

Bachelor of Engineering Subject Code: 3151608 Semester – V Subject Name: Data Science

Type of course: Undergraduate (Open Elective)

Prerequisite: None

Rationale: Available data need to be analyzed to make quicker and better decisions. Data science helps in managing, analyzing and understanding trends in data leading to design the strategy for better profitability and results.

Teaching and Examination Scheme:

Tea	aching Sch	neme	Credits	Examination Marks				Total
L	T	P	C	Theory Marks Practical Marks		Marks	Marks	
				ESE (E)	PA (M)	ESE (V)	PA (I)	
2	0	2	3	70	30	30	20	150

Content:

Sr. No.	Content	Total Hrs	Marks Weight age
1	Tutor having to Design on Appleting	02	(%)
1	Introduction to Business Analytics Why Analytics	03	10
	Why Analytics Projects Applying The Science of Date Driven Decision Meling		
	Business Analytics: The Science of Data-Driven Decision Making		
	Descriptive Analytics		
	Predictive Analytics Prescriptive Analytics		
	Prescriptive Analytics Descriptive, Predictive and Prescriptive Analytics Techniques		
	Big Data Analytics		
	Web and Social Media Analytics		
	<u>-</u>		
	Machine Learning Algorithms Framework for Data-Driven Decision Making		
	Analytics Capability Building		
	Roadmap for Analytics Capability Building		
	Challenges in Data-Driven Decision Making and Future		
2	Descriptive Analytics	03	30
2	Introduction to Descriptive Analytics	03	30
	Data Types and Scales		
	Types of Data Measurement Scales		
	Population and Sample		
	Percentile, Decile and Quartile		
	Measures of Variation		
	Measures of Shape – Skewness and Kurtosis		

Bachelor of Engineering Subject Code: 3151608

	Subject Code: 3151608		
3	Introduction to Probability	06	15
•	Introduction to Probability Theory		
	Probability Theory – Terminology		
	Fundamental Concepts in Probability – Axioms of Probability		
	Application of Simple Probability Rules – Association Rule Learning		
	Bayes' Theorem		
	Random Variables		
	Probability Density Function (PDF) and Cumulative Distribution Function (CDF) of a		
	Continuous Random Variable		
	Binomial Distribution		
	Poisson Distribution		
	Geometric Distribution		
	Parameters of Continuous Distributions		
	Uniform Distribution		
	Exponential Distribution		
	Chi-Square Distribution		
	Student's t-Distribution		
	F-Distribution		
4	Sampling and Estimation	04	15
	Introduction to Sampling		
	Population Parameters and Sample Statistic		
	Sampling		
	Probabilistic Sampling		
	Non-Probability Sampling		
	Sampling Distribution		
	Central Limit Theorem (CLT)		
	Sample Size Estimation for Mean of the Population		
	Estimation of Population Parameters		
	Method of Moments		
	Estimation of Parameters Using Method of Moments		
	Estimation of Parameters Using Maximum Likelihood Estimation		
5	simple Linear Regression	04	10
	Introduction to Simple Linear Regression		
	History of Regression-Francis Galton's Regression Model		
	Simple Linear Regression Model Building		
	Estimation of Parameters Using Ordinary Least Squares		
	Interpretation of Simple Linear Regression Coefficients		
	Validation of the Simple Linear Regression Model		
	Outlier Analysis		
	Confidence Interval for Regression Coefficients b0 and b		
	Confidence Interval for the Expected Value of Y for a Given X		
	Prediction Interval for the Value of Y for a Given X		
	Logistic Regression	05	10
	Introduction – Classification Problems		

Bachelor of Engineering Subject Code: 3151608

Subject code: 0101000		
Introduction to Binary Logistic Regression		
Estimation of Parameters in Logistic Regression		
Interpretation of Logistic Regression Parameters		
Logistic Regression Model Diagnostics		
Classification Table, Sensitivity, and Specificity		
Optimal Cut-Off Probability		
Variable Selection in Logistic Regression		
Application of Logistic Regression in Credit Rating		
Gain Chart and Lift Chart		
Decision Trees	03	10
Decision Trees: Introduction		
Chi-Square Automatic Interaction Detection (CHAID)		
Classification and Regression Tree		
Cost-Based Splitting Criteria		
Ensemble Method	[
Random Forest		

Suggested Specification table with Marks (Theory): (For BE only)

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
10	40	20			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Course Outcomes: Students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Describe the various areas where data science is applied.	10
CO-2	Identify the data types, relation between data and visualization technique for data.	30
CO-3	Explain probability, distribution, sampling, Estimation	30
CO-4	Solve regression and classification problem.	30

Books

- 1) Dinesh Kumar, Business Analytics, Wiley India
 - 2) V.K. Jain, Data Science & Analytics, Khanna Book Publishing, New Delhi
- 3) Data Science For Dummies by Lillian Pierson , Jake Porway
 - 4) Doing Data Science

Bachelor of Engineering Subject Code: 3151608

by Rachel Schutt, Cathy O'Neil, O'Reilly publication

5) Data Science with Jupyter

Author: Prateek Gupta, BPB publication

List of Open Source Software/learning website:

- 1. www.analyticsvidhya.com/
- 2. www.kaggle.com/

List of Practical:

Consider dataset with student name, gender, Enrollmentno, 4 semester result with marks of each subject, his mobile number, city. Implement following in Python or R.

- 1. Perform descriptive analysis and identify the data type.
- 2. Implement a method to find out variation in data. For example the difference between highest and lowest marks in each subject semester wise.
- 3. Plot the graph showing result of student in each semester.
- 4. Plot the graph showing the geographical location of students.
- 5. Plot the graph showing number of male and female students.
- 6. Implement a method to treat missing value for gender and missing value for marks.
- 7. Implement linear regression to predict the 5th semester result of student.
- 8. Implement logistic regression and decision tree to classify the student as average or clever.