GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEMESTER – VI • EXAMINATION –Summer-2015						
Subject Code: 160704 Date:14/05/						
Subject Name: Theory of Computation Time: 10.30AM-01.00PM Total Mar						
1115	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.				
Q.1	(a)	Define Mathematical Induction Principle and Prove that for every $n \ge 0$, $\sum_{i=0}^{N} i = n (n+1) / 2$	07			
	(b)	(i) Suppose that Languages L1 and L2 are the subsets given below. Where $\Sigma = \{0, 1\}$ L1 = $\{x \mid 00 \text{ is not a substring of } x \}$ L2 = $\{x \mid x \text{ ends with } 01\}$ Draw FAs recognizing the following languages (1) L1 - L2 (2) L1 \cap L2	05			
		(ii) Show that the function $f_1(x,y) = x + y$ is primitive recursive.	02			
Q.2	(a)	 Write definition of finite automata and draw FA for the strings: (i) The string in {0,1}* ending in 10 or 11 (ii) The string corresponding to Regular expression {11}*{00}* 	07			
	(b)	 (a) The string corresponding to Regular expression (TT) (cor) Define Context Free Grammar(CFG). Design CFG for Generating Following Language: (1) For Balanced Parenthesis (2) Set of even length strings in {a, b, c, d}* with two middle symbol equal. 	07			
	(b)	Design an ambiguous grammar for if-then-else statement that also generates if-then statement. Re-write an equivalent unambiguous grammar. Prove that Grammar is Unambiguous by tracing "ic ₁ tic ₂ taea".	07			
Q.3	(a)	Convert NFA-^ to NFA and DFA. Initial State: A , Final State: DQ $\delta(q, ^)$ $\delta(q, 0)$ $\delta(q, 1)$ A{B}{A}ØB{D}{C}ØCØ{B}DØ{D}	07			

(b) Define Pumping Lemma for Regular Languages. Use Pumping Lemma to show 07 that following languages are not regular.

L = {
$$0^n 1^{2n} / n > 0$$
 }
L = { $ww^R / w \in \{0,1\}^*$ }

Q.3 (a) Convert NFA-[^] to NFA and FA. Initial State: A , Final State: E

Q	δ(q, ^)	δ(q, 0)	δ(q, 1)
Α	{B,D}	{A}	Ø
В	Ø	{C}	{E}
С	Ø	Ø	{B}
D	Ø	{E}	{D}
Е	Ø	Ø	Ø

06

02

(b) Find CFG from given PDA that accepts the language $\{0^n1^n\}$. PDA is

<u>(</u> Q , Σ, Γ, δ,	(q, Z, F) where	, $\Gamma = \{Z, X\}$, δ is defined by:		
State	Input	Stack	New State	Stack
q	0	Ζ	q	XZ
q	0	Х	q	XX
q	1	Х	r	۸
r	1	Х	r	۸
r	^	Ζ	r	^

Q.4 (a) (1) Given the Context Free Grammar G, find a CFG G' in Chomsky Normal 05 Form generating $L(G) - \{ \}$

 $S \rightarrow SS \mid A \mid B$ $A \rightarrow SS \mid AS \mid a$

$$\mathbf{R} \rightarrow \boldsymbol{\Lambda}$$

- (2) Convert following CFG to PDA S \rightarrow 0S1 | 00 | 11
- (b) For the language L={set of strings over alphabet {a, b} with exactly twice as many a's as b's} design a PDA (Push Down Automata) and trace it for the sring "abaabbaaaaabaab"

OR

- Q.4 (a) Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form 07 generating $L(G) \{ \}$
 - 1) $S \rightarrow aY \mid Ybb \mid Y$ $X \rightarrow \land \mid a$ $Y \rightarrow aXY \mid bb \mid XXa$
 - 2) $S \rightarrow AA$ $A \rightarrow B \mid BB$ $B \rightarrow abB \mid b \mid bb$
 - (b) For the language L={ $a^i b^j c^k | i, j, k \ge 0$ and i + j = k } design a PDA (Push Down 07 Automata) and trace it for String "bbbbbccccc"
- Q.5 (a) Design Turing Machine(TM) to accept Palindrome over {a,b}, even as well as odd.
 (b) Write Short Note on Following: 06
 (i) Universal TM
 - (ii) NP-Hard and NP-Complete Language

OR

Q.5	(a)	Draw Turing Machine(TM) which recognizes words of the form	08
		$\{ a^{n}b^{n}c^{n} \mid n \geq 1 \}$	
	(b)	Write Short note on Following:	06
		(i) Halting Problem	
		(ii) Church Turing Thesis	

08