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Abstract: The K-means algorithm is a popular data-clustering algorithm. However, one of its
drawbacks is the requirement for the number of clusters, K, to be specified before the algorithm
is applied. This paper first reviews existing methods for selecting the number of clusters for the
algorithm. Factors that affect this selection are then discussed and a new measure to assist the
selection is proposed. The paper concludes with an analysis of the results of using the proposed
measure to determine the number of clusters for the K-means algorithm for different data sets.
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1 INTRODUCTION

Data clustering is a data exploration technique that
allows objects with similar characteristics to be
grouped together in order to facilitate their further
processing. Data clustering has many engineering
applications including the identification of part
families for cellular manufacture.

The K-means algorithm is a popular data-
clustering algorithm. To use it requires the number
of clusters in the data to be pre-specified. Finding
the appropriate number of clusters for a given data
set is generally a trial-and-error process made more
difficult by the subjective nature of deciding what
constitutes ‘correct’ clustering [1].

This paper proposes a method based on infor-
mation obtained during the K-means clustering
operation itself to select the number of clusters, K.
The method employs an objective evaluation
measure to suggest suitable values for K, thus
avoiding the need for trial and error.

The remainder of the paper consists of five sections.
Section 2 reviews the main known methods for
selecting K. Section 3 analyses the factors influ-
encing the selection of K. Section 4 describes the
proposed evaluation measure. Section 5 presents
the results of applying the proposed measure to
select K for different data sets. Section 6 concludes
the paper.

2 SELECTION OF THE NUMBER OF CLUSTERS
AND CLUSTERING VALIDITY ASSESSMENT

This section reviews existing methods for selecting
K for the K-means algorithm and the corresponding
clustering validation techniques.

2.1 Values of K specified within a range or set

The performance of a clustering algorithm may be
affected by the chosen value of K. Therefore, instead
of using a single predefined K, a set of values might
be adopted. It is important for the number of
values considered to be reasonably large, to reflect
the specific characteristics of the data sets. At the
same time, the selected values have to be signifi-
cantly smaller than the number of objects in the
data sets, which is the main motivation for perform-
ing data clustering.

Reported studies [2–18] on K-means clustering and
its applications usually do not contain any expla-
nation or justification for selecting particular values
for K. Table 1 lists the numbers of clusters and objects
and the corresponding data sets used in those studies.
Two observations could be made when analysing
the data in the table. First, a number of researchers
[5–7, 9] used only one or two values for K. Second,
several other researchers [1, 3, 11, 13, 16] utilized
relatively large K values compared with the number
of objects. These two actions contravene the above-
mentioned guidelines for selecting K. Therefore, the
clustering results do not always correctly represent
the performance of the tested algorithms.
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In general, the performance of any new version
of the K-means algorithm could be verified by com-
paring it with its predecessors on the same criteria.
In particular, the sum of cluster distortions is
usually employed as such a performance indicator
[3, 6, 13, 16, 18]. Thus, the comparison is considered
fair because the same model and criterion are used
for the performance analysis.

2.2 Values of K specified by the user

The K-means algorithm implementation in many
data-mining or data analysis software packages
[19–22] requires the number of clusters to be speci-
fied by the user. To find a satisfactory clustering
result, usually, a number of iterations are needed
where the user executes the algorithm with different
values of K. The validity of the clustering result is
assessed only visually without applying any formal
performance measures. With this approach, it is
difficult for users to evaluate the clustering result
for multi-dimensional data sets.

2.3 Values of K determined in a later
processing step

When K-means clustering is used as a pre-processing
tool, the number of clusters is determined by the
specific requirements of the main processing
algorithm [13]. No attention is paid to the effect of
the clustering results on the performance of this
algorithm. In such applications, the K-means
algorithm is employed just as a ‘black box’ without
validation of the clustering result.

Table 1 The number of clusters used in different studies

of the K-means algorithm

Reference
Numbers of
clusters K

Number of
objects N

Maximum
K/N
ratio (%)

[2] 32, 64, 128, 256,
512, 1024

8 192 12.50

32, 64, 128, 256,
512, 1024

29 000

256 2 048
[3] 600, 700, 800,

900, 1000
10 000 10.00

600, 700, 800,
900, 1000

50 000

[4] 4, 16, 64,
100, 128

100 000 0.13

4, 16, 64,
100, 128

120 000

4, 16, 64,
100, 128

256 000

[5] 4 564 0.70
4 720
4 1 000
4 1 008
4 1 010
4 1 202
4 2 000
4 2 324
4 3 005
4 4 000
4 6 272
4 7 561

[6] 6 150 4.00
[7] 10 2 310 0.43

25 12 902
[8] 2, 4, 8 Not reported Not reported
[9] 2, 4 500 3.33

2, 4 50 000
2, 4 100 000
10 300

[10] 1, 2, 3, 4 10 000 0.04
[11] 10, 20, 30, 40, 50,

60, 70, 80,
90, 100

500 20.00

[12] 100 10 000 2.00
50 2 500

[13] 7 42 16.66
1, 2, 3, 4, 5, 6, 7 120

[14] 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14

250 5.60

[15] 8, 20, 50, 64, 256 10 000 2.56
[16] 5000 50 000 50.00

5000 100 000
5000 200 000
5000 300 000
5000 433 208
100 100 000
250 200 000
1000 100 000
1000 200 000
1000 300 000
1000 433 208
40 20 000
10, 20, 30, 40, 50,

60, 70, 80
30 000

50, 500, 5000 10 000
50, 500, 5000 50 000
50, 500, 5000 100 000
50, 500, 5000 200 000
50, 500, 5000 300 000
50, 500, 5000 433 208

(continued )

Table 1 Continued

Reference
Numbers of
clusters K

Number of
objects N

Maximum
K/N
ratio (%)

[17] 250 80 000 10.00
250 90 000
250 100 000
250 110 000
250 120 000
50, 100, 400 4 000
50, 100, 400 36 000
250 80 000
250 90 000
250 100 000
250 110 000
250 120 000
50, 100, 150 4 000
50, 100, 150 36 000
50 800 000
500 800 000

[18] 3, 4 150 6.67
4, 5 75
2, 7, 10 214
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2.4 Values of K equated to the
number of generators

Synthetic data sets, which are used for testing
algorithms, are often created by a set of normal or
uniform distribution generators. Then, clustering
algorithms are applied to those data sets with the
number of clusters equated to the number of genera-
tors. It is assumed that any resultant cluster will
cover all objects created by a particular generator.
Thus, the clustering performance is judged on the
basis of the difference between objects covered by
a cluster and those created by the corresponding
generator. Such a difference can be measured by
simply counting objects or calculating the infor-
mation gain [7].

There are drawbacks with this method. The first
drawback concerns the stability of the clustering
results when there are areas in the object space
that contain objects created by different generators.
Figure 1a illustrates such a case. The data set
shown in this figure has two clusters, A and B,
which cover objects generated by generators GA

and G B respectively. Object X is in an overlapping

area between clusters A and B. X has probabilities
PGA

and PGB
of being created by GA and GB, respect-

ively, and probabilities PCA
and PCB

of being included
into clusters A and B, respectively. All four pro-
babilities are larger than 0. Thus, there is a chance
for X to be created by generator GA but covered
by cluster B, and vice versa. In such cases, the
clustering results will not be perfect. The stability of
the clustering results depends on these four proba-
bilities. With an increase in the overlapping areas in
the object space, the stability of the clustering results
decreases.

The difference between the characteristics of the
generators also has an effect on the clustering results.
In Fig. 1b where the number of objects of cluster A is
five times larger than that of cluster B, the smaller
cluster B might be regarded as noise and all objects
might be grouped into one cluster. Such a clustering
outcome would differ from that obtained by visual
inspection.

Unfortunately, this method of selecting K cannot
be applied to practical problems. The data distri-
bution in practical problems is unknown and also
the number of generators cannot be specified.

2.5 Values of K determined by
statistical measures

There are several statistical measures available for
selecting K. These measures are often applied in com-
bination with probabilistic clustering approaches.
They are calculated with certain assumptions
about the underlying distribution of the data. The
Bayesian information criterion or Akeike’s infor-
mation criterion [14, 17] is calculated on data sets
which are constructed by a set of Gaussian distri-
butions. The measures applied by Hardy [23] are
based on the assumption that the data set fits the
Poisson distribution. Monte Carlo techniques,
which are associated with the null hypothesis, are
used for assessing the clustering results and also for
determining the number of clusters [24, 25].

There have been comparisons between probabilis-
tic and partitioning clustering [7]. Expectation–
maximization (EM) is often recognized as a typical
method for probabilistic clustering. Similarly,
K-means clustering is considered a typical method
for partitioning clustering. Although, EM and
K-means clustering share some common ideas,
they are based on different hypotheses, models and
criteria. Probabilistic clustering methods do not
take into account the distortion inside a cluster, so
that a cluster created by applying such methods
may not correspond to a cluster in partitioning clus-
tering, and vice versa. Therefore, statistical measures
used in probabilistic methods are not applicable in

Fig. 1 Effect of the relationship between clusters on

the clustering for two object spaces in which

(a) an area exists that contains objects created

by two different generators and (b) there are

no overlapping areas: A, objects generated by

GA; D, objects generated by GB
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the K-means algorithm. In addition, the assumptions
about the underlying distribution cannot be verified
on real data sets and therefore cannot be used to
obtain statistical measures.

2.6 Values of K equated to the
number of classes

With this method, the number of clusters is equated
to the number of classes in the data sets. A data-
clustering algorithm can be used as a classifier by
applying it to data sets from which the class attribute
is omitted and then assessing the clustering results
using the omitted class information [26, 27]. The out-
come of the assessment is fed back to the clustering
algorithm to improve its performance. In this way,
the clustering can be considered to be supervised.

With this method of determining the number
of clusters, the assumption is made that the data-
clustering method could form clusters, each of
which would consist of only objects belonging to

one class. Unfortunately, most real problems do
not satisfy this assumption.

2.7 Values of K determined through
visualization

Visual verification is applied widely because of its
simplicity and explanation possibilities. Visual
examples are often used to illustrate the drawbacks
of an algorithm or to present the expected clustering
results [5, 27].

The assessment of a clustering result using
visualization techniques depends heavily on their
implicit nature. The clustering models utilized by
some clustering methods may not be appropriate
for particular data sets. The data sets in Fig. 2
are illustrations of such cases. The application of
visualization techniques implies a data distribution
continuity in the expected clusters. If the K-means
approach is applied to such data sets, there is not

Fig. 2 Data sets inappropriate for the K-means approach: (a) data sets with four clusters [5];

(b) data sets with three clusters [23]; (c) data sets with eight clusters [27]. Note that

the number of clusters in each data set was specified by the respective researchers
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any cluster that satisfies the K-means cluster-
ing model and at the same time corresponds to a
particular object grouping in the illustrated data
sets. Therefore, the K-means algorithm cannot pro-
duce the expected clustering results. This suggests
that the K-means approach is unsuitable for such
data sets.

The characteristics of the data sets in Fig. 2
(position, shape, size, and object distribution) are
implicitly defined. This makes the validation of the
clustering results difficult. Any slight changes in
the data characteristics may lead to different out-
comes. The data set in Fig. 2b is an illustration of
such a case. Another example is the series of data
sets in Fig. 3. Although two clusters are easily identi-
fiable in the data set in Fig. 3a, the numbers of
clusters in the data sets in Figs 3b and c depend on
the distance between the rings and the object
density of each ring. Usually such parameters
are not explicitly defined when a visual check is
carried out.

In spite of the above-mentioned deficiencies, visu-
alization of the results is still a useful method of
selecting K and validating the clustering results
when the data sets do not violate the assumptions
of the clustering model. In addition, this method
is recommended in cases where the expected results
could be identified explicitly.

2.8 Values of K determined using
a neighbourhood measure

A neighbourhood measure could be added to the
cost function of the K-means algorithm to determine
K [26]. Although this technique has showed promis-
ing results for a few data sets, it needs to prove its
potential in practical applications. Because the cost
function has to be modified, this technique cannot
be applied to the original K-means algorithm.

3 FACTORS AFFECTING THE SELECTION OF K

A function f(K ) for evaluating the clustering result
could be used to select the number of clusters. Fac-
tors that such a function should take into account
are discussed in this section.

3.1 Approach bias

The evaluation function should be related closely to
the clustering criteria. As mentioned previously,
such a relation could prevent adverse effects on the
validation process. In particular, in the K-means
algorithm, the criterion is the minimization of the
distortion of clusters, so that the evaluation function
should take this parameter into account.

3.2 Level of detail

In general, observers that could see relatively low
levels of detail would obtain only an overview of an
object. By increasing the level of detail, they could
gain more information about the observed object
but, at the same time, the amount of data that they
have to process increases. Because of resource limit-
ations, a high level of detail is normally used only to
examine parts of the object [28].

Such an approach could be applied in clustering. A
data set with n objects could be grouped into any
number of clusters between 1 and n, which would
correspond to the lowest and the highest levels of
detail respectively. By specifying different K values,
it is possible to assess the results of grouping
objects into various numbers of clusters. From
this evaluation, more than one K value could be
recommended to users, but the final selection is
made by them.

3.3 Internal distribution versus global impact

Clustering is used to find irregularities in the data
distribution and to identify regions in which objects
are concentrated. However, not every region with a
high concentration of objects is considered a cluster.
For a region to be identified as a cluster, it is import-
ant to analyse not only its internal distribution but
also its interdependence with other object groupings
in the data set.

In K-means clustering, the distortion of a cluster is
a function of the data population and the distance
between objects and the cluster centre according to

Ij ¼
XN j

t¼1

½d(x jt , wj)�
2 (1a)

where Ij is the distortion of cluster j, wj is the centre
of cluster j, Nj is the number of objects belonging to
cluster j, xjt is the tth object belonging to cluster j,
and d(xjt, wj) is the distance between object xjt and
the centre wj of cluster j.

Each cluster is represented by its distortion
and its impact on the entire data set is assessed by

Fig. 3 Variations in the two-ring data set
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its contribution to the sum of all distortions, SK,
given by

SK ¼
XK

j¼1

Ij (1b)

where K is the specified number of clusters.
Thus, such information is important in assessing

whether a particular region in the object space
could be considered a cluster.

3.4 Constraints on f (K )

The robustness of f(K ) is very important. Because
this function is based on the result of the clustering
algorithm, it is important for this result to vary as
little as possible when K remains unchanged. How-
ever, one of the main deficiencies of the K-means
approach is its dependence on randomness. Thus,
the algorithm should yield consistent results so
that its performance can be used as a variable
in the evaluation function. A new version of the K-
means algorithm, namely the incremental K-means
algorithm [29], satisfies this requirement and can
be adopted for this purpose.

The role of f(K ) is to reveal trends in the data
distribution and therefore it is important to keep it
independent of the number of objects. The number
of clusters, K, is assumed to be much smaller than
the number of objects, N. When K increases, f(K )
should converge to some constant value. Then, if,
for any intermediate K, f(K ) exhibits a special beha-
viour, such as a minimum or maximum point, that
value of K could be taken as the desired number of
clusters.

4 NUMBER OF CLUSTERS FOR
K-MEANS CLUSTERING

As mentioned in section 3.3, cluster analysis is
used to find irregularities in the data distribution.
When the data distribution is uniform, there is not
any irregularity. Therefore, data sets with uniform
distribution could be used to calibrate and verify
the clustering result. This approach was applied by
Tibshirani et al. [30]. A data set of the same dimen-
sion as the actual data set and with a uniform distri-
bution was generated. The clustering performance
on this artificial data set was then compared with
the result obtained for the actual data set. A measure
known as the ‘gap’ statistic [30] was employed to
assess performance. In this work, instead of generat-
ing an artificial data set, the clustering performance
for the artificial data set was estimated. Also, instead
of the gap statistic, a new and more discriminatory

measure was employed for evaluating the clustering
result.

When the K-means algorithm is applied to data
with a uniform distribution and K is increased by 1,
the clusters are likely to change and, in the new pos-
itions, the partitions will again be approximately
equal in size and their distortions similar to one
another. The evaluations carried out in reference
[29] showed that, when a new cluster is inserted
into a cluster (K ¼ 1) with a hypercuboid shape and
a uniform distribution, the decrease in the sum of
distortions is proportional to the original sum of dis-
tortions. This conclusion was found to be correct for
clustering results obtained with relatively small
values of K. In such cases, the sum of distortions
after the increase in the number of clusters could
be estimated from the current value.

The evaluation function f(K ) is defined using the
equations

f (K ) ¼

1 if K ¼ 1
SK

aK SK�1
if SK�1 = 0, 8K . 1

1 if SK�1 ¼ 0, 8K . 1

8
><

>:
(2)

aK ¼

1�
3

4Nd

if K ¼ 2 and Nd . 1

(3a)

aK�1 þ
1� aK�1

6
if K . 2 and Nd . 1

(3b)

8
>>>>><

>>>>>:

where SK is the sum of the cluster distortions when
the number of clusters is K, Nd is the number of
data set attributes (i.e. the number of dimensions)
and aK is a weight factor. The term aKSK21 in
equation (2) is an estimate of SK based on SK21

made with the assumption that the data have a uni-
form distribution. The value of f(K ) is the ratio of the
real distortion to the estimated distortion and is
close to 1 when the data distribution is uniform.
When there are areas of concentration in the data
distribution, SK will be less than the estimated
value, so that f(K ) decreases. The smaller that f(K )
is, the more concentrated is the data distribution.
Thus, values of K that yield small f(K ) can be
regarded as giving well-defined clusters.

The weight factor aK, defined in equation (3), is
a positive number less than or equal to 1 and is
applied to reduce the effect of dimensions. With
K ¼ 2, aK is computed using equation (3a). This equa-
tion is derived from equation (7) in reference [29],
which shows that the decrease in distortion is inver-
sely proportional to the number of dimensions, Nd.

As K increases above 2, the decrease in the sum of
distortions reduces (the ratio SK/SK21 approaches 1),
as can be seen in Fig. 4. This figure shows the values
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of SK/SK21 computed for different K when the clus-
tering algorithm is applied to data sets of different
dimensions and with uniform distributions. With
such data sets, f(K ) is expected to be equal to 1 and
aK should be chosen to equate f(K ) to 1. From
equation (2), aK should therefore be SK/SK21 and
thus obtainable from Fig. 4. However, for compu-
tational simplicity, the recursion equation (3b) has
been derived from the data represented in Fig. 4 to
calculate aK. Figure 5 shows that the values of aK

obtained from equation (3b) fit the plots in Fig. 4
closely.

The proposed function f(K ) satisfies the con-
straints mentioned in the previous section. The
robustness of f(K ) will be verified experimentally in
the next section. When the number of objects is
doubled or tripled but their distributions are
unchanged, the resultant clusters remain in the
same position. SK and SK21 are doubled or tripled
correspondingly, so that f(K ) stays constant. There-
fore, generally, f(K ) is independent of the number
of objects in the data set.

To reduce the effect of differences in the ranges
of the attributes, data are normalized before the
clustering starts. However, it should be noted that,

when the data have well-separated groups of objects,
the shape of such regions in the problem space has
an effect on the evaluation function. In these cases,
the normalization does not influence the local
object distribution, because it is a scaling technique
that applies to the whole data set.

5 PERFORMANCE

The evaluation function f(K ) is tested in a series of
experiments on the artificially generated data sets
shown in Fig. 6. All data are normalized before the
incremental K-means algorithm is applied with K
ranging from 1 to 19. f(K ) is calculated on the basis
of the total distortion of the clusters.

In Figs 6a–c, all objects belong to a single region
with a uniform distribution. The graph in Fig. 6a
shows that f(K ) reflects well the clustering result on
this data set with a uniform distribution because
f(K ) is approximately constant and equal to 1 for
all K. When K ¼ 4 and K ¼ 3 in Figs 6a and b, respect-
ively, f(K ) reaches minimum values. This could be
attributed to the shape of the areas defined by the
objects belonging to these data sets. However, the
minimum values of f(K ) do not differ significantly

Fig. 4 The ratio SK/SK21 for data sets having uniform

distributions: (a) two-dimensional ‘square’ and

‘circle’; (b) four-dimensional ‘cube’ and ‘sphere’

Fig. 5 Comparison of the values of aK calculated using

equation (3b) and the ratio SK/SK21
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Fig. 6 Data sets and their corresponding f(K )
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Fig. 6 Continued
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Fig. 6 Continued
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Fig. 6 Continued
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Fig. 6 Continued

114 D T Pham, S S Dimov, and C D Nguyen

Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science C09304 # IMechE 2005



from the average value for any strong recommen-
dations to be made to the user. By comparing the
values of f(K ) in Figs 6a and c, it can be seen that
aK reduces the effect of the data set dimensions on
the evaluation function.

For the data set in Fig. 6d, again, all objects are
concentrated in a single region with a normal

distribution. The f(K ) plot for this data set suggests
correctly that, when K ¼ 1, the clustering result is
the most suitable for this data set.

The data sets in Figs 6e and f are created by
two generators that have normal distributions. In
Fig. 6e, the two generators have an overlapping
region but, in Fig. 6f, they are well separated. Note

Fig. 7 f(K) for the 12 benchmark data sets
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that the value for f(2) in the latter figure is much
smaller than in the former.

The data sets in Figs 6g and h have three recog-
nizable regions. From the corresponding graphs,
f(K ) suggests correct values of K for clustering
these data sets.

Three different generators that create object
groupings with a normal distribution are used to
form the data set in Fig. 6i. In this case, f(K ) suggests
the value 2 or 3 for K. Because two of these three
generators create object groupings that overlap,
f(2) is smaller than f(3). This means that the data

Fig. 7 Continued
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have only two clearly defined regions, but K ¼ 3
could also be used to cluster the objects.

Figures 6j and k illustrate how the level of detail
could affect the selection of K. f(K ) reaches mini-
mum values at K ¼ 2 and 4 respectively. In such
cases, users could select the most appropriate value
of K based on their specific requirements. A more
complex case is shown in Fig. 6l where there is a
possible K value of 4 or 8. The selection of a parti-
cular K will depend on the requirements of the
specific application for which the clustering is
carried out.

The data sets in Figs 6m–o have well-defined
regions in the object space, each of which has a
different distribution, location, and number of
objects. If the minimum value of f(K ) is used to
cluster the objects, K will be different from the
number of generators utilized to create them (as in
the case of the clusters in Fig. 6o or the number of
object groupings that could be identified visually
(as in the case of the clusters in Figs 6m and n).
The reason for the difference varies with different
cases. For example, it could be considered that
there are five clusters in Fig. 6m because the cluster
distances are smaller for the two leftmost pairs of
clusters than for others and the clusters in those
pairs could be merged together. However, no
simple explanation could be given for the cases
shown in Figs 6n and o. This highlights the fact
that f(K ) should only be used to suggest a guide
value for the number of clusters and the final
decision as to which value to adopt has to be left at
the discretion of the user.

From the graphs in Fig. 6, a conclusion could be
made that any K with corresponding f(K ) , 0.85
could be recommended for clustering. If there is
not a value with corresponding f(K ) , 0.85, K ¼ 1 is
selected.

The proposed function f(K ) is also applied to 12
benchmarking data sets from the UCI Repository
Machine Learning Databases [31]. Figure 7 shows
how the value of f(K ) varies with K. If a threshold of
0.85 is selected for f(K ) (from the study on the
artificial data sets), the numbers of clusters recom-
mended for each of these data sets are given as in
Table 2. K¼ 1 means that the data distribution is
very close to the standard uniform distribution. The
values recommended using f(K ) are very small
because of the high correlation between the attributes
of these data sets, very similar to that shown in Fig. 6e.
This can be verified by examining two attributes at
a time and plotting the data sets in two dimensions.

The above experimental study on 15 artificial
and 12 benchmark data sets has demonstrated
the robustness of f(K ). The evaluation function
converges in most cases to 1 when K increases
above 9.

6 CONCLUSION

Existing methods of selecting the number of clusters
for K-means clustering have a number of drawbacks.
Also, current methods for assessing the clustering
results do not provide much information on the
performance of the clustering algorithm.

A new method to select the number of clusters
for the K-means algorithm has been proposed in
the paper. The new method is closely related to the
approach of K-means clustering because it takes
into account information reflecting the performance
of the algorithm. The proposed method can suggest
multiple values of K to users for cases when different
clustering results could be obtained with various
required levels of detail. The method could be com-
putationally expensive if used with large data sets
because it requires several applications of the
K-means algorithm before it can suggest a guide
value for K. The method has been validated on
15 artificial and 12 benchmark data sets. Further
research is required to verify the capability of this
method when applied to data sets with more
complex object distributions.
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Table 2 The recommended number of

clusters based on f(K)

Data sets
Proposed number
of clusters

Australian 1
Balance-scale 1
Car evaluation 2, 3, 4
Cmc 1
Ionosphere 2
Iris 2, 3
Page blocks 2
Pima 1
Wdbc 2
Wine 3
Yeast 1
Zoo 2

Selection of K in K-means clustering 117

C09304 # IMechE 2005 Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science



REFERENCES

1 Han, J. and Kamber, M. Data Mining: Concepts and
Techniques, 2000 (Morgan Kaufmann, San Francisco,
California).

2 Al-Daoud, M. B., Venkateswarlu, N. B., and
Roberts, S. A. Fast K-means clustering algorithms.
Report 95.18, School of Computer Studies, University
of Leeds, June 1995.

3 Al-Daoud, M. B., Venkateswarlu, N. B., and
Roberts, S. A. New methods for the initialisation of
clusters. Pattern Recognition Lett., 1996, 17, 451–455.

4 Alsabti, K., Ranka, S., and Singh, V. An efficient
K-means clustering algorithm. In Proceedings of the
First Workshop on High-Performance Data Mining,
Orlando, Florida, 1998; ftp://ftp.cise.ufl.edu/pub/
faculty/ranka/Proceedings.

5 Bilmes, J., Vahdat, A., Hsu, W., and Im, E. J. Empirical
observations of probabilistic heuristics for the
clustering problem. Technical Report TR-97-018,
International Computer Science Institute, Berkeley,
California.

6 Bottou, L. and Bengio, Y. Convergence properties of the
K-means algorithm. Adv. Neural Infn Processing Systems,
1995, 7, 585–592.

7 Bradley, S. and Fayyad, U. M. Refining initial
points for K-means clustering. In Proceedings of
the Fifteenth International Conference on Machine
Learning (ICML ‘98) (Ed. J. Shavlik), Madison,
Wisconsin, 1998, pp. 91–99 (Morgan Kaufmann, San
Francisco, California).

8 Du, Q. and Wong, T-W. Numerical studies of
MacQueen’s K-means algorithm for computing the cen-
troidal Voronoi tessellations. Int. J. Computers Math.
Applics, 2002, 44, 511–523.

9 Castro, V. E. and Yang, J. A fast and robust general
purpose clustering algorithm. In Proceedings of the
Fourth European Workshop on Principles of Knowledge
Discovery in Databases and Data Mining (PKDD 00),
Lyon, France, 2000, pp. 208–218.

10 Castro, V. E. Why so many clustering algorithms?
SIGKDD Explorations, Newsletter of the ACM Special
Interest Group on Knowledge Discovery and Data
Mining, 2002, 4(1), 65–75.

11 Fritzke, B. The LBG-U method for vector quantiza-
tion – an improvement over LBG inspired from
neural networks. Neural Processing Lett., 1997, 5(1),
35–45.

12 Hamerly, G. and Elkan, C. Alternatives to the K-means
algorithm that find better clusterings. In Proceedings of
the 11th International Conference on Information and
Knowledge Management (CIKM 02), McLean, Virginia,
2002, pp. 600–607.

13 Hansen, L. K. and Larsen, J. Unsupervised learning
and generalisation. In Proceedings of the IEEE
International Conference on Neural Networks,
Washington, DC, June 1996, pp. 25–30 (IEEE,
New York).

14 Ishioka, T. Extended K-means with an efficient
estimation of the number of clusters. In Proceedings
of the Second International Conference on Intelligent

Data Engineering and Automated Learning (IDEAL
2000), Hong Kong, PR China, December 2000,
pp. 17–22.

15 Kanungo, T., Mount, D. M., Netanyahu, N., Piatko, C.,
Silverman, R., and Wu, A. The efficient K-means clus-
tering algorithm: analysis and implementation. IEEE
Trans. Pattern Analysis Mach. Intell. 2002, 24(7),
881–892.

16 Pelleg, D. and Moore, A. Accelerating exact K-means
algorithms with geometric reasoning. In Proceedings
of the Conference on Knowledge Discovery in
Databases (KDD 99), San Diego, California, 1999,
pp. 277–281.

17 Pelleg, D. and Moore, A. X-means: extending K-means
with efficient estimation of the number of clusters. In
Proceedings of the 17th International Conference on
Machine Learning (ICML 2000), Stanford, California,
2000, 727–734.

18 Pena, J. M., Lazano, J. A., and Larranaga, P. An empiri-
cal comparison of four initialisation methods for the
K-means algorithm. Pattern Recognition Lett., 1999,
20, 1027–1040.

19 SPSS Clementine Data Mining System. User Guide Ver-
sion 5, 1998 (Integral Solutions Limited, Basingstoke,
Hampshire).

20 DataEngine 3.0 – Intelligent Data Analysis – an Easy
Job, Management Intelligenter Technologien GmbH,
Germany, 1998; http://www.mitgmbh.de.

21 Kerr, A., Hall, H. K., and Kozub, S. Doing Statistics with
SPSS, 2002 (Sage, London).

22 S-PLUS 6 for Windows Guide to Statistics, Vol. 2,
Insightful Corporation, Seattle, Washington, 2001;
http://www.insightful.com/DocumentsLive/23/44/
statman2.pdf.

23 Hardy, A. On the number of clusters. Comput. Statist.
Data Analysis, 1996, 23, 83–96.

24 Theodoridis, S. and Koutroubas, K. Pattern Recog-
nition, 1998 (Academic Press, London).

25 Halkidi, M., Batistakis, Y., and Vazirgiannis, M.
Cluster validity methods. Part I. SIGMOD Record,
2002, 31(2); available online http://www.acm.org/
sigmod/record/.

26 Kothari, R. and Pitts, D. On finding the number of
clusters. Pattern Recognition Lett., 1999, 20, 405–416.

27 Cai, Z. Technical aspects of data mining. PhD thesis,
Cardiff University, Cardiff, 2001.

28 Lindeberg, T. Scale-space Theory in Computer Vision,
1994 (Kluwer Academic, Boston, Massachusetts).

29 Pham, D. T., Dimov, S. S., and Nguyen, C. D.
Incremental K-means algorithm. Proc. Instn Mech.
Engrs, Part C: J. Mechanical Engineering Science, 2003,
218, 783–795.

30 Tibshirani, R., Walther, G., and Hastie, T. Estimating
the number of clusters in a dataset via the gap statistic.
Technical Report 208, Department of Statistics,
Stanford University, California, 2000.

31 Blake, C., Keogh, E., and Merz, C. J. UCI Re-
pository of Machine Learning Databases, Irvine,
California. Department of Information and Com-
puter Science, University of California, Irvine,
California, 1998.

118 D T Pham, S S Dimov, and C D Nguyen

Proc. IMechE Vol. 219 Part C: J. Mechanical Engineering Science C09304 # IMechE 2005

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0167-8655(1996)17L.451[aid=5951177]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0167-8655(1999)20L.1027[aid=5951179]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0167-8655(1999)20L.1027[aid=5951179]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0167-9473(1996)23L.83[aid=6481591]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0167-9473(1996)23L.83[aid=6481591]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0167-8655(1999)20L.405[aid=6481590]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1370-4621(1997)5:1L.35[aid=6481588]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1370-4621(1997)5:1L.35[aid=6481588]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1433-7541(2002)24:7L.881[aid=6481587]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1433-7541(2002)24:7L.881[aid=6481587]
http://www.mitgmbh.de
http://www.insightful.com/DocumentsLive/23/44/statman2.pdf
http://www.insightful.com/DocumentsLive/23/44/statman2.pdf
http://www.acm.org/sigmod/record/
http://www.acm.org/sigmod/record/
ftp://ftp.cise.ufl.edu/pub/faculty/ranka/Proceedings
ftp://ftp.cise.ufl.edu/pub/faculty/ranka/Proceedings


APPENDIX

Notation

A, B clusters
d(xjt, wj) distance between object xjt and the

centre wj of cluster j
f(K ) evaluation function
GA, GB generators
Ij distortion of cluster j
K number of clusters
N number of objects in the data set
Nd number of data set attributes

(the dimension of the data set)

Nj number of objects belonging to
cluster j

PGA
, PGB

probabilities that X is created by GA or
GB respectively

PCA
, PCB

probabilities that X is clustered into A or
B respectively

SK sum of all distortions with K being the
specified number of clusters

X object
xjt object belonging to cluster j
wj centre of cluster j

aK weight factor
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