\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER - VI EXAMINATION - WINTER 2015

Subject Code:160704

Date:14/12/ 2015
Subject Name: Theory of Computation
Time:2:30pm to 5:00pm
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Answer the following.
(i) What is meant by "one to one" and "onto" function? Check whether function $\mathrm{f}: \mathrm{R}--->\mathrm{R}+, \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ is one to one and onto.
(ii) What do you mean be recursive definition? Give the recursive definition of Palindrome.
(b) Define NFA $-\Lambda$. Explain how to convert NFA $-\Lambda$ into NFA and FA with suitable example.
Q. 2 (a) Write Regular Expressions for following
(i) The language of all strings in $\{0,1\}^{*}$ that do not end with 11 .
(ii) The language of all strings containing both 101 and 010 as substrings.
(iii) Strings with length 6 or less in $\{\mathrm{a}, \mathrm{b}\}$.
(b) Using Principle of Mathematical Induction, prove that for every $\mathrm{n}>=1$,

OR

(b) Prove that $\sqrt{ } 2$ is Irrational by method of Contradiction.
Q. 3 (a) Draw Finite Automata to accept following.
(i) Strings that ends in 11 or 10 .
(ii) Strings of the language in $\{0,1\}^{*}$ with odd no. of zeroes and odd no. of ones.
(b) Prove Kleene's Theorem Part 1 with illustration. 07

OR
$\begin{array}{lll}\text { Q. } 3 \text { (a) Draw Finite Automata (FA) for following languages: } \\ \mathrm{L}_{1} & =\{\mathrm{x} / 00 \text { is not a substring of } \mathrm{x}\} \\ \mathrm{L}_{2} & =\{\mathrm{x} / \mathrm{x} \text { ends with } 01\}\end{array}$
Find FA accepting the language (i) $\mathrm{L}_{1}-\mathrm{L}_{2}$ and (ii) $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$
(b) What is Pumping Lemma and Equivalence Relation? Explain. 06
Q. 4 (a) Define Push Down Automata (PDA). Design and draw a deterministic PDA 07 accepting strings with more a's than b’s. Trace it for the string "abbabaa".
(b) Define Context Free Grammar(CFG).

Find CFG for following language:
$\mathrm{L}=\left\{\mathbf{0}^{\mathbf{i}} \mathbf{1}^{\mathbf{j}} \mathbf{0}^{\mathbf{k}} / \mathrm{j}>\mathrm{i}+\mathrm{k}\right\}$

OR

Q. 4 (a) Define Push Down Automata (PDA). Draw PDA accepting strings of Brackets 07 like following.
$\mathrm{S} \rightarrow \mathrm{SS}|\{\mathrm{S}\}|[\mathrm{S}] \mid \Lambda$
(b) Prove that following CFG is Ambiguous and convert it into unambiguous.
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{S}|\mathrm{S} * \mathrm{~S}| \mathrm{S}) \mid \mathrm{a}$
Q. 5 (a) Define Turing Machine. Draw TM for accepting Palindrome Strings in $\{\mathrm{a}, \mathrm{b}\}^{*}$. 07
(b) Answer the following 07
(i) Explain time and space complexity
(ii) Explain P and NP completeness

OR

Q. 5 (a) Explain Universal Turing Machine and Halting Problem. 07
(b) Design a Turing Machine to copy strings.07

