GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – VI (NEW).EXAMINATION – WINTER 2016

Sub Sub	ject ject	t Code: 2160704 Days t Name: Theory of Computation	Date: 25/10/2016	
Tim	, ne: 10	10:30 AM to 01:00 PM To	tal Marks: 70	
Instr	uction	ons:		
	1.	. Attempt all questions.		
	2. Make suitable assumptions wherever necessary.			
	3.	. Figures to the right indicate full marks.		
Q.1 (a)		Use the principle of mathematical induction to prove that		07
	(b)	 1+3+5++r = n² for all n>0 where r is an odd integer & n is the number terms in the sum. (Note : r= 2n-1) (b) Convert the CFG, G ({S,A,B}, {a,b}, P, S) to CNF, where P is as follows 		07
		$S \dashrightarrow aAbB \qquad A \dashrightarrow Ab \mid b \qquad B \dashrightarrow Ba \mid a$		
Q.2	(a)	Draw a Turing Machine(TM) to accept Palindromes over	{a,b}. (Even as well as	07

Odd Palindromes)

(b) Convert the NFA given in Table below to its corresponding DFA and draw the DFA.

Current State	Input symbol		
Current State	0	1	
$\rightarrow Q_0$	Q_1	Q0, Q 2	
Q_1	Q2	\mathbf{Q}_0	
Q2*	Q0		

- OR
- (b) Prove that the following CFG is Ambiguous.

 $S \mathrel{\textbf{->}} S \mathrel{\textbf{+}} S \mid S \ {}^* S \mid a \mid b$

Write the unambiguous CFG based on precedence rules for the above grammar. Derive the parse tree for expression (a + a)*b from the unambiguous grammar.

- Q.3 (a) Let A = {1, 2, 3, 4, 5, 6} and R be a relation on A such that aRb iff a is a multiple of b. 07 Write R. Check if the relation is i) Reflexive ii) Symmetric iii) Asymmetric iv) Transitive
 - **(b)** There are 2 languages over $\sum = \{a, b\}$

L1 = all strings with a double "a"

L2 = all strings with an even number of "a"

Find a regular expression and an FA that define $L1\cap L2$

OR

- **Q.3** (a) If $L = \{ 0^i 1^i | i \ge 0 \}$ Prove that L is regular.
 - (b) Prove that if L1 and L2 are regular languages then L1∩ L2 is also a regular 07 language.

07

07

07

Q.4	(a)	Given a CFG, G =({S,A,B}, {0,1}, P,S) with P as follows S> 0B 1A A> 0S 1AA 0 B> 1S 0BB 1	07
		Design a PDA M corresponding to CFG, G. Show that the string 0001101110	
		belongs to CFL, L(G)	
	(b)	Design a PDA, M to accept L = { $a^n b^{2n} n \ge 1$ }	07
		OR	
Q.4	(a)	Design a FA for the regular expression $(0 + 1)(01)^*(011)^*$	07
-	(b)	Write a regular expression for language L over $\{0,1\}$ such that every string in L	07
		i) Begins with 00 and ends with 11.	
		ii) Contains alternate 0 and 1.	
Q.5	(a)	Draw a transition diagram for a Turing machine accepting the following	07
	()	language. { $a^n b^n c^n n \ge 0$ }	-
	(b)	Explain Universal Turing machine with the help of an example	07
		OR I I	
Q.5	(a)	Define functions by Primitive Recursion. Show that the function $f(x, y) = x + y$ is	07
		primitive recursive.	
	(h)	Prove Kleene's Theorem (Part I) [.] Any Regular Language can be accented by a	07

(b) Prove Kleene's Theorem (Part I): Any Regular Language can be accepted by a Finite Automaton (FA).
