\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-VI- EXAMINATION - SUMMER 2016

Subject Code:160704
Date:17/05/2016
Subject Name:Theory Of Computation
Time: 10:30 AM to 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define relation. Define reflexive and transitive relation. A binary relation R on
$N_{x N}$ is defined as $(a, b) R(c, d)$ if $a \leq c$ or $b \leq d$. Prove that R is reflexive but not transitive.
(b) Define language.

Draw Deterministic Finite Automata for the following languages
i) $L_{1}=\left\{\mathrm{x} \varepsilon(0,1)^{*} \mid \mathrm{x}\right.$ contains 110111$\}$
ii) $L_{2}=\left\{x \in(0,1)^{*} \mid x\right.$ contains odd number of zero and even number of 1$\}$
iii) $L_{3}=\left\{x \in(0,1)^{*} \mid x\right.$ do not contains 110$\}$
Q. 2 (a) Define mathematical induction.

Prove that if $0<a<1$ then $(1-a)^{n} \geq 1-$ na.
05
(b) Define NFA and NFA- Λ. Convert the following NFA to DFA

(b) Using proof by contradiction, prove $\sqrt{ } \mathbf{3}$ is Not a rational number.
Q. 3 (a) Define Context Sensitive Grammar. Design a CSG for the following language
$L=\left\{a^{n} b^{n} c^{n} \mid n>0\right\}$.
(b) Prove that the following language is ambiguous and convert into unambiguous
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{S}|\mathrm{S} * \mathrm{~S}| \mathrm{a}$

OR

Q. 3 (a) Minimize the following FSM

(b) Define Context Free Grammar. Design a CFG for the following language.
$\mathrm{L}=\left\{\mathrm{x} \varepsilon(0,1)^{*} \mid \mathrm{n}_{0}(\mathrm{x})=\mathrm{n}_{1}(\mathrm{x})\right\}$
Q. 4 (a) Define PDA. Draw a PDA for the complement of the following language 07
$L=\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w} \varepsilon(0,1)^{*}\right\}$
(b) Write regular expression for the following languages
i) $\mathrm{L}_{1}=\left\{\mathrm{x} \in(0,1)^{*} \mid \mathrm{x}\right.$ do not ends with 11$\}$
ii) $L_{2}=\left\{\mathrm{x} \varepsilon(0,1)^{*} \mid \mathrm{x}\right.$ contains both 101 and 110$\}$

OR

Q. 4 (a) Prove that any Regular Language can be accepted by FA.
$\begin{array}{ll}\text { (b) Draw the PDA for the following language } & \mathbf{0 7} \\ L=\left\{a^{i} b^{j} c^{k} \mid i=j+k\right\}\end{array}$
Q. 5 (a) Define pumping lemma for regular language. Prove that the language 07 $L=\left\{a^{i} \mid i\right.$ is NOT prime $\}$ is irregular.
(b) Write Short note on Universal Turing Machine. 07

OR

Q. 5 (a) Define a Turing Machine. Design a Turing machine for deleting nth symbol from a string w from the alphabet $\sum=\{0,1\}$.
(b) Prove that following $\operatorname{add}(x, y)=x+y$ is primitive recursive function.

