Q.1

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI- EXAMINATION - SUMMER 2016 Subject Code:160704 Date:17/05/2016 **Subject Name: Theory Of Computation** Time: 10:30 AM to 01:00 PM **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. (a) Define relation. Define reflexive and transitive relation. A binary relation R on 07 NxN is defined as (a,b)R(c,d) if $a \le c$ or $b \le d$. Prove that R is reflexive but not transitive. 07 (b) Define language. Draw Deterministic Finite Automata for the following languages i) $L_1 = \{ x \in (0,1)^* | x \text{ contains } 110111 \}$

- ii) $L_2 = \{ x \in (0,1)^* | x \text{ contains odd number of zero and even number of } 1 \}$
- iii) $L_{3=}$ { $x \in (0,1)^*$ | x do not contains 110 }

Q.2 (a) Define mathematical induction. Prove that if 0 < a < 1 then $(1-a)^n > 1 - na$.

(b) Define NFA and NFA-Λ. Convert the following NFA to DFA 07

- (b) Using proof by contradiction, prove $\sqrt{3}$ is Not a rational number. 07
- Q.3 (a) Define Context Sensitive Grammar. Design a CSG for the following language 07 $L = \{a^n b^n c^n \mid n > 0\}.$
 - (b) Prove that the following language is ambiguous and convert into unambiguous 07 $S \rightarrow S + S \mid S * S \mid a$

OR

Q.3 (a) Minimize the following FSM

02

05

07

	(b)	Define Context Free Grammar. Design a CFG for the following language.	07
		$L = \{ x \in (0,1)^* n_0(x) = n_1(x) \}$	
Q.4	(a)	Define PDA. Draw a PDA for the complement of the following language $I = (ww^{R} + w + c(0, 1)^{*})$	07
	(b)	$L = \{ww \mid w \in (0,1)\}$ Write regular expression for the following languages	07
		i) $L_1 = \{x \in (0,1) \mid x \text{ do not ends with } 11\}$ ii) $L_2 = \{x \in (0,1)^* \mid x \text{ contains both } 101 \text{ and } 110\}$	
		OR	
Q.4	(a)	Prove that any Regular Language can be accepted by FA.	07
	(b)	Draw the PDA for the following language $L = \{a^i b^j c^k \mid i = j+k\}$	07
Q.5	(a)	Define pumping lemma for regular language. Prove that the language $L = \{a^i \mid i \text{ is NOT prime}\}$ is irregular.	07
	(b)	Write Short note on Universal Turing Machine.	07
	(~)	OR	0.
Q.5	(a)	Define a Turing Machine. Design a Turing machine for deleting nth symbol from a string w from the alphabet $\Sigma = \{0,1\}$.	07
	(b)	Prove that following $add(x,y) = x+y$ is primitive recursive function.	07
