GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – SUMMER • 2014

Subject Code: 160704 Subject Name: Theory of Computation Time: 10:30 am - 01:00 pm Instructions: Date: 28-05-2014

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define One-to-one and Onto Functions. Also explain Compositions and Inverse of 07 functions.
 - (b) Convert the following NFA- Λ into FA.

Q.2 (a) Let M_1 and M_2 be the FAs pictured below, recognizing languages L_1 and L_2 07 respectively.

Draw the FAs recognizing the following languages.

- $L_1 \cap L_2$
- $L_2 L_1$
- (b) Define the Strong Principle of Mathematical Induction. Prove the following using 07 mathematical Induction.

$$7+13+19+\ldots+(6n+1)=n$$
 (3n+4)

(b) Prove : The language accepted by any finite automaton is regular.

07

07

(b) Let L be the language corresponding to the regular expression (011+1)* (01)*. Find 07 the CFG generating L.

		OR	
Q.3	(a)	Given the CFG G, find a CFG G' in Chomsky Normal form generating $L(G) - \{\Lambda\}$	07
		$S \longrightarrow A \mid B \mid C$	
		$A \longrightarrow aAa \mid B$	
		$B \longrightarrow bB/bb$	
		$C \longrightarrow aCaa / D$	
		$D \longrightarrow baD / abD / aa$	
	(b)	Prove: The language $pal = \{ x \in \{a, b\}^* x = x^r \}$ cannot be accepted by any	07
		deterministic pushdown automaton.	
Q.4	(a)	What is Pumping Lemma and Equivalence Relation ?	07
	(b)	Design and draw a deterministic PDA accepting strings with more a's than b's. Trace it for	07
		the string "abbabaa".	
		OR	~ -
Q.4	(a)	Define CFG and Design a CFG for the following language.	07
		$L = \{ x \in \{0,1\}^* \mid n_0(x) \neq n_1(x) \}$	
Q.4	(b)	Attempt the following :	07
		• Draw FA for $(a + b)^*$ baaa.	
		• Write a Regular Expression for the String of 0's and 1's in which number of	
		0's and 1's are even.	
Q.5	(a)	Draw the TM to copy string and delete a symbol.	07
	(b)	Differentiate Regular Grammars and Context Sensitive Grammars.	07
		OR	
Q.5	(a)	Define:	07
		[1] Basic complexity Classes	
		[2] Primitive Recursive Functions	
		[3] The Time and Space Complexity of a Turing Machine	
	(b)	Explain Polynomial Time Reductions and NP- Completeness.	07
