\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEMESTER - VI • EXAMINATION -Summer-2015

Subject Code: 160704

Date:14/05/2015

Subject Name: Theory of Computation

Time:10.30AM-01.00PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define Mathematical Induction Principle and Prove that for every $\mathrm{n} \geq 0$,

$$
\sum_{\mathrm{i}=0}^{\mathrm{N}} \mathrm{i}=\mathrm{n}(\mathrm{n}+1) / 2
$$

(b) (i) Suppose that Languages L1 and L2 are the subsets given below.

Where $\Sigma=\{0,1\}$
$\mathrm{L} 1=\{\mathrm{x} \mid 00$ is not a substring of x$\}$
$\mathrm{L} 2=\{\mathrm{x} \mid \mathrm{x}$ ends with 01$\}$
Draw FAs recognizing the following languages
(1) L1 - L2
(2) $\mathrm{L} 1 \cap \mathrm{~L} 2$
(ii) Show that the function $\mathrm{f}_{1}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y}$ is primitive recursive.
Q. 2 (a) Write definition of finite automata and draw FA for the strings:
(i) The string in $\{0,1\}^{*}$ ending in 10 or 11
(ii) The string corresponding to Regular expression $\{11\}^{*}\{00\}^{*}$
(b) Define Context Free Grammar(CFG). Design CFG for Generating Following Language:
(1) For Balanced Parenthesis
(2) Set of even length strings in $\{a, b, c, d\}^{*}$ with two middle symbol equal.

OR

(b) Design an ambiguous grammar for if-then-else statement that also generates
if-then statement. Re-write an equivalent unambiguous grammar. Prove that Grammar is Unambiguous by tracing "ic 1_{1} tic $_{2}$ taea".
Q. 3 (a) Convert NFA-^ to NFA and DFA. Initial State: A, Final State: D

\mathbf{Q}	$\boldsymbol{\delta}(\mathbf{q}, \boldsymbol{\wedge})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{0})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{1})$
A	$\{\mathrm{B}\}$	$\{\mathrm{A}\}$	\emptyset
B	$\{\mathrm{D}\}$	$\{\mathrm{C}\}$	\emptyset
C	\emptyset	\emptyset	$\{\mathrm{B}\}$
D	\varnothing	$\{\mathrm{D}\}$	\emptyset

(b) Define Pumping Lemma for Regular Languages. Use Pumping Lemma to show that following languages are not regular.

$$
\begin{aligned}
& \mathrm{L}=\left\{0^{\mathrm{n}} 1^{2 \mathrm{n}} / n>0\right\} \\
& \mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} / \mathrm{w} \varepsilon\{0,1\}^{*}\right\}
\end{aligned}
$$

Q. 3 (a) Convert NFA- \wedge to NFA and FA. Initial State: A , Final State: E

\mathbf{Q}	$\boldsymbol{\delta}(\mathbf{q}, \boldsymbol{\wedge})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{0})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{1})$
A	$\{\mathrm{B}, \mathrm{D}\}$	$\{\mathrm{A}\}$	\emptyset
B	\emptyset	$\{\mathrm{C}\}$	$\{\mathrm{E}\}$
C	\varnothing	\emptyset	$\{\mathrm{B}\}$
D	\varnothing	$\{\mathrm{E}\}$	$\{\mathrm{D}\}$
E	\emptyset	\emptyset	\emptyset

(b) Find CFG from given PDA that accepts the language $\left\{0^{n} 1^{n}\right\}$. PDA is (Q, $\Sigma, \Gamma, \delta, \mathrm{q}, \mathrm{Z}, \mathrm{F})$ where $\mathrm{Q}=\{\mathrm{q}, \mathrm{r}\}, \Sigma=\{0,1\}, \Gamma=\{Z, \mathrm{X}\}, \delta$ is defined by:

State	Input	Stack	New State	Stack
q	0	Z	q	XZ
q	0	X	q	XX
q	1	X	r	\wedge
r	1	X	r	\wedge
r	\wedge	Z	r	\wedge

Q. 4 (a) (1) Given the Context Free Grammar G, find a CFG G' in Chomsky Normal

Form generating $L(G)-\{ \}$

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{SS}|\mathrm{~A}| \mathrm{B} \\
& \mathrm{~A} \rightarrow \mathrm{SS}|\mathrm{AS}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \Lambda
\end{aligned}
$$

(2) Convert following CFG to PDA

$$
\mathrm{S} \rightarrow 0 \mathrm{~S} 1|00| 11
$$

(b) For the language $\mathrm{L}=\{$ set of strings over alphabet $\{\mathrm{a}, \mathrm{b}\}$ with exactly twice as many a's as b's\} design a PDA (Push Down Automata) and trace it for the sring "abaabbaaaaabaab"

OR

Q. 4 (a) Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form
generating $\mathrm{L}(\mathrm{G})-\{$ \}

1) $S \rightarrow a Y|Y b b| Y$

$$
\mathrm{X} \rightarrow \wedge \mid \mathrm{a}
$$

$$
\mathrm{Y} \rightarrow \mathrm{aXY}|\mathrm{bb}| \mathrm{XXa}
$$

2) $\mathrm{S} \rightarrow \mathrm{AA}$
$\mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{BB}$
$\mathrm{B} \rightarrow \mathrm{abB}|\mathrm{b}| \mathrm{bb}$
(b) For the language $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and $\left.i+j=k\right\}$ design a PDA (Push Down

Automata) and trace it for String "bbbbbccccc"
$\begin{array}{lll}\text { Q. } 5 \text { (a) Design Turing Machine(TM) to accept Palindrome over }\{\mathrm{a}, \mathrm{b}\} \text {, even as well as } & \mathbf{0 8} \\ \text { odd. }\end{array}$
(b) Write Short Note on Following:
(i) Universal TM
(ii) NP-Hard and NP-Complete Language

OR

Q. 5 (a) Draw Turing Machine(TM) which recognizes words of the form
$\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$
(b) Write Short note on Following:
(i) Halting Problem
(ii) Church Turing Thesis

