\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION - WINTER • 2014

Subject Code: 160704

Date: 05-12-2014

Subject Name: Theory of Computation
 Time: 02:30 pm - 05:00 pm

Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Answer the following:
(i) Given the relation R in A as $\mathrm{R}=\{(1,1),(2,2),(2,3),(3,2),(4,2),(4,4)\}$ is R (a) reflexive (b) symmetric (c) transitive? (d) antisymmetric?
(ii) Show that $2^{\mathrm{n}}>\mathrm{n}^{3}$ for $\mathrm{n}>10$ by Mathematical Induction.
(b) Answer the following:
(i) Give recursive definition of each of the following sets.
a. The set T of positive integer divisible by 2 or 7 .
b. The set U of all string in $\{0,1\}^{*}$ containing the substring 00 .
(ii) Prove that for any every $\mathrm{n}>=0, \mathrm{n}\left(\mathrm{n}^{2}+5\right)$ is divisible by 6 .
Q. 2 (a) Find a regular expression corresponding to each of the following subsets of
$\{0,1\}^{*}$.
i. The language of all strings that do not contain the substring 110 .
ii. The language of all strings containing both 101 and 010 as substrings.
iii. The language of all strings in which both the number of 0 's and the number of l's are odd.
(b) For each of the following regular expressions, draw an FA recognizing the
corresponding language.
i. $1(01+10)^{*}+0(11+10)^{*}$
ii. $(010+00)^{*}(10)^{*}$

OR

(b) Let $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3} be the FAs pictured in Figure below, recognizing languages
$\mathrm{L}_{1}, \mathrm{~L}_{2}$, and L_{3} respectively.

(a)

(b)

Draw FAs recognizing the following languages.
i. $\mathrm{L}_{1} \mathrm{U} \mathrm{L}_{2}$
ii. $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$
iii. $L_{1}-L_{2}$
iv. $\mathrm{L}_{1} \cap \mathrm{~L}_{3}$
v. $\mathrm{L}_{3}-\mathrm{L}_{2}$
Q. 3 (a) Explain Pumping Lemma and its applications. 07
(b) Generate the Context-Free Grammars that give the following languages. 07
(i) $\{w \mid w$ contains at least three 1 s$\}$(ii) $\{w \mid w$ starts and ends with the same symbol $\}$
OR
Q. 3 (a) Write kleene's theorem part -1. 07
(b) For given CFG G, find Chomsky normal form: 07
G has productions: S -> AaA|CA|BaB A-> aaBa|CDA|aa|DC
B->bB $|\mathrm{bAB}| \mathrm{bb}|\mathrm{aS} \quad \mathrm{C}->\mathrm{Ca}| \mathrm{bC}|\mathrm{D} \quad \mathrm{D}->\mathrm{bD}| \Lambda$
Q. 4 (a) Write a Turing Machine to copy strings. 07
(b) Write PDA for following languages: 07
$\left\{a^{i} b^{j} c^{k} \mid i, j, k>=0\right.$ and $j=i$ or $\left.j=k\right\}$.
OR
Q. 4 (a) Write a Turing Machine to delete a symbol. 07
(b) Write PDA for following languages: 07
$\left\{x \in\{a, b, c\}^{*} \mid n_{a}(x)<n_{b}(x)\right.$ or $\left.n_{a}(x)<n_{c}(x)\right\}$.
Q. 5 (a) Explain Universal Turing Machine and Halting Problem. 07
(b) Answer the following 07
(i) Explain time and space complexity(ii) Explain P and NP completeness
OR
Q. 5 (a) Explain unbounded minimization and μ recursive functions. 07
(b) Top down and bottom up parsing. 07

