\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2017Subject Code: 2160704Date: 03/05/2017
Subject Name: Theory of Computation
Time: 10:30 AM to 01:00 PM

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. In the questions the symbol Λ denotes the null string, i.e., the string of length zero.

MARKS

Q. 1 Answer the following questions:

1 Define onto and one-to-one functions. $\mathbf{0 2}$
2 Give recursive definition of a tree. 03
3 Define reflexivity, symmetry, and transitivity properties of relations. $\mathbf{0 3}$
4 Consider the relation $\mathrm{R}=\{(1,2),(1,1),(2,1),(2,2),(3,2),(3,3)\}$ defined $\mathbf{0 3}$ over $\{1,2,3\}$. Is it reflexive? Symmetric? Transitive? Justify each of your answers.
5 Draw truth table for following logic formula: $\mathrm{P} \rightarrow(\neg \mathrm{P} V \neg \mathrm{Q})$. Is it a $\mathbf{0 3}$ tautology? A contradiction? Or neither? Justify your answer.
Q. 2 (a) Define DFA and NFA and NFA- Λ 03
(b) Give recursive definitions of the extended transition functions, δ^{\wedge} (i.e., 04 for strings) for DFA and NFA.
(c) Minimize the DFA shown in Fig. 1.

OR

(c) Consider the NFA- Λ depicted in following table:

	Λ	a	b	c
$\rightarrow \mathrm{p}$	Φ	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	Φ
$* \mathrm{r}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	Φ	$\{\mathrm{p}\}$

(i) Compute the Λ-closure of each state.
(ii) Convert the NFA- Λ to a DFA.
Q. 3 (a) Explain 'finite state machines with outputs'. Discriminate between 03
Mealy and Moore machines.
(b) Convert the Moore machine shown in Fig. 2 into an equivalent Mealy 04 machine.
(c) Use Pumping Lemma to show that $\mathrm{L}=\left\{\mathrm{x} \in\{0,1\}^{*} \mid \mathrm{x}\right.$ is a palindrome $\}$
is not a regular language.
$\mathbf{0 7}$
$\mathbf{O R}$
Q. 3 (a) Give recursive definition of regular expressions. State the hierarchy of 03 the operators used in regular expressions.
(b) Using constructive approach determine NFA- Λ for the regular 04 expression $(0+1) * 1(0+1)$.
(c) Fig. 3 shows two DFAs M1 and M2, to accept languages L_{1} and L_{2}, $\quad \mathbf{0 7}$
respectively. Determine DFAs to recognize $L_{1} U L_{2}$.

Give formal definition of PDA. Give mathematical description of
Q. 4 (a) 'acceptance of a string by a PDA by empty stack'.
(b) Give the recursive definition of the iterated derivation (i.e., derivation in zero or more steps), denoted as $=>^{*}$. Give mathematical description of the language of a CFG.
(c) Consider following grammar:
$\mathrm{S} \rightarrow \mathrm{A} 1 \mathrm{~B}$
$\mathrm{A} \rightarrow 0 \mathrm{~A} \mid \Lambda$
$\mathrm{B} \rightarrow 0 \mathrm{~B}|1 \mathrm{~B}| \Lambda$
Give leftmost and rightmost derivations of the string 00101. Also draw the parse tree corresponding to this string.

OR

Q. 4 (a) Define CFG. When is a CFG called an 'ambiguous CFG'?
(b) Consider following grammar:
$\mathrm{S} \rightarrow \mathrm{ASB} \mid \Lambda$
$\mathrm{A} \rightarrow \mathrm{aAS} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{SbS}|\mathrm{A}| \mathrm{bb}$
i. Eliminate useless symbols, if any.
ii. Eliminate Λ productions.
(c) Convert the following grammar to a PDA:
$\mathrm{I} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{Ia}|\mathrm{Ib}| \mathrm{I} 0 \mid \mathrm{I} 1$
$\mathrm{E} \rightarrow \mathrm{I}|\mathrm{E} * \mathrm{E}| \mathrm{E}+\mathrm{E} \mid(\mathrm{E})$
Q. 5 (a) Give definition of Turing Machine. What do you mean by an instantaneous description of a Turing Machine?
(b) Describe recursive languages and recursively enumerable languages.04
(c) Design a Turing machine to accept the language $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$. $\mathbf{0 7}$

OR

Q. 5 (a) Briefly describe following terms: (1) halting problem (2) undecidable03 problem
(b) Using pumping lemma for CFL's, show that the language $L=\left\{a^{m} b^{m} c^{n} \mid \quad 04\right.$ $\mathrm{m} \leq \mathrm{n} \leq 2 \mathrm{~m}\}$ is not context free.
(c) Design a Turing machine for the language over $\{0,1\}$ containing strings with equal number of 0 's and 1 's.

Figures

Fig. 1 for Q 2 (c)

Fig. 2 for Q 3 (b)

Fig. 3 for Q 3 (c) (OR)

