all operators of the current process that
come after the macro has been defined. Whenever using macros, make sure that the operators
are in the correct sequence. It is compulsory that the macro should be defined before it can be
used in parameter values. Macro is one of the advanced topics of RapidMiner, please study the
attached Example Processes to develop a better understanding of macros.
There are also some predefined macros:

• %{process_name}: will be replaced by the nameof the process (without path and extension)

• %{process_file}: will be replaced by the file name of the process (with extension)

• %{process_path}: will be replaced by the complete absolute path of the process file

• %{execution_count}: will be replaced by the number of times the current operator was ap-
plied.

• %{operator_name}: will be replaced by the name of the current operator.

Please note that other operators like many of the loop operators (e.g. Loop Values , Loop
Attributes) also add specific macros.
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Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at first through input port of the Generate Macro operator is
available at the first through output port.

Output Ports
through (thr) The objects that were given as input are passed without changing to the output

through this port. It is not compulsory to attach this port to any other port, the macro
value is calculated even if this port is left without connections. The Generate Macro op-
erator can have multiple outputs. When one output is connected, another through output
port becomes available which is ready to deliver another output (if any). The order of out-
puts remains the same. The object delivered at the first through input port of the Generate
Macro operator is delivered at the first through output port

Parameters
function descriptions The list of macro names together with the expressions which define

the new macros are specified through this parameter.

Tutorial Processes

Generating a new macro from an already existing macro
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t h r

k - N N

t ra mod

exa

inp res

res

Figure 7.50: Tutorial process ‘Generating a new macro from an already existing macro’.

This Example Process discusses an imaginary scenario to explain how the Generate macro
operator can be used to define a new macro from an existing macro. Suppose we want to apply
theK-NNoperator on anExampleSet such that the value of the kparameter of theK-NNoperator
is set dynamically to some ratio of number of examples in the input ExampleSet. Let us assume
that the required ratio is k =n *0.025wheren is thenumber of examples in the inputExampleSet.
The Polynomial data set is loaded using the Retrieve operator. The Extract Macro operator

is applied on it to create a new macro. The macro parameter is set to ‘example_count’ and the
macro type parameter is set to ‘number of examples’. Thus a macro is created with the name
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‘example_count’. The value of this macro is equal to the number of examples in the Polyno-
mial data set. Then the Generate Macro operator is applied. Only one macro is defined in the
function descriptions parameter. The macro is named ‘value_k’ and it is defined by this expres-
sion: ceil(eval(%{example_count}) * 0.025). Note the use of the ‘example_count’ macro here.
When this process is executed ‘%{example_count}’ is replaced by the value of the ‘example-
_count’ macro which is equal to the number of examples in the input ExampleSet which is 200.
Since all macros are strings we need to use the eval function to obtain 200 as number. Thus at
run-time the expression that defines ‘value_k’ macro will be evaluated as ceil( 200 * 0.025 ). The
result of this expression is 5. The K-NN operator is applied on the Polynomial data set with the
parameter k set to ‘%{value_k}’. At run-time ‘%{value_k}’ will be replaced by the actual value of
the ‘value_k’ macro which is 5. Thus K-NN operator will be applied on the Polynomial data set
with the parameter k set to 5. This can be verified by running the process and viewing the results
in the Results Workspace.
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Set Macro

Set Macro

t h r t h r

This operator can be used to define a macro which can be used by
%{macro_name} in parameter values of succeeding operators of the
current process. The macro value will NOT be derived from any
ExampleSet. Amacro can be considered as a value that can be used
by all operators of the current process that come after the macro
has been defined. This operator can also be used to re-define an
existing macro.

Description
This operator can be used to define amacrowhich can be used in parameter values of succeeding
operators of the current process. Once the macro has been defined, the value of that macro can
be used as parameter values in coming operators by writing the macro name in%{macro_name}
format in the parameter value where ‘macro_name’ is the name of the macro specified when
the macro was defined. In the Set Macro operator, the macro name is specified by the macro
parameter and the macro value is specified by the value parameter. The macro will be replaced
in the value strings of parameters by the macro’s value. This operator can also be used to re-
define an existing macro.
This operator sets the value of a macro irrespective of any ExampleSet. That is why this oper-

ator can also exist on its own i.e. without being connected to any other operator. If you want to
create a single macro from properties of a given input ExampleSet, the Extract Macro operator
is the right operator.

Macros

Amacro can be considered as a value that can be used by all operators of the current process that
come after the macro has been defined. Whenever using macros, make sure that the operators
are in the correct sequence. It is compulsory that the macro should be defined before it can
be used in parameter values. The macro is one of the advanced topics of RapidMiner, please
study the attached Example Process to develop a better understanding of macros. The Example
Processes of the Extract Macro operator are also useful for understanding the concepts related
to the macros.
There are also some predefined macros:

• %{process_name}: will be replaced by the nameof the process (without path and extension)

• %{process_file}: will be replaced by the file name of the process (with extension)

• %{process_path}: will be replaced by the complete absolute path of the process file

• Several other shortmacrosalsoexist, e.g. %{a} for thenumberof times thecurrentoperator
was applied.

Please note that other operators like many of the loop operators (e.g. Loop Values , Loop
Attributes) also add specific macros.
During the runtime the defined macros can be observed in the macro viewer.

Differentiation
• Set Macros The Set Macros operator is like the Set Macro operator with only one differ-
ence. The Set Macros operator can be used for setting values of multiple macros whereas
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the Set Macro operator can be used for setting value of just a single macro. See page 910
for details.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the SetMacro operator is avail-
able at the first through output port.

Output Ports
through (thr) Objects thatweregivenas inputarepassedwithout changing to theoutput through

this port. It is not compulsory to attach this port to any other port, the macro value is set
even if this port is left without connections. The Set Macro operator can have multiple
outputs. When one output is connected, another through output port becomes available
which is ready to deliver another output (if any). The order of outputs remains the same.
The object delivered at the first through input port of the Set Macro operator is delivered
at the first through output port

Parameters
macro This parameter is used to specify the name of the macro. The macro can be accessed in

succeedingoperators of the current process bywriting themacro’s name in%{macro_name}
format, where ‘macro_name’ is the name of the macro specified in this parameter.

value This parameter is used to specify the value of the macro. When the macro is accessed in
succeedingoperators of the current process bywriting themacro’s name in%{macro_name}
format, it is replaced by the value of the macro specified by this parameter.

Related Documents
• Set Macros (page 910)

Tutorial Processes

Introduction to the Set Macro operator

This is a very basic process that demonstrates the use of the Set Macro operator. The Set Macro
operator is used first of all. One macro is defined using the macro and the value parameter. The
macro is named ‘number’ and it is given the value 1. Note that this operator is not connected to
any other operator; it can exist at its own. Always make sure that the macro is defined before it
is used in the parameter values.
The ‘Golf’ data set is loaded using the Retrieve operator. The Select Subprocess operator is

applied on it. Double-click on the Select Subprocess operator to see the subprocesses in it. As
you can see, there are four subprocesses:
Subprocess 1: The k-NN operator is applied on the input and the resulting model is passed to

the output. Subprocess 2: The Naive Bayes operator is applied on the input and the resulting
model is passed to the output. Subprocess 3: The Decision Tree operator is applied on the input
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Process

Set Macro

t h r t h r

Golf

out

Select Subprocess

inp

inp

ou t

ou t

inp res

res

Figure 7.51: Tutorial process ‘Introduction to the Set Macro operator’.

and the resulting model is passed to the output. Subprocess 4: The input is directly connected
to the output.
Only one of these subprocesses can be executed at a time. The subprocess to be executed

can be controlled by the select which parameter of the Select Subprocess operator. The select
which parameter is set using the ‘number’ macro defined by the Set Macro operator. The select
which parameter is set to ‘%{number}’. When the process will be executed, ‘%{number}’ will be
replaced with the value of the ‘number’ macro i.e. ‘%{number}’ will be replaced by 1. Thus the
select which parameter is set to 1, thus the first subprocess will be executed. When you run the
process you will see the model created by the k-NN operator in the Results workspace. As the
value of the select which parameter is provided by the macro created by the Set Macro operator,
changing the value of themacro will change the value of the select which parameter. To execute
the second subprocess set the value parameter of the SetMacro operator to 2 and run the process
again. You will see the model generated by the Naive Bayes operator in the Results Workspace.
To execute the third subprocess set the value parameter of the Set Macro operator to 3 and run
the process again. Youwill see themodel generated by the Decision Tree operator in the Results
Workspace. To execute the fourth subprocess set the value parameter of the Set Macro operator
to 4 and run the process again. Now you will see the ‘Golf’ data set in the Results Workspace
because no operator was applied in the fourth subprocess.
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Set Macros

Set Macros

t h r t h r

This operator can be used to define multiple macros which can be
used by %{macro_name} in parameter values of succeeding opera-
tors of the current process. The macro values will NOT be derived
from any ExampleSet. A macro can be considered as a value that
can be used by all operators of the current process that come af-
ter the macro has been defined. This operator can also be used to
re-define existing macros.

Description
This operator can be used to define multiple macros which can be used in parameter values of
succeeding operators of the current process. Once the macro has been defined, the value of
that macro can be used as parameter values in coming operators by writing the macro name
in %{macro_name} format in a parameter value where ‘macro_name’ is the name of the macro
specified when the macro was defined. In the Set Macros operator, the macro name and value is
specified by the macros parameter. A macro will be replaced in the value strings of parameters
by the macro’s value. This operator can also be used to re-define existing macros.
This operator sets the value of multiple macros irrespective of any ExampleSet. That is why

this operator can also exist on its own i.e. without being connected to any other operator. If you
want to create a single macro from properties of a given input ExampleSet, the Extract Macro
operator is the right operator.

Macros

Amacro can be considered as a value that can be used by all operators of the current process that
come after the macro has been defined. Whenever using macros, make sure that the operators
are in the correct sequence. It is compulsory that the macro should be defined before it can
be used in parameter values. The macro is one of the advanced topics of RapidMiner, please
study the attached Example Process to develop a better understanding of macros. The Example
Processes of the Extract Macro operator are also useful for understanding the concepts related
to the macros.
There are also some predefined macros:

• %{process_name}: will be replaced by the nameof the process (without path and extension)

• %{process_file}: will be replaced by the file name of the process (with extension)

• %{process_path}: will be replaced by the complete absolute path of the process file

• Several other shortmacrosalsoexist, e.g. %{a} for thenumberof times thecurrentoperator
was applied.

Please note that other operators like many of the loop operators (e.g. Loop Values , Loop
Attributes) also add specific macros.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
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same. The object supplied at the first through input port of the Set Macros operator is
available at the first through output port.

Output Ports
through (thr) Objects thatweregivenas inputarepassedwithout changing to theoutput through

this port. It is not compulsory to attach this port to any other port, the macro value is set
even if this port is left without connections. The Set Macros operator can have multiple
outputs. When one output is connected, another through output port becomes available
which is ready to deliver another output (if any). The order of outputs remains the same.
The object delivered at the first through input port of the Set Macros operator is delivered
at the first through output port

Parameters
macros This parameter is used to specify the names and values of the macros. Macros can

be accessed in succeeding operators of the current process by writing the macro’s name
in %{macro_name} format, where ‘macro_name’ is the name of the macro specified in this
parameter.

Tutorial Processes

Introduction to the Set Macros operator

Process

Set Macros

t h r t h r

Retr ieve

out

Filter Example R.. .

exa exa

ori

Write CSV

inp th r

f i l

inp

res

res

Figure 7.52: Tutorial process ‘Introduction to the Set Macros operator’.

This is a very basic process that demonstrates the use of macros and the Set Macros operator.
The Set Macros operator is used first of all. Two macros are defined in the macros parameter.
They are named ‘min’ and ‘max’. ‘min’ is given the value 1 and ‘max’ is given the value 4. Note
that this operator is not connected to any other operator; it can exist at its own. Always make
sure that the macro is defined before it is used in parameter values.
The ‘Golf’ data set is loaded using the Retrieve operator. The Filter Example Range operator

is applied on it. The first example parameter is set to ‘%{min}’ and the last example parameter
is set to ‘%{max}’. When the process will be executed, ‘%{min}’ and ‘%{max}’ will be replaced
with the values of the respective macros i.e. ‘%{min}’ and ‘%{max}’ will be replaced by 1 and 4
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respectively. Thus the Filter Examples Range operator will deliver only the first four examples
of the ‘Golf’ data set.
At the end, the Write CSV operator is applied to store the output of the Filter Example Range

operator in a CSV file. Note that the csv file parameter is set to ‘D:\%{process_name}’. Here
‘%{process_name}’ is a predefinedmacro which will be replaced by the name of the current pro-
cess (without file extension). Thus the output of the Filter Example Range operator will be writ-
ten in a csv file in the D drive of your computer. The name of the file will be the same as the
name of this process.
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7.4 Files
Add Entry to Archive File

Add Entry to Arc...

arc

f i l

arc This operator adds entries to an archive file object, currently the
only available type is a zip file.

Description
The Add Entry to Archive File operator adds entries, i.e. files, to an archive file object created
by the Create Archive File operator. By default, the entries are added to the root directory of the
archive file, but you can specify a directory name to create a subdirectory inside the archive file.
Please have a look at the tutorial process of this operator to better understand its usage.

Input Ports
archive file (arc) This operator can have multiple inputs. When one input port is connected,

another input port becomes available which is ready to accept another input (if any).This
input port expects an ExampleSet. It is output of the Retrieve operator in the attached
Example Process. Output of other operators can also be used as input. It is essential that
meta data should be attached with the data for the input because attributes are specified
in their meta data. The Retrieve operator provides meta data along with data.

file input (fil) TheAddEntry toArchiveFile operator canhavemultiple inputs. Whenone input
port is connected, another input port becomes available which is ready to accept another
input (if any). This input port expects a File Object. File Objects can be created e.g. with
the Open File operator.

Output Ports
archive file (arc) The same archive file object that has been connected to the input port is out-

put of this port, with the additional entries added by this operator.

Parameters
directory (string) This parameter specifies the directory where the entry will be stored inside

the archive file. Specify it in the form ‘my/sub/directory’, or leave it empty to store the
entry in the root folder.

override compression level (boolean) This parameter allows to override the default com-
pression level of the archive file object for the entries created by this operator. The default
level is set by the Create Archive File operator that created the archive file object. This is
useful, if you are adding pre-compressed files to the archive, such as zip files, jar files etc.
These files cannot be further compressed, so you can save some execution time by setting
the compression level for new entries of this kind to a low value.
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compression level (integer) The compression level of the newly created entries is specified
through this parameter. In general, higher compression levels result also in a higher run-
time.

Tutorial Processes

Creating and storing a zip file

Process

Open File

f i l

Open Fi le (2)

f i l

Open Fi le (3)

f i l

Create Archive F.. .

arc

Add Entry to Arc...

arc

f i l

f i l

f i l

arc

Add Entry to Arc...

arc

f i l

f i l

arc

Write Fi le

f i l f i l

inp

res

res

Figure 7.53: Tutorial process ‘Creating and storing a zip file’.

This Example Process demonstrates how a zip file can be created in RapidMiner, how entries
can be added and how the file can be written to a disk.
First of all, the zip file is created with the Create Archive File operator. Then, some entries are

added. At first the Open File operators open some files from your harddisk. These files are then
added to the zip file via the Add Entry to Archive File operators. You can see that you can add
several files in one single step, and that you can also concatenate several Add Entry to Archive
File operators. Finally, the zip file is written to a disk with the Write File operator.
Please be sure to select some valid files from your harddisk in the Open File operators, and to

specify a valid location in the Write File operator!
The second Add Entry to Archive File operator creates a directory inside the zip file. After the

execution of the process you may open the archive file from your disk and inspect the results.
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Storing freshly created data in a zip file

Process

Create Archive File

arc

Retrieve Ir is

out

Write CSV

inp th r

f i l
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inp ou t
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f i l

f i l
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Write Fi le

f i l f i linp res
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Figure 7.54: Tutorial process ‘Storing freshly created data in a zip file’.

This process loads the Iris data set, creates a CSV file from it and stores it in a zip file. The
zip file is then saved to disk with the Write File operator.Please note that you have to set the
filename parameter of the Write File operator.
When you load a file from disk with Open File, the filename is known to RapidMiner. In the

current process, that is not the case, since the CSV file has been created on the fly: we must
assign the name manually. This is done by defining the Filename annotation with the help of
the Annotate operator.
For more information about annotations and the related operators, please have a look at the

documentation of the Annotate operator.
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Copy File

Copy File

t h r t h r This operator copies the chosen file to the specified destination.

Description
The Copy File operator copies the file specified in its parameters to the indicated destination.
If the inserted path does not already exist the needed folders and the file are created. It is also
possible to overwrite an existing document.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the Copy File operator is avail-
able at the first through output port.

Output Ports
through (thr) The objects that were given as input are passed without changing to the output

through this port. It is not compulsory to attach this port to anyotherport, thefile is copied
even if this port is left without connections. The Copy File operator can have multiple
outputs. When one output is connected, another through output port becomes available
which is ready to deliver another output (if any). The order of outputs remains the same.
The object delivered at the first through input port of the Copy File operator is delivered at
the first through output port.

Parameters
source file (file) The file that should be copied is specified through this parameter.

new file (file) The copied file is saved as the file and at the target specified through this pa-
rameter.

overwrite (boolean) If this parameter is set to true a file specified in the new file parameter
that already existed is replaced by the file specified in the source file parameter.

Tutorial Processes

Writing the Labor-Negotiations data set into an Excel file and copying it

This Example Process shows how the Copy File operator can be used to copy a specified file. For
this Example Process you first need a file to copy. An Excel file is created by loading the ‘Labor-
Negotiations’ data set with the Retrieve operator and writing it into an Excel file with the Write
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Process

Labor-Negotiations

out

Write Excel

inp th r

f i l

Copy File

t h r t h r

inp

res

res

Figure 7.55: Tutorial process ‘Writing the Labor-Negotiations data set into an Excel file and
copying it’.

Excel operator. The file is saved as ‘D:\Labor data set.xls’ if this file does not already exist. For
further understanding of this operator please read the description of the Write Excel operator.
TheCopy File operator is insertedwithout any connections. The source file parameter is set to

‘D:\Labor data set.xls’ and the newfile parameter to ‘D:\test\Labor data set.xls’. Run the process
and two files are created in your D drive, the ‘Labor data set.xsl’ of the Write Excel operator and
the ‘Labor data set.xsl’ in a separate folder named ‘test’.
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Create Archive File

Create Archive File

arc

This operator creates an archive file object, which allows the com-
pression of other file objects. It is only possible to create zip files
at the moment. After all entries have been added, the archive file
object can be stored in the filesystem.

Description
The Create Archive File operator creates an archive file object. This object can be passed to the
Add Entry to Archive File operator to add data. After all entries have been added, the archive
file object can be stored on your harddisk with the Write File operator, or you can store it in the
repository.
Currently this operator can only create zip files, but more archive types may be added in a

later version.
Please have a look at the tutorial process to better understand the usage of this operator.

Output Ports
archive file (arc) The archive file object generated during the execution of this operator is the

output of this port.

Parameters
buffer type (selection) This operator defines where the buffer for the archive file will be cre-

ated. There are two possibilities:

• file The archive file will be created on a disk. Choose this option if you plan to create
a big archive file.

• memory The archive file will be cached in the memory. A memory buffered archive
file will usually perform faster in terms of execution time, but the complete archive
must be kept in memory, which can lead to problems if large files or a large amount
of files is added to the archive. Choose this option if you create rather small files or
have a lot of memory.

use default compression level (boolean) This parameter allows you to override the default
compression level. The default compression level depends on the host machine, but usu-
ally offers a reasonable trade-off between execution time and compression factor.

compression level (integer) The default compression level of the created zip file is specified
by this parameter. This level may be overridden in the subsequent Add Entry to Archive
File operators on a per-entry base. In general, higher compression levels result also in a
higher runtime.

Tutorial Processes

Creating and storing a zip file

This Example Process demonstrates how a zip file can be created in RapidMiner, how entries can
be added and how the file can be written to a disk.
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Figure 7.56: Tutorial process ‘Creating and storing a zip file’.

First of all, the zip file is created with the Create Archive File operator. Then, some entries are
added. At first the Open File operators open some files from your harddisk. These files are then
added to the zip file via the Add Entry to Archive File operators. You can see that you can add
several files in one single step, and that you can also concatenate several Add Entry to Archive
File operators. Finally, the zip file is written to a disk with the Write File operator.
Please be sure to select some valid files from your harddisk in the Open File operators, and to

specify a valid location in the Write File operator!
The second Add Entry to Archive File operator creates a directory inside the zip file. After the

execution of the process you may open the archive file from your disk and inspect the results.
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Create Directory

Create Directory

t h r t h r This operator creates a directory at the specified location.

Description
The Create Directory operator creates a directory at the chosen location in the file system, if the
folder does not already exist. If the inserted path does not exist the needed folders are created.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the Create Directory operator
is available at the first through output port.

Output Ports
through (thr) The objects that were given as input are passed without changing to the output

through this port. It is not compulsory to attach this port to any other port, the directory
is created even if this port is left without connections. The Create Directory operator can
have multiple outputs. When one output is connected, another through output port be-
comes available which is ready to deliver another output (if any). The order of outputs
remains the same. The object delivered at the first through input port of the Create Direc-
tory operator is delivered at the first through output port

Parameters
location (file) The location where the new directory is build is specified through this param-

eter.

name (string) The name of the new directory is specified through this parameter.

Tutorial Processes

Creating a new directory in the D drive

TheCreatedirectoryoperator is inserted in theprocess. The locationparameter is set to ‘D:\new’
and thenameparameter to ‘folder’. Run theprocess and a folder named ‘folder’ is created in your
D drive inside the newly created folder ‘new’.
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Process

Create Directory

t h r t h r

inp res

Figure 7.57: Tutorial process ‘Creating a new directory in the D drive’.

Delete File

Delete Fi le

t h r t h r This operator deletes a file at the specified location.

Description

TheDelete File operator deletes the selectedfile if possible otherwise an errormessage is shown.
You can also specify that an errormessage should be shown if the file that should be deleted does
not exist.

Input Ports

through (thr) It is not compulsory to connect any object with this port. Any object connected
at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of theDelete File operator is avail-
able at the first through output port.
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Output Ports

through (thr) The objects that were given as input are passed without changing to the output
through this port. It is not compulsory to attach this port to any other port, the file is
deleted even if this port is left without connections. The Delete File operator can have
multiple outputs. When one output is connected, another through output port becomes
available which is ready to deliver another output (if any). The order of outputs remains
the same. The object delivered at the first through input port of the Delete File operator is
delivered at the first through output port

Parameters

file (file) The file that should be deleted is specified through this parameter.

fail if missing (boolean) Determines whether an exception should be generated if the file is
missing, e. g. because it already got deleted in the last run. If set to false nothing happens
if this error occurs.

Tutorial Processes

Writing the Labor-Negotiations data set into an Excel file and copying it

Process

Labor-Negotiations

out

Write Excel

inp th r

f i l

Delete Fi le

t h r t h r

inp res

Figure 7.58: Tutorial process ‘Writing the Labor-Negotiations data set into an Excel file and
copying it’.
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This Example Process shows how the Delete File operator can be used to delete a specified
file. For this Example Process you first need a file to delete. An Excel file is created by loading
the ‘Labor-Negotiations’ data set with the Retrieve operator andwriting it into an Excel file with
the Write Excel operator. The file is saved as ‘D:\Labor data set.xls’ if this file does not already
exist. A breakpoint is inserted so you can have a look at the Excel file in your D drive. For further
understanding of this operator please read the description of the Write Excel operator.
The Delete File operator is inserted without any connections. The file parameter is set to

‘D:\Labor data set.xls’ and the fail if missing parameter to true. Run the process and the file
in your D drive will be deleted. If you delete the Retrieve and the Write Excel operator and run
the process again an error message will be shown telling you that the file could not be deleted
as it does not exist.
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Move File

Move Fi le

t h r t h r This operator moves the chosen file to the specified destination.

Description
TheMove File operatormoves the selected file from its original directory to the chosen location.
If the inserted path does not already exist the needed folders and the file are created. It is also
possible to overwrite an existing document.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of theMove File operator is avail-
able at the first through output port.

Output Ports
through (thr) The objects that were given as input are passed without changing to the output

through thisport. It is not compulsory toattach thisport to anyotherport, thefile ismoved
even if this port is left without connections. The Move File operator can have multiple
outputs. When one output is connected, another through output port becomes available
which is ready to deliver another output (if any). The order of outputs remains the same.
The object delivered at the first through input port of the Move File operator is delivered
at the first through output port

Parameters
file (file) The file that should be moved.

destination (file) The new location of the file.

overwrite (boolean) Determines whether an already existing file should be overwritten.

Tutorial Processes

Writing the Labor-Negotiations data set into an Excel file and moving it

This Example Process shows how the Move File operator can be used to move a specified file.
For this Example Process you first need a file to move. An Excel file is created by loading the
‘Labor-Negotiations’ data set with the Retrieve operator and writing it into an Excel file with
the Write Excel operator. The file is saved as ‘D:\Labor data set.xls’ if this file does not already
exist. A breakpoint is inserted so you can have a look at the Excel file in your D drive. For further
understanding of this operator please read the description of the Write Excel operator.
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Figure 7.59: Tutorial process ‘Writing theLabor-Negotiations data set into anExcel file andmov-
ing it’.

TheMoveFileoperator is insertedwithoutanyconnections. Thefileparameter is set to ‘D:\Labor
data set.xls’ and the destination parameter to ‘C:\Data\Labor data set.xls’. Run the process and
the file in your D drive will be moved to a newly created folder named ‘Data’ in your C drive.
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7. Utility

Rename File

Rename Fi le

t h r t h r This operator renames a file or a folder.

Description
The Rename File operator allocates a new name to a selected file or folder. Please ensure that
the new name of your file has the right ending, e.g. ‘.xls’ as in our Example Process.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the Rename File operator is
available at the first through output port.

Output Ports
through (thr) The objects that were given as input are passed without changing to the output

through this port. It is not compulsory to attach this port to any other port, the file is
renamed even if this port is left without connections. The Rename File operator can have
multiple outputs. When one output is connected, another through output port becomes
available which is ready to deliver another output (if any). The order of outputs remains
the same. The object delivered at the first through input port of the Rename File operator
is delivered at the first through output port

Parameters
file (file) The file or folder that should be renamed is specified through this parameter.

new name (string) The new name of the file or folder is specified through this parameter.

Tutorial Processes

Writing the Labor-Negotiations data set into an Excel file and renaming it

This Example Process shows how the Rename File operator can be used to rename a specified
file. For this Example Process you first need a file to rename. An Excel file is created by loading
the ‘Labor-Negotiations’ data set with the Retrieve operator andwriting it into an Excel file with
the Write Excel operator. The file is saved as ‘D:\Labor data set.xls’ if this file does not already
exist. A breakpoint is inserted so you can have a look at the Excel file in your D drive. For further
understanding of this operator please read the description of the Write Excel operator.
The Rename File operator is inserted without any connections. The file parameter is set to

‘D:\Labor data set.xls’ and the new name parameter to ‘labor_data_set.xls’. Run the process and
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Figure 7.60: Tutorial process ‘Writing the Labor-Negotiations data set into an Excel file and re-
naming it’.

the file in your D drive which was formerly named as ‘Labor data set.xls’ will now be named as
labor_data_set.xls’.
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7. Utility

Write Message

Write  Message

t h r t h r This operator simply writes the given text into the specified file
(can be useful in combination with a process branch).

Description
This operator simplywrited the specified text into the specified file. This can be useful in combi-
nationwith theProcessBranchoperator. For example, one couldwrite the success or non-success
of a process into the same file depending on the condition specified by a process branch.

Input Ports
input (inp) Any results connected at this port are written to the specified file and then deliv-

eredwithout anymodifications to the output port. This operator can havemultiple inputs.
When one input is connected, another input port becomes available which is ready to ac-
cept another input (if any). The order of inputs remains the same. The result supplied at
the first input port of the Write as Text operator is available at its first output port.

Output Ports
input (inp) The results that were given as input are passed without changing to the output

through this port. It is not compulsory to attach this port to any other port, the results
are written into the file even if this port is left without connections. The Write as Text
operator can have multiple outputs. When one output is connected, another output port
becomes available which is ready to deliver another output (if any). The order of outputs
remains the same. The result connected at the first input port of theWrite as Text operator
is delivered through the first output port

Parameters
file (filename) The path of the text file is specified here. Will be created if it does not exist.

text The text which should be written into the file.

mode (selection) This parameters allows you to control what should happen to existing files.
It has the following options:

• replace Replace any existing file content with the given text.
• append Append the text to the end of the file.

encoding The encoding used for reading or writing files.

Tutorial Processes

Use Write Message as a custom logger.

In this exampleweuse the appendmodeof theWriteMessageoperator to create a simple logging
mechanism. The Set Macros operator is used to store the logfile path and the process name
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Figure 7.61: Tutorial process ‘Use Write Message as a custom logger.’.

information. The Write Message operators are logging the process start and finish. In between
we are delaying to get different time stamps.
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7. Utility

Write as Text

Write as Text

inp inp
This operator writes the given results to the specified file. This op-
erator can be used at each point in an operator chain to write re-
sults at every step of the process into a file.

Description
The Write as Text operator writes the given results to the specified file. The file is specified
through the result file parameter. This operator does not modify the results; it just writes them
to the file and then delivers the unchanged results through its output ports. Every input object
which implements the ResultObject interface (which is the case for almost all objects generated
by the core RapidMiner operators) will write its results to the file specified by the result file pa-
rameter. If the result file parameter is not set then the global result file parameter with the same
name of the ProcessRootOperator (the root of the process) will be used. If this file is also not
specified then the results are simply written to the console (standard out).

Input Ports
input (inp) Any results connected at this port are written to the specified file and then deliv-

eredwithout anymodifications to the output port. This operator can havemultiple inputs.
When one input is connected, another input port becomes available which is ready to ac-
cept another input (if any). The order of inputs remains the same. The result supplied at
the first input port of the Write as Text operator is available at its first output port.

Output Ports
input (inp) The results that were given as input are passed without changing to the output

through this port. It is not compulsory to attach this port to any other port, the results
are written into the file even if this port is left without connections. The Write as Text
operator can have multiple outputs. When one output is connected, another output port
becomes available which is ready to deliver another output (if any). The order of outputs
remains the same. The result connected at the first input port of theWrite as Text operator
is delivered through the first output port

Parameters
result file (filename) The results are written into the file specified through this parameter.

encoding (selection) This is anexpertparameter. Therearedifferentoptions, users canchoose
any of them

Tutorial Processes

Writing multiple results into a file

The ‘Golf’ data set is loaded using the Retrieve operator. The Split Validation operator is applied
on it with default values of all parameters. The Default Model operator trains a model on the
‘Golf’ data set in the training subprocess. The trained model is applied on the testing data set
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7.4. Files
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Figure 7.62: Tutorial process ‘Writing multiple results into a file’.

in the testing subprocess by the Apply Model operator. The Performance operator measures the
performance of the model. The Split Validation operator delivers multiple results i.e. a trained
model, the input ExampleSet and the performance vector. All these results are connected to the
Write as Text operator to write them into a file. The result file parameter is set to ‘D:\results.txt’,
thus a text file named ‘results’ is created in the D drive of the computer. If the file already exists
then the results are appended to the file. The results are written into the specified file but they
are not as detailed as the results in the Results Workspace.
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7. Utility

7.5 Annotations
Annotate

Annotate

inp ou t Adds annotations to an IOObject or changes existing ones.

Description
Sometimes it is necessary to attach information to a data object which is not part of the data
itself. That could be e.g. the source of a file or example set, information on when or how the
data has been acquired etc. In RapidMiner, information of this kind can be attached as so-called
annotations to any kind of IOObject.
Annotations are key/value pairs: values can be referenced by or assigned to unique keys.

Input Ports
input (inp) Any type of object can be connected to this port. The annotations will be added to

this object.

Output Ports
output (out) The same object as passed to the input port, with updated annotations.

Parameters
annotations (menu) Defines the pairs of annotation names and annotation values. Click the

button, select or type an annotation name into the left input field and enter its value into
the right field. You can specify an arbitrary amount of annotations here. Please note that
it is not possible to create empty annotations.

duplicate annotations (selection) This parameter indicates what should happen if dupli-
cate annotation names are specified.

• overwrite If this option is selected, the values existing annotations will be simply
overwritten.

• ignore If this option is selected, duplicate annotations are ignored and the value of
the original annotation is kept.

• error If this option is selected, an error is displayed and the process stops if duplicate
annotation names are found.

Related Documents
• Annotations to Data (page ??)

• Data to Annotations (page ??)

• Extract Macro from Annotation (page ??)
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7.5. Annotations

Tutorial Processes

Annotating a data set

Process

Retrieve Ir is

out

Annotate

inp ou tinp res

res

Figure 7.63: Tutorial process ‘Annotating a data set’.

The Iris data set is loaded and annotated: the Source annotation is overwritten, and a new
annotation is created.
To see the annotations of an object go to the results view and select the Annotations display

option.
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7. Utility

Annotations to Data

Annotations to D.. .

obj ann

obj

Extracts all annotations from an IOObject and creates an example
set from them.

Description
The resulting data set will contain two columns: annotation contains the annotation names and
is unique. value contains the respective annotation values.
For a general introduction of annotations please study the Annotate operator.

Input Ports
object (obj) Any type of object can be connected to this port. The annotationswill be extracted

from this object.

Output Ports
object through (obj) The same object as passed to the input port, unchanged.

annotations (ann) The annotations extracted from the input object. Will be empty if the ob-
ject does not contain any annotations.

Related Documents
• Annotate (page ??)

• Data to Annotations (page ??)

Tutorial Processes

Extracting annotations into a data set

The process loads the Iris data set and extracts its annotations into a new example set. The only
annotation will be the Source annotation which is created by the Retrieve operator.
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7.5. Annotations

Process
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Figure 7.64: Tutorial process ‘Extracting annotations into a data set’.

Data to Annotations

Data to Annotat i . . .

ann

obj

obj

ann

Adds annotations to an object that are extracted from an example
set.

Description
The resulting data set will contain two columns: annotation contains the annotation names and
is unique. value contains the respective annotation values.
For a general introduction to annotations please have a look at the help of the Annotate op-

erator.

Input Ports
object (obj) Any type of object can be connected to this port. The annotationswill be extracted

from this object.

Output Ports
object through (obj) The same object as passed to the input port, unchanged.

annotations (ann) The annotations extracted from the input object. Will be empty if the ob-
ject does not contain any annotations.

Parameters
key attribute (string) The attribute which contains the names of the annotations to be cre-

ated. Should be unique.

value attribute (string) The attribute which contains the values of the annotations to be cre-
ated. If a value is missing, the respective annotation will be removed.
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7. Utility

duplicate annotations (selection) Indicateswhat shouldhappen if duplicateannotationnames
are specified.

• overwrite If this option is selected, the values existing annotations will be simply
overwritten.

• ignore If this option is selected, duplicate annotations are ignored and the value of
the original annotation is kept.

• error If this option is selected, an error is displayed and the process stops if duplicate
annotation names are found.

Related Documents
• Annotate (page ??)

• Annotations to Data (page ??)

Tutorial Processes

Annotating an object from a data set

Process

Retrieve Golf

out

Generate Data b. . .

out

Data to Annotat i . . .

ann

obj

obj

ann

inp res

res

Figure 7.65: Tutorial process ‘Annotating an object from a data set ’.

A new data set is created and applied as annotations to the Golf data set.
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7.5. Annotations

Extract Macro from Annotation

Extract Macro fro.. .

obj obj Extracts one or more annotations from an object and assigns its
value to a macro.

Description
For ageneral introduction to annotationspleasehavea lookat thehelpof theAnnotateoperator.

Input Ports
object (obj) Any type of object can be connected to this port. The annotationswill be extracted

from this object.

Output Ports
object (obj) The same object as passed to the input port, unchanged.

Parameters
extract all (boolean) If checked, all annotations are extracted to macros named the same as

the annotations. Optionally, you can define anameprefixwhich is prepended to themacro
names

macro (string) Defines the name of the created macro.

annotation (string) The name of the annotation to be extracted.

name prefix (string) A prefix which is prepended to all macro names.

fail on missing (boolean) If checked, the operator breaks if the specified annotation can’t be
found; if it is unchecked an empty macro will be created.

Related Documents
• Annotate (page ??)

• Extract Macro (page ??)

Tutorial Processes

Extracting the Source annotation from an example set

The process loads the Iris data set. The Retrieve operator automatically creates the Source an-
notation which specifies from where the data has been loaded.
The Extract Macro from Annotation operator then extracts the value of that annotation into

a macro, which is printed to the console in the next step. Have a look at the process log after
executing the process!
To see the annotations of an object go to the results view and select the Annotations display

option.
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Figure 7.66: Tutorial process ‘Extracting the Source annotation from an example set’.

7.6 Logging
Extract Log Value

Extract Log Value

exa exa This operator reads the specified value from the input ExampleSet
and provides the value for logging.

Description

The Extract Log Value operator can be used for logging the value of the specified attribute at the
specified index. The attribute name and index are specified through attribute name and example
index parameters respectively. The values within an ExampleSet cannot be logged directly by
the Log operator. The Extract Log Value operator makes the selected value loggable. This value
can be logged by the Log operator. This value can be accessed in the Log operator at [Name of
Extract Log Value operator][value][data_value]. Please study the attached Example Process for
more information.
Logging and log-related operators store information into the log table. This information can

be almost anything including parameter values of operators, apply-count of operators, execu-
tion time etc. The Log is mostly used when you want to see the values calculated during the
execution of the process that are otherwise not visible. For example you want to see values of
different parameters in all iterations of any Loop operator. Formore information regarding log-
ging please study the Log operator.

Input Ports

example set (exa) This input port expects an ExampleSet. It is the output of the Retrieve op-
erator in the attached Example Process. The output of other operators can also be used as
input.
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Output Ports
example set (exa) The ExampleSet that was given as input is passed without changing to the

output through this port. This is usually used to reuse the same ExampleSet in further
operators or to view the ExampleSet in the Results Workspace.

Parameters
attribute name (string) Thisparameter specifies thenameof theattributewhosevalue should

be provided for logging.

example index (integer) Thisparameter specifies the indexof theexamplewhosevalue should
be provided for logging. Please note that negative indices are counted from the end of the
data set. Positive counting starts with 1, negative counting starts with -1.

Tutorial Processes

Logging the value of an attribute by Extract Log Value operator

Process

Golf

out

Extract Log Value

exa exa

Log

t h r

t h r

t h r

t h r

inp res

res

Figure 7.67: Tutorial process ‘Logging the value of an attribute by Extract Log Value operator’.

The ‘Golf’ data set is loaded using the Retrieve operator. A breakpoint is inserted here so that
you can have a look at the ExampleSet. You can see that the ‘Outlook’ attribute has value ‘sunny’
in the first example. This value will be logged by the coming operators. The Extract Log Value
operator is applied to provide this value as a loggable value. Finally the Log operator is applied
to store this value in the log table. Have a look at the log parameter settings in the Log operator.
Only one column named ‘Value’ has been defined. Please note carefully how the attribute value
has been accessed. Run the process and you will see one column with just a single entry in the
Table View of the results of the Log operator. You can see that it stores the value of the ‘Outlook’
attribute from the first example.
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Log

Log

t h r t h r

This operator stores information into the log table. This informa-
tion can be almost anything including parameter values of opera-
tors, apply-count of operators, execution time etc. The stored in-
formation can be plotted by the GUI when the process execution
is complete. Moreover, the information can also be written into a
file.

Description

The Log operator ismostly usedwhen youwant to see the values calculated during the execution
of the process that are otherwise not visible. For example you want to see values of different
parameters in all iterations of any Loop operator. In such scenarios the ideal operator is the
Log operator. A large variety of information can be stored using this operator. Values of all
parameters of all operators in the current process can be stored. Other information like apply-
count, cpu-time, execution-time, loop-time etc can also be stored. The information stored in
the log table can be viewed in the Results View. The information can also be analyzed in form
of various graphs using the Plot View in the Results Workspace. The information can also be
written directly into a file using the filename parameter.
The log parameter is used for specifying the information to be stored. The column name option

specifies the name of the column in the log table (and/or file). Then you can select any operator
from the drop down menu. Once you have selected an operator, you have two choices. You can
either store a parameter value or store other values. If you opt for the parameter value, you can
choose any parameter of the selected operator through the drop downmenu. If you opt for other
values, you can choose any value like apply-count, cpu-time etc from the last drop downmenu.
Each time the Log operator is applied, all the values and parameters specified by the log pa-

rameter are collected and stored in a data row. When the process finishes, the operator writes
the collected data rows into a file (if the filename parameter has a valid path). In GUI mode, 2D
or 3D plots are automatically generated and displayed in the Results Workspace. Please study
the attached Example Processes to understand working of this operator.

Input Ports

through (thr) It is not compulsory to connect any object with this port. Any object connected
at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the Log operator is available
at the first through output port.

Output Ports

through (thr) The objects that were given as input are passed without changing to the out-
put through this port. It is not compulsory to attach this port to any other port. The Log
operator can have multiple outputs. When one output is connected, another through out-
put port becomes available which is ready to deliver another output (if any). The order of
outputs remains the same. The object delivered at the first through input port of the Log
operator is delivered at the first through output port
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Parameters

filename (filename) This parameter is used if you want to write the stored values into a file.
The path of the file is specified here.

log (list) This is the most important parameter of this operator. It is used for specifying the
values that should be stored by the Log operator. The log parameter is used for specifying
the information to be stored. The column name option specifies the name of the column
in the log table (and/or file). Then you can select any operator from the drop down menu.
Onceyouhave selectedanoperator, youhave twochoices. Youcaneither store aparameter
value or store other values. If you opt for the parameter value, you can choose any param-
eter of the selected operator through the drop downmenu. If you opt for other values, you
can choose any value like apply-count, cpu-time etc from the last drop down menu.

sorting type (selection) This parameter indicates if the logged values should be sorted ac-
cording to the specified dimension.

sorting dimension (string) This parameter is only available when the sorting type parameter
is set to ‘top-k’ or ‘bottom-k’. This parameter is used for specifying the dimension that is
to be used for sorting.

sorting k (integer) This parameter is only available when the sorting type parameter is set to
‘top-k’ or ‘bottom-k’. Only k results will be kept.

persistent (boolean) This is anexpertparameter. Thisparameter indicates if the results should
be written to the specified file immediately.

Tutorial Processes

Introduction to the Log operator

Root

Generate  Data

in ou t

ou t

Loop Values

inp

inp

ou t

ou t

ExampleSetMerge

exa

exa

merinp res

res

Figure 7.68: Tutorial process ‘Introduction to the Log operator’.

This Example Process shows usage of the Log and Extract Macro operator in complex prepro-
cessing. Other than concepts related to the Log operator, this process will cover a number of
concepts of macros including redefining macros, macro of Loop Values operator and use of the
Extract Macro operator. This process starts with a subprocess which is used to generate data.
What is happening inside this subprocess is not relevant to the use of the Log operator, so it is
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not discussed here. A breakpoint is inserted after this subprocess so that you can view the Ex-
ampleSet. You can see that the ExampleSet has 12 examples and 2 attributes: ‘att1’ and ‘att2’.
‘att1’ is nominal and has 3 possible values: ‘range1’, ‘range2’ and ‘range3’. ‘att2’ has real values.
The LoopValues operator is applied on the ExampleSet. It iterates over the values of the spec-

ified attribute (i.e. att1) and applies the inner operators on the given ExampleSet while the cur-
rent value can be accessed via the macro defined by the iteration macro parameter. The itera-
tionmacro parameter is set to ‘loop_value’, thus the current value can be accessed by specifying
%{loop_value} in the parameter values. As att1 has 3 possible values, the Loop Values operator
will iterate 3 times, once for each possible value of att1.
Here is an explanation of what happens inside the Loop Values operator. The Loop Values

operator is provided with an ExampleSet as input. The Filter Examples operator is applied on
it. The condition class parameter is set to ‘attribute value filter’ and the parameter string is set
to ‘att1 = %{loop_value}’. Note the use of the loop_value macro here. Only those examples are
selectedwhere the value of att1 is equal to the value of the loop_valuemacro. A breakpoint is in-
serted here so that you can view the selected examples. ThenAggregation operator is applied on
the selected examples. It is configured to take the average of the att2 values of the selected ex-
amples. This average value is stored in a new ExampleSet in an attribute named ‘average(att2)’.
A breakpoint is inserted here so that you can see the average of the att2 values of the selected
examples. The Extract Macro operator is applied on this new ExampleSet to store this average
value in a macro named ‘current_average’. The originally selected examples are passed to the
GenerateAttributesoperator that generates anewattributenamed ‘att2_abs_avg’. This attribute
is definedby the expression ‘abs(att2 -%{current_average})’. Note theuseof the current_average
macro here. Value of the current_average macro is subtracted from all values of att2 and stored
in a new attribute named ‘att2_abs_avg’. The Resultant ExampleSet is delivered at the output
of the Loop Values operator. A breakpoint is inserted here so that you can see the ExampleSet
with the ‘att2_abs_avg’ attribute. This output is fed to the Append operator in themain process.
The Append operator merges the results of all the iterations into a single ExampleSet which is
visible at the end of this process in the Results Workspace.
Note the Log operator in the subprocess of the Loop Values operator. Three columns are cre-

ated using the log parameter. The ‘Average att2’ column stores the value of the macro of the
Extract Macro operator. The ‘Iteration’ column stores the apply-count of the Aggregate opera-
tor which is the same as the number of iterations of the Loop Values operator. The ‘att1 value’
column stores the value of att1 in the current iteration. At the end of the process, you will see
that the Log operator stores a lot of information that was not directly accessible. Moreover, it
displays all the required information at the endof the process, thus breakpoints are not required.
Alsonote that thefilenameparameter of the Logoperator is set to: ‘D:\log.txt’. Thus a text file

named ‘log’ is created in your ‘D’ drive. This file has the information stored during this process
by the Log operator.
Here is what you see when you run the process:
TheExampleSet generatedby theGenerateData subprocess. Then theprocess enters theLoop

Value operator and iterates 3 times.
Iteration 1: The ExampleSet where the ‘att1’ value is equal to the current value of the loop-

_valuemacro i.e. ‘range1’The average of the ‘att2’ values for the selected examples. The average
is -1.161.TheExampleSetwith the ‘att2_abs_avg’ attribute for iteration1. Iteration2: TheExam-
pleSet where the ‘att1’ value is equal to the current value of loop_value macro i.e. ‘range2’The
Average of the ‘att2’ values for the selected examples. The average is -1.656.The ExampleSet
with the ‘att2_abs_avg’ attribute for iteration 2.
Iteration 3: The ExampleSet where the ‘att1’ value is equal to the current value of loop_value

macro i.e. ‘range3’The Average of the ‘att2’ values for the selected examples. The average is
1.340.The ExampleSet with the ‘att2_abs_avg attribute’ for iteration 3. Now the process comes
out of the Loop Values operator and the Append operator merges the final ExampleSets of all
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three iterations into a single ExampleSet that you can see in the Results Workspace.
Nowhavea lookat the results of theLogoperator. Youcan see all the required values in tabular

form using the Table View. You can see that all the values that were viewed using breakpoints
are available in a single table. You can see the results in the Plot View as well. Also have a look
at the file stored in the ‘D’ drive. This file has exactly the same information.

Viewing Training vs Testing error using the Log operator

Process

Weight ing

out

Loop Parameters

inp

inp

ou tinp res

Figure 7.69: Tutorial process ‘Viewing Training vs Testing error using the Log operator’.

The ‘Weighting’ is loaded using the Retrieve operator. The Loop Parameters operator is ap-
plied on it. The parameters of the LoopParameters operator are set such that this operator loops
25 times. Thus its subprocess is executed 25 times. In every iteration, the value of the C param-
eter of the SVM(LibSVM) operator is changed. The value of the C parameter is 0.001 in the first
iteration. The value is increased logarithmically until it reaches 100000 in the last iteration.
Have a look at the subprocess of the Loop Parameters operator. First the data is split into

two equal partitions using the Split Data operator. The SVM (LibSVM) operator is applied on
one partition. The resultant classificationmodel is applied using two ApplyModel operators on
both the partitions. The statistical performance of the SVM model on both testing and train-
ing partitions is measured using the Performance (Classification) operators. At the end the Log
operator is used to store the required results.
The log parameter of the Log operator stores four things. The iterations of the Loop Parame-

ter operator are counted by apply-count of the SVM operator. This is stored in a column named
‘Count’.The value of the classification error parameter of the Performance (Classification) op-
erator that was applied on the Training partition is stored in a column named ‘Training Error’.
The value of the classification error parameter of the Performance (Classification) operator that
was applied on the Testing partition is stored in a column named ‘Testing Error’. The value of
the C parameter of the SVM (LibSVM) operator is stored in a column named ‘SVM C’. Also note
that the stored information will be written into a file as specified in the filename parameter.
Run theprocess and turn to theResultsView. You can see all the values in theTableView. This

table can be used to study how classification errors in training and testing partitions behavewith
the increase in the value of the C parameter of the SVM(LibSVM) operator. To view these results
in graphical form, switch to the Plot View. Select an appropriate plotter. You can use ‘Series
Multiple’ plotter with ‘SVM-C’ as the ‘Index Dimension’. Select ‘Training Error’ and ‘Testing
Error’ in the ‘Plot Series’. The ‘scatter multiple’ plotter can also be used. Now you can analyze
how the training and testing error behaved with the increase in the parameter C.
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Please note that since RapidMiner version 8.0, the Loop Parameters Operator has been up-
dated to a) be parallel and b) log the parameter set and performance automatically. Please see
the help of that operator for more information.

944



7.6. Logging

Log to Data

Log to Data

t h r exa

th r

This operator transforms the data generated by the Log operator
into an ExampleSet which can then be used by other operators of
the process.

Description
The Log operator stores information into the log table. This information can be almost anything
including parameter values of operators, apply-count of operators, execution time etc. The Log
operator is mostly used when you want to see the values calculated during the execution of the
process that are otherwise not visible. For example you want to see values of different parame-
ters in all iterations of any Loop operator. In such scenarios the ideal operator is the Log opera-
tor. A large variety of information can be stored using this operator. The information stored in
the log table can be viewed in the Results View. But this information is not directly accessible
in the process. To solve this problem, the Log to Data operator provides the information in the
Log table in form of an ExampleSet. This ExampleSet can be used in the process like any other
ExampleSet. RapidMiner automatically guesses the type of attributes of this ExampleSet and
all attributes have regular role. The type and role can be changed by using the corresponding
operators.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the Log to Data operator is
available at the first through output port.

Output Ports
example set (exa) Thedatageneratedby theLogoperator isdeliveredasanExampleSet through

this port.

through (thr) The objects that were given as input are passed without changing to the output
through this port. It is not compulsory to attach this port to any other port. The Log to
Data operator can havemultiple outputs. When one output is connected, another through
output port becomes available which is ready to deliver another output (if any). The order
of outputs remains the same. The object delivered at the first through input port of the Log
to Data operator is delivered at the first through output port

Parameters
log name (string) This parameter specifies the name of the Log operator that generated the

log data which should be returned as an ExampleSet. If this parameter is left blank then
the first found data table is returned as an ExampleSet.
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Tutorial Processes

Accessing Training vs Testing error using the Log and Log to Data operators

Process
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Figure 7.70: Tutorial process ‘Accessing Training vs Testing error using the Log and Log to Data
operators’.

The ‘Weighting’ data set is loaded using the Retrieve operator. The Loop Parameters operator
is applied on it. The parameters of the Loop Parameters operator are set such that this operator
loops 25 times. Thus its subprocess is executed 25 times. In every iteration, the value of the
C parameter of the SVM(LibSVM) operator is changed. The value of the C parameter is 0.001
in the first iteration. The value is increased logarithmically until it reaches 100000 in the last
iteration.
Have a look at the subprocess of the Loop Parameters operator. First the data is split into

two equal partitions using the Split Data operator. The SVM (LibSVM) operator is applied on
one partition. The resultant classificationmodel is applied using two ApplyModel operators on
both the partitions. The statistical performance of the SVM model on both testing and train-
ing partitions is measured using the Performance (Classification) operators. At the end the Log
operator is used to store the required results.
The log parameter of the Log operator stores four things. The iterations of the Loop Parame-

ter operator are counted by apply-count of the SVM operator. This is stored in a column named
‘Count’.The value of the classification error parameter of the Performance (Classification) op-
erator that was applied on the Training partition is stored in a column named ‘Training Error’.
The value of the classification error parameter of the Performance (Classification) operator that
was applied on the Testing partition is stored in a column named ‘Testing Error’. The value of
the C parameter of the SVM (LibSVM) operator is stored in a column named ‘SVM C’.
In themain process, the Log to Data operator is used for providing the log values in form of an

ExampleSet. The resultant ExampleSet is connected to the result port of the process and it can
be seen in the ResultsWorkspace. You can see themeta data of the ExampleSet in theMeta Data
View and the values of the ExampleSet can be seen in the Data View. This ExampleSet can be
used to studyhowclassification errors in training and testingpartitions behavewith the increase
in the value of the C parameter of the SVM(LibSVM) operator. To view these results in graphical
form, switch to the Plot View. Select an appropriate plotter. You can use ‘SeriesMultiple’ plotter
with ‘SVM-C’ as the ‘Index Dimension’. Select ‘Training Error’ and ‘Testing Error’ in the ‘Plot
Series’. The ‘scattermultiple’ plotter canalsobeused. Nowyoucananalyzehow the training and
testing error behavedwith the increase in the parameter C.More importantly this ExampleSet is
available in the process, so information stored in it can be used by other operators of the process.
Please note that since RapidMiner version 8.0, the Loop Parameters Operator has been up-

dated to a) be parallel and b) log the parameter set and performance automatically. Please see
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the help of that operator for more information.
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Provide Macro as Log Value

Provide Macro as.. .

t h r t h r
This operator reads the value of the specified macro and provides
the macro value for logging. This operator is only useful if the re-
quired macro value cannot be logged directly.

Description
The Provide Macro as Log Value operator can be used to log the current value of the specified
macro. The name of the required macro is specified in the macro name parameter. Most op-
erators provide the macro they define as a loggable value and in these cases this value can be
logged directly. But in all other cases where the operator does not provide a loggable value for
the defined macro, this operator may be used to do so. Please note that the value will be logged
as a nominal value even if it is actually a numerical value.
Youmust be familiarwith the basic concepts ofmacros and logging in order to understand this

operator completely. Somebasics ofmacros and loggingarediscussed in the comingparagraphs.
A macro can be considered as a value that can be used by all operators of the current pro-

cess that come after the macro has been defined. Once the macro has been defined, the value of
that macro can be used as a parameter value in coming operators by writing the macro name in
%{macro_name} format in the parameter value where ‘macro_name’ is the name of the macro.
Please note that many operators like many of the loop operators (e.g. Loop Values , Loop At-
tributes) also add specific macros. For more information regarding macros please study the Set
Macro operator.
Logging and log-related operators store information into the log table. This information can

be almost anything including parameter values of operators, apply-count of operators, execu-
tion time etc. The Log is mostly used when you want to see the values calculated during the
execution of the process that are otherwise not visible. For example you want to see values of
different parameters in all iterations of any Loop operator. Formore information regarding log-
ging please study the Log operator.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the ProvideMacro as Log Value
operator is available at the first through output port.

Output Ports
through (thr) The object that was given as input is passed without changing to the output

through this port. It is not compulsory to attach this port to any other port. The Provide
Macro as Log Value operator can have multiple outputs. When one output is connected,
another through output port becomes available which is ready to deliver another output (if
any). The order of outputs remains the same. The object delivered at the first through in-
put port of the ProvideMacro as Log Value operator is delivered at the first through output
port
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Parameters
macro name (string) This parameter specifies the name of the macro whose value should be

provided for logging.

Tutorial Processes

Logging the value of a macro with or without the Provide Macro as Log Value
operator

Process

Golf

out

Extract Macro

exa exa

Provide Macro a. . .
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t h r
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Figure 7.71: Tutorial process ‘Logging the value of a macro with or without the Provide Macro
as Log Value operator’.

This Example Process shows how macro values can be logged with or without the Provide
Macro as Log Value operator. The ‘Golf’ data set is loaded using the Retrieve operator. A break-
point is inserted here so that you can have a look at the ExampleSet. As you can see, there are
14 examples in the ExampleSet. The Extract Macro operator is applied on the ExampleSet. The
macro of the extract macro operator is named ‘eCount’ and it stores the number of examples
in the ExampleSet i.e. 14. The Provide Macro as Log Value operator is applied to provide the
value of the ‘eCount’ macro as a loggable value. Finally the Log operator is applied to store the
value of the ‘eCount’ macro in the log table. Have a look at the log parameter settings in the
Log operator. Two columns have been defined: ‘Direct’ and ‘Indirect’. The ‘Direct’ column gets
the value of the ‘eCount’ macro directly from the Extract Macro operator. This only works if
the macro is provided in loggable form by the operator. The ‘Indirect’ column gets the value of
the ‘eCount’ macro from the Provide Macro as Log Value operator. This is how a macro value
should be logged if it cannot be logged directly. Run the process and youwill see two columns in
the Table View of the results of the Log operator. Both columns have the value of the ‘eCount’
macro (14).
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7.7 Data Anonymization
De-Obfuscate

De-Obfuscate

exa exa

ori

Replaces all obfuscated values and attribute names by the ones
given in a file.

Description
This operator remaps the old values and names from an obfuscated ExampleSet according to an
obfuscating map file. It can be used to deanonymize your data.

Input Ports
example set (exa) This input port expects an ExampleSet.

Output Ports
example set (exa)

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
obfuscation map file (filename) File where the obfuscator map was written to.
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Obfuscate

Obfuscate

exa exa

ori

Replaces all nominal values and attribute names by random
strings.

Description
This operator takes an ExampleSet as input and maps all nominal values to randomly created
strings. The names and the construction descriptions of all attributes will also replaced by ran-
dom strings. This operator can be used to anonymize your data. It is possible to save the ob-
fuscating map into a file which can be used to remap the old values and names. Please use the
operator De-Obfuscator for this purpose. The new example set can be written with an Example-
SetWriter.

Input Ports
example set (exa) This input port expects an ExampleSet.

Output Ports
example set (exa)

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
obfuscation map file (filename) File where the obfuscator map should be written to.

use local random seed (boolean) Indicates if a local random seed should be used.

local random seed (integer) Specifies the local random seed
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7.8 Random Data Generation
Add Noise

Add Noise

exa exa

ori

pre

This operator adds noise in the given ExampleSet by adding ran-
dom attributes to the ExampleSet and by adding noise in the ex-
isting attributes.

Description

The Add Noise operator provides a number of parameters for selecting the attributes for adding
noise in them. This operator can add noise to the label attribute or to the regular attributes sep-
arately. In case of a numerical label the given label noise (specified by the label noise parameter)
is the percentage of the label range which defines the standard deviation of normal distributed
noise which is added to the label attribute. For nominal labels the label noise parameter defines
the probability to randomly change the nominal label value. In case of adding noise to regular
attributes the default attribute noise parameter simply defines the standard deviation of nor-
mal distributed noise without using the attribute value range. Using the parameter list is also
possible for setting different noise levels for different attributes (by using the noise parameter).
However, it is not possible to add noise to nominal attributes.
TheAddNoise operator can add randomattributes to the ExampleSet. The number of random

attributes is specified by the random attributes parameter. New random attributes are simply
filled with random data which is not correlated to the label at all. The offset and linear factor
parameters are available for adjusting the values of new random attributes.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Re-
trieve operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports

example set output (exa) Noise is added to the given ExampleSet and the resultant Exam-
pleSet is delivered through this port.

original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

preprocessing model (pre) This port delivers the preprocessing model, which has informa-
tion regarding the parameters of this operator in the current process.
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Parameters

attribute filter type (selection) This parameter allows you to select the attribute selection
filter; themethod youwant to use for selecting the required attributes. It has the following
options:

• all This option simply selects all the attributes of the ExampleSet. This is the default
option.

• single This option allows selection of a single attribute. When this option is selected
another parameter (attribute) becomes visible in the Parameters panel.

• subsetThisoptionallows selectionofmultiple attributes througha list. All attributes
of the ExampleSet are present in the list; required attributes can be easily selected.
This option will not work if the meta data is not known. When this option is selected
another parameter becomes visible in the Parameters panel.

• regular_expression This option allows you to specify a regular expression for at-
tribute selection. When this option is selected some other parameters (regular ex-
pression, use except expression) become visible in the Parameters panel.

• value_type This option allows selection of all the attributes of a particular type. It
should be noted that types are hierarchical. For example real and integer types both
belong to numeric type. Users should have a basic understanding of type hierarchy
when selecting attributes through this option. When this option is selected some
other parameters (value type, use value type exception) become visible in the Parame-
ters panel.

• block_type This option is similar in working to the value type option. This option
allows selection of all the attributes of a particular block type. When this option is
selected some other parameters (block type, use block type exception) become visible
in the Parameters panel.

• no_missing_values This option simply selects all the attributes of the ExampleSet
whichdon’t containamissingvalue inanyexample. Attributes thathaveevena single
missing value are removed.

• numeric value filterWhen this option is selected another parameter (numeric condi-
tion) becomes visible in theParameters panel. All numeric attributeswhose examples
all satisfy thementionednumeric condition are selected. Please note that all nominal
attributes are also selected irrespective of the given numerical condition.

attribute (string) The desired attribute can be selected from this option. The attribute name
can be selected from the drop down box of attribute parameter if the meta data is known.

attributes (string) The required attributes can be selected from this option. This opens a new
window with two lists. All attributes are present in the left list and can be shifted to the
right list which is the list of selected attributes on which the conversion from nominal to
numeric will take place; all other attributes will remain unchanged.

regular expression (string) The attributes whose name matches this expression will be se-
lected. Regular expression is a very powerful tool but needs a detailed explanation to be-
ginners. It is always good to specify the regular expression through the edit and preview
regular expression menu. This menu gives a good idea of regular expressions. This menu
also allows you to try different expressions and preview the results simultaneously. This
will enhance your concept of regular expressions.
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use except expression (boolean) If enabled, an exception to the selected type can be spec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except regular expression (string) This option allows you to specify a regular expression.
Attributesmatching this expression will be filtered out even if theymatch the first expres-
sion (expression that was specified in the regular expression parameter).

value type (selection) The type of attributes to be selected can be chosen from a drop down
list. One of the following types can be chosen: nominal, text, binominal, polynominal,
file_path.

use value type exception (boolean) If enabled, anexception to theselected typecanbespec-
ified. When this option is selected another parameter (except value type) becomes visible
in the Parameters panel.

except value type (selection) The attributes matching this type will be removed from the fi-
nal output even if they matched the previously mentioned type i.e. value type parameter’s
value. One of the following types can be selected here: nominal, text, binominal, poly-
nominal, file_path.

block type (selection) The block type of attributes to be selected can be chosen from a drop
down list. The only possible value here is ‘single_value’

use block type exception (boolean) If enabled, an exception to the selected block type can
be specified. When this option is selected another parameter (except block type) becomes
visible in the Parameters panel.

except block type (selection) The attributes matching this block type will be removed from
the final output even if they matched the previously mentioned block type.

numeric condition (string) Thenumeric condition for testingexamplesofnumeric attributes
is specified here. For example the numeric condition ‘> 6’ will keep all nominal attributes
and all numeric attributes having a value of greater than 6 in every example. A combina-
tion of conditions is possible: ‘> 6&&< 11’ or ‘<= 5 ||< 0’. But && and || cannot be used
together in one numeric condition. Conditions like ‘(> 0 && < 2) || (>10 && < 12)’ are
not allowed because they use both && and ||. Use a blank space after ‘>’, ‘=’ and ‘<’ e.g.
‘<5’ will not work, so use ‘< 5’ instead.

include special attributes (boolean) The special attributes are attributes with special roles
which identify the examples. In contrast regular attributes simply describe the examples.
Special attributes are: id, label, prediction, cluster, weight and batch.

invert selection (boolean) If this parameter is set to true, it acts as aNOTgate, it reverses the
selection. In that case all the selected attributes are unselected and previously unselected
attributes are selected. For example if attribute ‘att1’ is selected and attribute ‘att2’ is
unselected prior to checking of this parameter. After checking of this parameter ‘att1’ will
be unselected and ‘att2’ will be selected.

random attributes (integer) This parameter specifies the required number of new random
attributes to add to the input ExampleSet.

label noise (real) This parameter specifies the noise to be added in the label attribute. In case
of a numerical label the given label noise is the percentage of the label rangewhich defines
the standard deviation of normal distributed noise which is added to the label attribute.
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For nominal labels the label noise parameter defines the probability to randomly change
the nominal label value.

default attribute noise (real) This parameter specifies the default noise for all the selected
regular attributes. The default attribute noise parameter simply defines the standard devi-
ation of normal distributed noise without using the attribute value range

noise (list) This parameter gives theflexibility of addingdifferentnoises to different attributes
by providing a list of noises for all attributes.

offset (real) The offset value is added to the values of all the random attributes created by this
operator

linear factor (real) The linear factor value is multiplied with the values of all the random at-
tributes created by this operator

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Adding noise to the Polynomial data set

Process

Polynomial

out

Add Noise

exa exa

ori

pre

inp res

res

res

Figure 7.72: Tutorial process ‘Adding noise to the Polynomial data set’.

The ‘Polynomial’ data set is loaded using the Retrieve operator. The Add Noise operator is
applied on it. The attribute filter type parameter is set to ‘all’, thus noise will be added to all
the attributes of the ExampleSet. The label noise and default attribute noise parameters are set
to 0.05 and 0.06 respectively. The random attributes parameter is set to 1, thus a new random
attribute will be added to the ExampleSet. The ExampleSet with noise and the original Exam-
pleSet are connected to the result ports of the process. Both ExampleSets can be seen in the
Results Workspace. You can see that there is a new random attribute in the ExampleSet gener-
ated by the Add Noise operator. By comparing the values of both ExampleSets you can see how
noise was added by the Add Noise operator.
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Generate Data

Generate  Data

out

This operator generates an ExampleSet based on numerical at-
tributes. Thenumberof attributes, numberof examples, lower and
upper bounds of attributes, and target function can be specified by
the user.

Description
The Generate Data operator generates an ExampleSet with a specified number of numerical at-
tributes which is controlled by the number of attributes parameter. Please note that in addition
to the specified number of regular attributes, the label attribute is automatically generated by
applying the function selected by the target function parameter. The selected target function is
applied on the attributes to generate the label attribute. For example if the number of attributes
parameter is set to 3 and the target function is set to ‘sum’. Then three regular numerical at-
tributes will be created. In addition to these regular attributes a label attribute will be generated
automatically. As the target function is set to ‘sum’, the label attribute value will be the sum of
all three regular attribute values.
The label target functions are calculated as follows (assuming n generated attributes):

• random: The label is randomly generated.

• sum (needs at least 3 attributes): The label is the sum of the arguments: att1 + att2 + ... +
att[n]

• polynomial (needs at least 3 attributes): att1^3 + att2^2 + att3

• non linear (needs at least 3 attributes): att1 * att2 * att3 + att1 * att2 + att2 * att2

• one variable non linear (needs 1 attribute): 3 * att1^3 - att1^2 + 1000 / |att1| + 2000 * |att1|

• complicated function (needsat least 3attributes): att1 *att1 *att2+att2*att3+max(att1,att2)
- e^att3

• complicated function2 (needs at least 3 attributes): att1 * att1 * att1 + att2 * att2 + att1 *
att2 + att1 / |att3| - 1 / (att3 * att3)

• simple sinus (needs 1 attribute): sin(att1)

• sinus (needs 2 attributes): sin(att1 * att2) + sin(att1 + att2)

• simple superposition (needs 1 attribute): 5 * sin(att1) + sin(30 * att1)

• sinus frequency (needs at least 2 attributes): 10 * sin(3 * att1) + 12 * sin(7 * att1) + 11 * sin(
5 * att2) + 9 * sin(10 * att2) + 10 * sin(8 * (att1 + att2))

• sinus with trend (needs 1 attribute): sin(att1) + 0.1 * att1

• sinc: sin(x) / ||x||, if ||x|| is not 0, else 0.

• triangular function (needs 1 attribute): The label is the fractional part of the argument.

• square pulse function (needs 1 attribute): The label is a square pulse in the attribute.

• random classification: The label is randomly “negative” or “positive”.
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• one third classification: The label is “positive” if att1 < 0.3333 and “negative” else.

• sum classification: The label is “positive” if the sumof all arguments is positive, else “neg-
ative”.

• quadratic classification (needs at least 2 attributes): The label is “positive” if att2> att1^2,
else “negative”.

• simple non linear classification (needs at least 2 attributes): The label is “positive” if 50<
att1*att2 < 80, else “negative”.

• interaction classification (needs at least 3 attributes): The label is “positive” if att1< 0 or
att2 > 0 and att3 < 0, else “negative”.

• simplepolynomial classification (needsat least 1attribute): The label is “positive” if att1^4
> 100, else “negative”.

• polynomial classification (needs at least 4 attributes): The label is “positive” if att1^3 +
att2^2 - att3^2 + att4 > 0, else “negative”.

• checkerboard classification (needs 2 attributes): The label is “positive” or “negative”, ac-
cording to a checkerboard pattern, where the size of each tile is 5.

• random dots classification (needs 2 attributes): Some randomly sized and placed positive
and negative dots are generated on the 2D field. The label is “positive” if the example is
only contained by positive dots, else “negative”.

• global and local models classification (needs 2 attributes): The label is “positive” if the
sum of both arguments is positive, else “negative”. In addition, several local patterns in
different sizes are placed in the data space.

• sinus classification (needs at least 2 attributes): The label is “positive” if sin(att1*att2) +
sin(att1+att2) > 0, else “negative”.

• multi classification: The label is “one” if the sum of all arguments modulo 2 is 0, “two” if
the sum modulo 3 is 0, “three” if the sum modulo 5 is 0, else “four”.

• two gaussians classification: Generates two Gaussian clusters. The label is either “clus-
ter0” or “cluster1”.

• transactions dataset (needs at least 5 attributes): Generates an association function trans-
action dataset, all attribute values are 0 or 1. The first four attributes are correlated. No
label is generated.

• grid function: Generates a uniformly distributed grid in the givendimensions. A labelwith
zero value is generated.

• three ring clusters (needs 2 attributes): Generates three concentric ring clusters. The label
values are “core”, “first_ring” and “second_ring”, accordingly.

• spiral cluster (needs 2 attributes): Generates two interlocking spiral clusters. The label
values are “spiral1” and “spiral2”, accordingly.

• single gaussian cluster: Generates a Gaussian cluster. A label with zero value is generated.

• gaussian mixture clusters: Generates a mixture of Gaussian clusters. Each attribute dou-
bles the cluster amount, so 2^n clusters are generated. A label with the cluster id is gen-
erated.
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• driller oscillation timeseries (needs at least 2 attributes): Generates an artificial audio data
set (based on real-world data from drilling processes). No label is generated.

Output Ports
output (out) The Generate Data operator generates an ExampleSet based on numerical at-

tributes which is delivered through this port. The meta data is also delivered along with
the data.This output is same as the output of the Retrieve operator.

Parameters
target function (selection) This parameter specifies the target function for generating the

label attribute. There are different options; users can choose any of them.

number examples (integer) This parameter specifies the number of examples to be gener-
ated.

number of attributes (integer) This parameter specifies the number of regular attributes to
be generated. Please note that the label attribute is generated automatically besides these
regular attributes.

attributes lower bound (real) This parameter specifies the minimum possible value for the
attributes to be generated. In other words this parameter specifies the lower bound of the
range of possible values of regular attributes. In case of target functions using Gaussian
distribution, the attribute values may exceed this value.

attributes upper bound (real) This parameter specifies themaximumpossible value for the
attributes to be generated. In other words this parameter specifies the upper bound of the
range of possible values of regular attributes. In case of target functions using Gaussian
distribution, the attribute values may exceed this value.

gaussian standard deviation (real) This parameter specifies the standard deviation of the
Gaussian distribution used for generating attributes.

largest radius (real) This parameter specifies the radius of the outermost ring cluster.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
ExampleSet. Changing the value of this parameter changes theway examples are random-
ized, thus the ExampleSet will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

data management (selection) This is an expert parameter. A long list is provided; users can
select any option from this list.

Tutorial Processes

Introduction to the Generate Data operator

The Generate Data operator is applied for generating an ExampleSet. The target function pa-
rameter is set to ‘sum’, thus the label attribute will be the sum of all attributes’ values. The
number examples parameter is set to 100, thus the ExampleSet will have 100 examples. The
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Figure 7.73: Tutorial process ‘Introduction to the Generate Data operator’.

number of attributes parameter is set to 3, thus three numerical attributes will be generated
beside the label attribute. The attributes lower bound and attributes upper bound parameters
are set to -10 and 10 respectively, thus values of the regular attributes will be within this range.
You can verify this by viewing the results in the Results Workspace. The use local random seed
parameter is set to false in this Example process. Set the use local random seed parameter to
true and run the process with different values of local random seed. You will see that changing
the values of local random seed changes the randomization.

959



7. Utility

Generate Direct Mailing Data

Generate Direct . . .

out This operator generates an ExampleSet that represents direct
mailing data. Thenumber of examples canbe specified by theuser.

Description
TheGenerateDirectMailingData operator generates anExampleSet that represents directmail-
ing data. This ExampleSet can be used when you do not have a data set that represents a real
direct mailing data. This ExampleSet can be used as a placeholder for such a requirement. This
data set has 8 regular attributes and 1 special attribute. The regular attributes are name (nomi-
nal), age (integer), lifestyle (nominal), zip code (integer), family status (nominal), car (nominal),
sports (nominal) and earnings (integer). The special attribute is label (nominal). The number
of examples in the data set can be set by the number examples parameter. To have a look at this
ExampleSet, just run the attached Example Process.

Output Ports
output (out) TheGenerate DirectMailing Data operator generates an ExampleSet which is de-

livered through this port. The meta data is also delivered along with the data.This output
is same as the output of the Retrieve operator.

Parameters
number examples (integer) This parameter specifies the number of examples to be gener-

ated.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
ExampleSet. Changing the value of this parameter changes theway examples are random-
ized, thus the ExampleSet will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Introduction to the Generate Direct Mailing Data operator

The Generate Direct Mailing Data operator is applied for generating an ExampleSet that repre-
sents directmailing data. The number examples parameter is set to 10000, thus the ExampleSet
will have 10000 examples. You can see the ExampleSet in the Results Workspace. The use local
random seed parameter is set to false in this Example Process. Set the use local random seed
parameter to true and run the process with different values of local random seed. You will see
that changing the values of local random seed changes the randomization.
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Figure 7.74: Tutorial process ‘Introduction to the Generate Direct Mailing Data operator’.

Generate Multi-Label Data

Generate Mult i -L. . .

out
This operator generates a multi-label ExampleSet based on nu-
merical attributes. The number of examples, lower and upper
bounds of attributes can be specified by the user.

Description
The Generate Multi-Label Data operator generates an ExampleSet with 5 numerical attributes
and 3 label attributes. If the regressionparameter is set to false, then the labels have twopossible
values i.e. positive or negative. Otherwise, the labels have real values. The number of examples
to be generated can be specified by the number examples parameter. The upper and lower bounds
of the numerical values can be specified by the attributes upper bound and attributes lower bound
parameters. This operator is used for generating a random ExampleSet for testing purposes.

Output Ports
output (out) TheGenerateMulti-LabelDataoperatorgeneratesamulti-labelExampleSetbased

on numerical attributes which is delivered through this port. The meta data is also deliv-
ered along with the data.This output is the same as the output of the Retrieve operator.

Parameters
number examples (integer) This parameter specifies the number of examples to be gener-

ated.

regression (boolean) This parameter specifies if multiple labels for regression tasks should
be generated. If this parameter is set to false, then the labels have two possible values i.e.
positive or negative. Otherwise, the labels have real values.

attributes lower bound (real) This parameter specifies the minimum possible value for the
attributes to be generated. In other words this parameter specifies the lower bound of the
range of possible values of regular attributes.
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attributes upper bound (real) This parameter specifies themaximumpossible value for the
attributes to be generated. In other words this parameter specifies the upper bound of the
range of possible values of regular attributes.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
ExampleSet. Changing the value of this parameter changes theway examples are random-
ized, thus the ExampleSet will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Introduction to the Generate Multi-Label Data operator

Process

Generate Mult i -L. . .

outinp res

res

Figure 7.75: Tutorial process ‘Introduction to the Generate Multi-Label Data operator’.

TheGenerateMulti-LabelData operator is applied for generating anExampleSet. Thenumber
examples parameter is set to 100, thus the ExampleSet will have 100 examples. The attributes
lower bound and attributes upper bound parameters are set to -10 and 10 respectively, thus val-
ues of the regular attributes will be within this range. The regression parameter is set to false,
thus the ExampleSet will have nominal labels. You can verify this by viewing the results in the
Results Workspace. The use local random seed parameter is set to false in this Example pro-
cess. Set the use local random seed parameter to true and run the process with different values
of local random seed. You will see that changing the values of local random seed changes the
randomization.
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Generate Nominal Data

Generate Nomina. . .

out
This operator generates an ExampleSet based on nominal at-
tributes. Thenumberof examples, numberof attributes, andnum-
ber of values can be specified by the user.

Description
The Generate Nominal Data operator generates an ExampleSet with the specified number of
nominal attributes which is controlled by the number of attributes parameter. Please note that
in addition to the specifiednumber of regular attributes, the label attribute is automatically gen-
erated. The label attribute generated by this operator has only two possible values i.e. positive
and negative. This operator is used for generating a random ExampleSet for testing purposes.

Output Ports
output (out) TheGenerateNominal Data operator generates an ExampleSet based on nominal

attributes which is delivered through this port. The meta data is also delivered along with
the data.This output is the same as the output of the Retrieve operator.

Parameters
number examples (integer) This parameter specifies the number of examples to be gener-

ated.

number of attributes (integer) This parameter specifies the number of regular attributes to
be generated. Please note that the label attribute is generated automatically besides these
regular attributes.

number of values (integer) This parameter specifies the number of unique values of the at-
tributes.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
ExampleSet. Changing the value of this parameter changes theway examples are random-
ized, thus the ExampleSet will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Introduction to the Generate Nominal Data operator

The Generate Nominal Data operator is applied for generating an ExampleSet. The number ex-
amples parameter is set to 100, thus the ExampleSet will have 100 examples. The number of
attributes parameter is set to 3, thus three nominal attributes will be generated beside the label
attribute. The number of values parameter is set to 5, thus each attribute will have 5 possible
values. You can verify this by viewing the results in theResultsWorkspace. Theuse local random
seed parameter is set to false in this Example process. Set the use local random seed parameter
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Figure 7.76: Tutorial process ‘Introduction to the Generate Nominal Data operator’.

to true and run the processwith different values of local randomseed. Youwill see that changing
the values of local random seed changes the randomization.
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Generate Sales Data

Generate Sales D.. .

out This operator generates an ExampleSet that represents sales data.
The number of examples can be specified by the user.

Description
The Generate Sales Data operator generates an ExampleSet that represents sales data. This Ex-
ampleSet can be used when you do not have a data set that represents actual sales data. This
ExampleSet can be used as a placeholder for such a requirement. This data set has 7 regular
attributes and 1 special attribute. The regular attributes are store_id (nominal), customer_id
(nominal), product_id (integer), product_category (nominal), date (date), amount (integer) and
single_price (real). The special attribute is transaction_id (integer) which is an id attribute. The
number of examples in the data set can be set by the number examples parameter. To have a look
at this ExampleSet, just run the attached Example Process.

Output Ports
output (out) The Generate Sales Data operator generates an ExampleSet which is delivered

through this port. The meta data is also delivered along with the data.This output is the
same as the output of the Retrieve operator.

Parameters
number examples (integer) This parameter specifies the number of examples to be gener-

ated.

use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
ExampleSet. Changing the value of this parameter changes theway examples are random-
ized, thus the ExampleSet will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is available only if the use local random seed parameter is set to true.

Tutorial Processes

Introduction to the Generate Sales Data operator

The Generate Sales Data operator is applied for generating an ExampleSet that represents sales
data. The number examples parameter is set to 10000, thus the ExampleSet will have 10000
examples. You can see the ExampleSet in the Results Workspace. The use local random seed
parameter is set to false in this Example Process. Set the use local random seed parameter to
true and run the process with different values of local random seed. You will see that changing
the values of local random seed changes the randomization.
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Figure 7.77: Tutorial process ‘Introduction to the Generate Sales Data operator’.

Generate Transaction Data

Generate Transa. . .

out

This operator generates an ExampleSet that represents transac-
tion data. The number of transactions, number of customers,
number of items and number of clusters can be specified by the
user.

Description

TheGenerateTransactionDataoperatorgeneratesanExampleSet representing transactiondata.
This ExampleSet can be used when you do not have a data set that represents a real transaction
data. It can also be used as a placeholder for such a requirement. This data set has 2 regular
attributes and 1 special attribute. The regular attributes are Item (nominal) and Amount (in-
teger). The special attribute is Id (nominal). This Id attribute represents the customer Id. All
items purchased by a single customer are listed in form ofmultiple examples with the same cus-
tomer Id. The Item attribute tells which item was purchased and the Amount attribute tells the
quantity of the item that was purchased. The number of transactions can be set by the num-
ber transactions parameter. To have a look at this ExampleSet, just run the attached Example
Process.

Output Ports

output (out) The Generate Transaction Data operator generates an ExampleSet which is de-
livered through this port. The meta data is also delivered along with the data.This output
is the same as the output of the Retrieve operator.

Parameters

number transactions (integer) This parameter specifies the number of generated transac-
tions.

number customers (integer) This parameter specifies the number of generated customers.

number items (integer) This parameter specifies the number of generated items.

number clusters (integer) This parameter specifies the number of generated clusters.
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use local random seed (boolean) This parameter indicates if a local random seed should be
used for randomization. Using the same value of local random seed will produce the same
ExampleSet. Changing the value of this parameter changes theway examples are random-
ized, thus the ExampleSet will have a different set of values.

local random seed (integer) This parameter specifies the local random seed. This parameter
is only available if the use local random seed parameter is set to true.

Tutorial Processes

Introduction to the Generate Transaction Data operator

Process

Generate Transa. . .

outinp res

res

Figure 7.78: Tutorial process ‘Introduction to the Generate Transaction Data operator’.

The Generate Transaction Data operator is applied for generating an ExampleSet that repre-
sents transaction data. The number transactions parameter is set to 1000, thus the ExampleSet
will have 1000 examples. The number customers parameter is set to 50, thus there will be 50
unique values in the Id attribute. The number items parameter is set to 80, thus there will be
80 unique values in the Item attribute. You can see the ExampleSet in the Results Workspace.
The use local random seed parameter is set to false in this Example Process. Set the use local
random seed parameter to true and run the process with different values of local random seed.
You will see that changing the values of local random seed changes the randomization.
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7.9 Misc
Free Memory

Free Memory

t h r t h r
This operator frees unused memory. It might be useful after large
preprocessing chains with a lot of currently unused views or even
data copies.

Description
The FreeMemory operator cleans up unusedmemory resources. It might be very useful in com-
binationwith theMaterializeData operator after large preprocessing trees using a lot of views or
data copies. It can be very useful after the data set was materialized in memory. Internally, this
operator simply invokes a garbage collection from the underlying Java programming language.
Please note that RapidMiner keeps data sets in memory as long as possible. So if there is any

memory left, RapidMiner will not discard previous results of the process or data at the port.
The Free Memory operator can be useful if you get the OutOfMemoryException. Also note that
operators like the Remember operator put the objects in the Store. The Free Memory operator
does not clean up the store. This operator will only free memory which is no longer needed
which is not the case if the object is in the Store.
After process execution has been completed, everything including the Stores is freed, but only

if needed! So you can take a look at your previous results in the Result History as long as they fit
into the memory. RapidMiner will automatically discard all these Results if a currently running
process or new result needs free memory. So the memory usage will constantly grow with the
time until it has reached a peak value and RapidMiner starts to discard previous results.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the Free Memory operator is
available at the first through output port.

Output Ports
through (thr) The objects that were given as input are passed without changing to the output

through this port. It is not compulsory to attach this port to any other port, the memory
is freed even if this port is left without connections. The Free Memory operator can have
multiple outputs. When one output is connected, another through output port becomes
available which is ready to deliver another output (if any). The order of outputs remains
the same. The object delivered at the first through input port of the Free Memory operator
is delivered at the first through output port

Tutorial Processes
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Introduction to the Free Memory operator

Process
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Figure 7.79: Tutorial process ‘Introduction to the Free Memory operator’.

This is a very simple Example Process which just shows how to use the FreeMemory operator.
First the Subprocess operator is applied. Suppose we have a memory intensive task in the sub-
process and wewant to free unusedmemory after the subprocess is complete. The FreeMemory
operator is applied after the Subprocess operator to free the unused memory. No memory in-
tensive task is performed in this Example Process. This Process was intended to discuss only
the way this operator can be applied. Please make sure that the operators are applied in correct
sequence. Also note that the Free Memory operator is not connected to any other operator but
still it can perform its task.
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Join Paths

Join Paths

inp ou t This operator delivers the first non-null input to its output.

Description
The Join Paths operator can have multiple inputs but it has only one output. This operator re-
turns the first non-null input that it receives. This operator can be useful when some parts of
the process are susceptible of producing null results which can halt the entire process. In such
a scenario the Join Paths operator can be used to filter out this possibility.

Input Ports
input (inp) Thisoperator canhavemultiple inputs. Whenone input is connected, another input

port becomes available which is ready to accept another input (if any). Multiple inputs can
be provided but only the first non-null object will be returned by this operator.

Output Ports
output (out) The first non-null object that this operator receives is returned through this port.

Tutorial Processes

Returning the first non-null object

This Example Process starts with the Subprocess operator. Two outputs of the Subprocess op-
erator are attached to the first two input ports of the Join Paths operator. But both these inputs
are null because the Subprocess operator has no inner operators. The ‘Golf’ and ‘Polynomial’
data sets are loaded using the Retrieve operator. The Join Paths operator has four inputs but it
returns only the ‘Golf’ data set because it is the first non-null input that it received.
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Figure 7.80: Tutorial process ‘Returning the first non-null object’.

Materialize Data

Mater ia l ize  Data

exa exa

ori

Thisoperator creates a freshandcleancopyof thedata in themem-
ory.

Description

TheMaterialize Data operator creates a fresh and clean copy of the data in thememory. Itmight
be useful after large preprocessing chains with a lot of views or even data copies. In such cases,
it can be especially useful in combinationwith amemory cleanup operator e.g. the FreeMemory
operator.

Input Ports

example set input (exa) This input port expects an ExampleSet. It is the output of the Sub-
process operator in the attached Example Process. The output of other operators can also
be used as input.

Output Ports

example set output (exa) The fresh and clean copy of the ExampleSet is delivered through
this port.
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original (ori) The ExampleSet that was given as input is passedwithout changing to the output
through this port. This is usually used to reuse the same ExampleSet in further operators
or to view the ExampleSet in the Results Workspace.

Parameters
datamanagement (selection) This is an expert parameter. There are different options, users

can choose any of them

Tutorial Processes

Creating fresh copy of an ExampleSet

Process

Labor-Negotiations

out

Subprocess

in 

in 

ou t

ou t

Mater ia l ize  Data

exa exa

ori

inp res

res

Figure 7.81: Tutorial process ‘Creating fresh copy of an ExampleSet’.

This is a very simple Example Process which just shows how to use the Materialize Data op-
erator. The ‘Labor-Negotiations’ data set is loaded using the Retrieve operator. The Subprocess
operator is applied on it. No operator is applied in the Subprocess operator because it is used
as a dummy operator here. Suppose we have large preprocessing chains with a lot of views or
even data copies in the subprocess and we want a fresh copy of data after the subprocess is com-
plete. The Materialize Data operator is applied after the Subprocess operator to create a fresh
and clean copy of the data. No large preprocessing taskswere performed in this Example Process
because this Process was intended to discuss only the way this operator can be applied.
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Register Visualization from Database

Register Visualiz.. .

t h r t h r
Allows the visualization of examples (attribute values) in the plot
view of an example set (double click on data point). The data is
directly derived from the specified database table.

Description
Queries the database table for the rowwith the requested ID and creates a generic example visu-
alizer. This visualizer simply displays the attribute values of the example. Adding this operator
is might be necessary to enable the visualization of single examples in the provided plotter or
graph components. In contrast to the usual example visualizer, this version does not load the
complete data set into memory but simply queries the information from the database and just
shows the single row.

Input Ports
through (thr) It is not compulsory to connect any object with this port. Any object connected

at this port is delivered without any modifications to the output port. This operator can
have multiple inputs. When one input is connected, another through input port becomes
available which is ready to accept another input (if any). The order of inputs remains the
same. The object supplied at the first through input port of the operator is available at the
first through output port.

Output Ports
through (thr) The objects that were given as input are passed without changing to the output

through this port. It is not compulsory to connect this port to any other port. The operator
can have multiple outputs. When one output is connected, another through output port
becomes available which is ready to deliver another output (if any). The order of outputs
remains the same. The object delivered at the first through input port of the operator is
delivered at the first through output port.

Parameters
define connection (selection) Indicates how the database connection should be specified.

connection (selection) A predefined database connection.

database system (selection) The used database system.

database url (string) TheURLconnectionstring for thedatabase, e.g. ‘jdbc:mysql://foo.bar:portnr/database’

username (string) The database username.

password (string) The password for the database.

jndi name (string) JNDI name for a data source.

use default schema (boolean) If checked, the user’s default schema will be used.
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schema name (string) The schema name to use, unless use_default_schema is true.

table name (string) A database table.

id column (string) The column of the table holding the object ids for detail data querying.

Related Documents
• Read Database (page 52)
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