Enrolment No.

Date: 03/05/2017

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2160704

Subject Name: Theory of Computation

Time: 10:30 AM to 01:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. In the questions the symbol Λ denotes the null string, i.e., the string of length zero.

		-	·				5 5	MARKS	
Q.1	Answer the following questions:1 Define onto and one-to-one functions.							02	
	 Give recursive definition of a tree. Define reflexivity, symmetry, and transitivity properties of relations. 								
	4 Consider the relation $R = \{(1,2), (1,1), (2,1), (2,2), (3,2), (3,3)\}$ defined over $\{1, 2, 3\}$. Is it reflexive? Symmetric? Transitive? Justify each of your answers.								
	 5 Draw truth table for following logic formula: P → (¬P V ¬Q). Is it a tautology? A contradiction? Or neither? Justify your answer. 								
Q.2	 (a) Define DFA and NFA and NFA- Λ (b) Give recursive definitions of the extended transition functions, δ (03 04	
	(c)	for strings) for DFA and NFA. Minimize the DFA shown in Fig. 1. OR							
	(c)	Consider the NFA-A depicted in following table:							
		$\rightarrow p$ q * r	$ \frac{\Lambda}{\Phi} \\ \{p\} \\ \{q\} $	a {p} {q} {r}	b {q} {r} Ф	с {r} Ф {p}			
		(i) Con	npute the Λ -	-closure of e	each state.				

- (ii) Convert the NFA- Λ to a DFA.
- (a) Explain 'finite state machines with outputs'. Discriminate between 03 0.3 Mealy and Moore machines.
 - (b) Convert the Moore machine shown in Fig. 2 into an equivalent Mealy 04 machine.
 - (c) Use Pumping Lemma to show that $L = \{x \in \{0,1\}^* \mid x \text{ is a palindrome}\}$ 07 is not a regular language.

OR

- (a) Give recursive definition of regular expressions. State the hierarchy of 03 **Q.3** the operators used in regular expressions.
 - (b) Using constructive approach determine NFA- Λ for the regular 04 expression $(0 + 1)^* 1(0 + 1)$.
 - (c) Fig. 3 shows two DFAs M1 and M2, to accept languages L_1 and L_2 , 07 respectively. Determine DFAs to recognize L₁ U L₂.

Q.4	(a) (b)	Give formal definition of PDA. Give mathematical description of 'acceptance of a string by a PDA by empty stack'. Give the recursive definition of the iterated derivation (i.e., derivation in zero or more steps), denoted as $=>^*$. Give mathematical description of the language of a CFG.	03 04
	(c)	Consider following grammar: $S \rightarrow A1B$ $A \rightarrow 0A \Lambda$ $B \rightarrow 0B 1B \Lambda$ Give leftmost and rightmost derivations of the string 00101. Also draw the parse tree corresponding to this string. OR	07
Q.4	(a) (b)	Define CFG. When is a CFG called an 'ambiguous CFG'? Consider following grammar: $S \rightarrow ASB \mid \Lambda$ $A \rightarrow aAS \mid a$ $B \rightarrow SbS \mid A \mid bb$	03 04
	(c)	$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$ $E \rightarrow I \mid E * E \mid E + E \mid (E)$	07
Q.5	(a)	Give definition of Turing Machine. What do you mean by an instantaneous description of a Turing Machine?	03
	(b) (c)	Describe recursive languages and recursively enumerable languages. Design a Turing machine to accept the language $\{0^n1^n \mid n \ge 1\}$. OR	04 07
Q.5	(a)	Briefly describe following terms: (1) halting problem (2) undecidable problem	03
	(b)	Using pumping lemma for CFL's, show that the language $L = \{a^m b^m c^n \mid m \le n \le 2m\}$ is not context free.	04
	(c)	$M \le n \le 2m$ is not context free. Design a Turing machine for the language over $\{0,1\}$ containing strings with equal number of 0's and 1's.	07

Fig. 1 for Q 2 (c)

Fig. 2 for Q 3 (b)

Fig. 3 for Q 3 (c) (OR)

Note: In Fig.3 for Q:3 (c) consider transition from A -> B having symbol 0.

3