

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171617 Subject Name: Applied Machine Learning Semester – VII

Type of course: Elective

Prerequisite: Familiarity with programming in Python, Linear Algebra, Probability and Statistics.

Rationale: The objective of the course is to introduce the students with concepts of machine learning, machine learning algorithms and building the applications using machine leaning for various domains.

Teaching and Examination Scheme:

Teaching Scheme Cre			Credits	Examination Marks				Total
L	T	P	С	Theory Marks		Practical Marks		Marks
				ESE	PA(M)	ESE (V)	PA	
				(E)			(I)	
3	0	2	4	70	30	30	20	150

Content:

Sr. No.	Content	Total Hrs
1	Introduction to Machine Learning:	02
	Overview of Human Learning and Machine Learning, Types of Learning, Applications	
	of Machine Learning, Tools and Technology for Machine Learning.	
2	Overview of Probability:	05
	Statistical tools in Machine Learning, Concepts of probability, Random variables,	
	Discrete distributions, Continuous distributions, Multiple random variables, Central	
	limit theorem, Sampling distributions, Hypothesis space and inductive bias,	
	Evaluation and Cross Validation, Hypothesis testing, Monte Carlo Approximation	
3	Bayesian Concept Learning:	04
	Impotence of Bayesian methods, Bayesian theorem, Bayes' theorem and concept	
	learning, Bayesian Belief Network	
4	Classification and Regression: Supervised Learning vs Unsupervised Learning,	13
	Supervised Learning, Classification Model, Learning steps, Classification algorithms,	
	Clustering, Association rules, Linear Regression, Multivariate Regression, Logistic	
	Regression	
5	Neural Networks-Introduction, Early Models, Perceptron	06
	Learning, Backpropagation, Initialization, Training & Validation,	
	Parameter Estimation - MLE, MAP, Bayesian Estimation	
6	Foundations of neural networks and deep learning, Techniques to improve	07
	neural networks: Regularization and optimizations, hyperparameter tuning and deep	
	learning frameworks (Tensorflow and Keras.), Convolutional Neural Networks, its	
	applications, Recurrent Neural Networks and its applications	
7	Generative Adversarial Networks, Deep Reinforcement Learning, Adversarial Attacks	05

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
7	12	20	14	10	7		

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3171617

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1) Machine Learning, Saikat Dull, S. Chjandramouli, Das, Pearson
- 2) Pattern Recognition and Machine Learning, by Christopher Bishop
- 3) The Elements of Statistical Learning, by Trevor Hastie, Robert Tibshirani, Jerome H. Friedman (freely available online)
- 4) Machine Learning with Python for Everyone, Mark E. Fenner, Pearson
- 5) Deep Learning: Methods and Applications, Li Deng and Dong Yu
- 6) Neural Networks and Deep Learning, Michael Nielsen
- 7) Machine Learning, Anuradha Srinivasaraghavan, Vincy Joseph, Wiley
- 8) Machine Learning with Python, U Dinesh Kumar Manaranjan Pradhan, Wiley
- 9) Python Machine Learning, Sebastian Raschka, Vahid Mirjalili, Packt Publishing
- 10) Machine Learning, Mitchell T, McGraw-Hill, 1997
- 11) A first course in Machine Learning, S. Rogers and M. Girolami, CRC Press, 2011
- 12) Pattern Classification, Duda, Hart and Stork, Wiley-Interscience.

Course Outcome:

After learning the course the students should be able to:

Sr. No.	CO statement	Marks % weightage
		0 0
CO-1	Explore the fundamental issues and challenges in Machine Learning including	15
	data and model selection and complexity	
CO-2	Appreciate the underlying mathematical relationships within and across	15
	Machine Learning algorithms	
~~~	č č	
CO-3	Evaluate the various Supervised and Unsupervised Learning algorithms using	25
	appropriate Dataset.	
CO-4	Design and evaluate Deep learning Algorithms	25
CO-5	Design and implement various machine learning algorithms in a range of real-	20
	world applications.	

### **List of Experiments:**

Minimum 10 Experiments are to be designed covering various activities and algorithms in machine learning with datasets from different domains

### List of Open Source Software/learning website:

- 1. Andrew Ng, "Machine Learning", Stanford University https://www.coursera.org/learn/machine-learning/home/info
- 2. Sudeshna Sarkar, "Introduction to Machine Learning", IIT Kharagpur. https://nptel.ac.in/courses/106105152/1
- 3. Prof. BalaramanRavindran, "Introduction to Machine Learning", IIT Madras. https://nptel.ac.in/courses/106106139/1
- 4. https://www.geeksforgeeks.org/machine-learning/
- 5. https://www.tutorialspoint.com/machine_learning_with_python/index.htm
- **6.** <a href="http://neuralnetworksanddeeplearning.com/">http://neuralnetworksanddeeplearning.com/</a>