GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – SUMMER 2013

Subj	ect	Code: 160704 Date: 03-06-2013	
Subject Name: Theory of ComputationTime: 10.30 am - 01.00 pmTotal Marks: 7Instructions:			D
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Answer the following 1. In the given relation determine the properties(reflexivity, symmetry, transitivity), which ones the relation has: $R = \{(1,1),(2,2),(3,3),(1,2)\}$ and $R = \emptyset$	07
		2. Show that for any language L, $L^* = (L^*)^* = (L^*)^* = (L^*)^+$	
		3. Give the definition of õTransitive Closure of a Relationö using induction.	
	(b)	Answer the following 1. Define regular language and regular expressions.	07
		2. Find regular expression for the following: Language of all string that do not end with 01.	
		3. Describe the language corresponding to following: $(1+01)*(0+01)*$	
Q.2	(a)	Answer the following 1.Draw FA for regular expression: (111+100)*0 2. Let M1 and M2 be the FA in fig below for the language L1 and L2, find L1 U L2 and L1 L2.	07

(b) Answer the following
 1.Write theorem: For any NFA M =(Q, ,q₀,A,) accepting a language L, there is an FA M1 =(Q, ,q₁,A₁, 1) that also accepts L.

OR

(b) Write Kleeneøs Theorem part-I, Any regular language can be accepted by a 07 finite automation.

07

Q.3 (a) Answer the following

(a) Answer the following

0.3

1. For following NFA find minimum FA accepting same language 5

2. Use the pumping lemma to show that following language is not regular: $L = \{ww|w \in \{0,1\}^*\}$ 2

(b) Write theorem: If L1 and L2 are context free languages, then the language L1 07 U L2, L1L2 and L1* are also CFLs.
OR

1. For following NFA find minimum FA accepting same language 5 a 2. Use the pumping lemma to show that following language is not regular: L = $\{xy|x,y \in \{0,1\}^* \text{ and } y \text{ is either } x \text{ or } x^r\}$ 2 (b) Answer the following 07 1. Find context free grammar generating following language $\{a^i b^j c^k \mid i = j \text{ or } i = k\}$ 2. Show that CFG S \rightarrow a|Sa|bSS|SSb|SbS is ambiguous. 3. find an equivalent unambiguous grammar for following: $S \rightarrow A|B \quad A \rightarrow aAb|ab \quad B \rightarrow abB|$ **Q.4** 07 (a) Explain bottom up parsing with example. (b) Write TM accepting Palindrome. 07 OR 07 0.4 Write transition table for PDA recognizing following language: **(a)** $\{a^{i}b^{j}c^{k} | j = i \text{ or } j = k \}.$ (b) Write TM accepting $\{ss \mid s \in \{a,b\}^*\}$ **Q.4** 07 07 Q.5 (a) Explain the following 1. Basic Complexity Classes. 2. P and NP Completeness. (b) Explain the following 07 1. Primitive Recursive Operation & Function. 2. Recursive Functions. OR

07

- Q.5 (a) Explain the following
 - 1. Time and space complexity.
 - 2. NP complete problem.
 - (b) Write theorem: Let f: $*_1 \rightarrow *_2$. Then f is computable if and only if f is 07 recursive.
