\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2016
 Date:11/05/2016

Subject Code:2160704
Subject Name: Theory of Computation
Time: 10:30 AM to 01:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define One-to-one and Onto Functions. Also explain Compositions and Inverse of functions.
(b) Define NFA $-\Lambda$. Explain how to convert NFA $-\Lambda$ into NFA and FA with suitable example.
Q. 2 (a) Define Mathematical Induction Principle and Prove that for every $\mathrm{n} \geq 1$,
n
$\Sigma \mathrm{i}^{2}=\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1) / 6$
$\mathrm{i}=1$
(b) Write Regular Expressions corresponding to each of the following subsets of $\{0,1\}^{*}$
(i) The language of all strings in $\{0,1\}^{*}$ that containing at least two 0 's.
(ii) The language of all strings containing both 101 and 010 as substrings.
(iii) The language of all strings that do not end with 01.

OR

(b) Prove the formula $(00 * 1) * 1=1+0(0+10) * 11$
Q. 3 (a) Convert the Mealy machine shown in given figure into Moore machine.

(b) Check whether the given grammar is in CNF

S-> bA|aB
A-> bAA $|a S| a$
B-> aBB|bS|b
If it is not in CNF, Find the equivalent CNF.

OR

Q. 3 (a) Draw FA for accepting:
(i)The string in $\{0,1\}^{*}$ ending in 1 and not containing substring 00.
(ii)The strings with odd no of 1's and odd no of 0's.
(b) Give the context free grammar for the following languages.
$(011+1)^{*}(01)^{*}$
Q. 4 (a) Explain Pumping Lemma and its applications. 07
(b) Define Push Down Automata (PDA). Design and draw a deterministic PDA 07 accepting strings with more a's than b's. Trace it for the string "abbabaa".

OR

Q. 4 (a) Prove Kleene's Theorem Part 1 with illustration. 07
(b) Write PDA for following languages: 07
$\left\{a^{i} b^{j} c^{k} \mid i, j, k>=0\right.$ and $j=i$ or $\left.j=k\right\}$.
Q. 5 (a) Draw the $T M$ which recognize words of the form $\left\{a^{n} b^{n} c^{n} \mid n>=1\right\}$.
(b) Explain Universal Turing Machine and Church Turing Hypothesis.

OR
Q. 5 (a) Design Turing Machine(TM) to accept Palindrome over $\{a, b\}$, even as well as odd. 07
(b) Write Short note on Following:
(i) Halting Problem
(ii) Primitive Recursive Function.

