\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER-VI (NEW) EXAMINATION - WINTER 2020

Subject Code:2160704
Date:27/01/2021

Subject Name:Theory of Computation

Time:02:00 PM TO 04:00 PM
Total Marks: 56

Instructions:

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Discuss Recursive definition. Also define the language L defined by the following recursive definition over $\sum=\{\mathrm{a}, \mathrm{b}\}$:
$\wedge \in L ;$
For every $\mathrm{x} \in \mathrm{L}$, xa, bx, and abx are in L ;
Nothing else is in L.
(b) Let relation $R=\{(a, b): a+b=10$ and $a, b \in N\}$. Decide whether R is an equivalence relation or not. Justify your answer with proper reason.
(c) Using the principle of mathematical induction, for all $\mathrm{n}>0$, prove that,

$$
1 \times 2+3 \times 4+5 \times 6+\ldots .+(2 n-1) \times 2 n=\frac{n(n+1)(4 n-1)}{3}
$$

Q. 2 (a) Write regular expressions for the following languages defined over $\sum=\{0,1\}$:
(i) The language of all the strings that do not end with 01.
(ii) The language of all the strings containing even number of 0 's and even number of 1 's.
(b) Draw DFA for the following languages defined over $\sum=\{\mathrm{a}, \mathrm{b}\}$:
(i) The language of all the strings with next-to-last symbol is a.
(ii) The language of all the strings containing substring bba.
(c) Convert the following NFA into its equivalent DFA using the subset construction.

Q. 3 (a) Prove that the context-free languages are closed under union.
(b) For the following CFG, find out two left most derivations for the string "aaabb" and also draw the corresponding parse trees.
$S \rightarrow X Y$
$\mathrm{X} \rightarrow \mathrm{XX} \mid \mathrm{a}$
$\mathrm{Y} \rightarrow \mathrm{YY} \mid \mathrm{b}$
(c) Define CNF. Also convert the following CFG into its equivalent CNF.
$\mathrm{S} \rightarrow \mathrm{aX}|\mathrm{Y}| \mathrm{bab}$
$X \rightarrow{ }^{\wedge} \mid Y$
$\mathrm{Y} \rightarrow \mathrm{bb} \mid \mathrm{bXb}$
Q. 4 (a) What language over $\{\mathrm{a}, \mathrm{b}\}^{*}$ does the CFG with productions
$\mathrm{S} \rightarrow \mathrm{aT} \mid \mathrm{bT}$
$\mathrm{T} \rightarrow \mathrm{aS}|\mathrm{bS}|^{\wedge}$
generate? Prove your answer.
(b) Let M_{1} and M_{2} be the FAs pictured in Fig. (i) and Fig. (ii) accept the languages
L_{1} and L_{2}, respectively.

Fig. (i)

Fig. (ii)

Draw FAs accepting the following languages:
(i) $L_{1} \cup L_{2}$
(ii) L_{2}^{\prime}
(c) Find context-free grammar generating the languages below.
(i) $\left\{a^{i} b^{j} c^{k} \mid j=i\right.$ or $\left.j=k\right\}$
(ii) $\left\{\mathrm{a}^{\mathrm{a}} \mathrm{b}^{\mathrm{j}} \mathrm{c}^{\mathrm{k}} \mid \mathrm{j} \neq \mathrm{i}+\mathrm{k}\right\}$
Q. 5 (a) Define - A Pushdown Automaton and acceptance by a PDA. 03
(b) Convert the CFG with following productions into its equivalent PDA. $\mathbf{0 4}$
$\mathrm{S} \rightarrow[\mathrm{S}]|\mathrm{SS}|^{\wedge}$
(c) Design a PDA to accept $L=\left\{w_{c w^{R}} \mid w \in(a, b)^{*}\right\}$. 07
Q. 6 (a) Discuss pumping lemma for context free languages. 03
(b) Define bijection. Decide and justify whether the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\mathbf{0 4}$ $\mathrm{f}(\mathrm{n})=\mathrm{n}^{2}$ is bijection or not.
(c) Design a PDA to accept $\mathrm{L}=\left\{\mathrm{xcy} \mid \mathrm{x}, \mathrm{y} \in(\mathrm{a}, \mathrm{b})^{*}\right.$ and $\left.|\mathrm{x}|=|\mathrm{y}|\right\}$.
Q. 7 (a) Discuss - recursively enumerable languages. 03
(b) Discuss - universal Turing machine.

04
(c) Draw Turing machine for $\mathrm{L}=\left\{\mathrm{xx} \mid \mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$. Also trace out the same on $\mathbf{0 7}$ input string aba.
Q. 8 (a) Discuss chomsky hierarchy. 03
(b) Discuss primitive recursive function using proper example.
(c) Draw Turing machine to accept language $\mathrm{L}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{x}\right.$ ends with aba $\}$. 07 Also trace out the same on input string aba.

