\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-VI • EXAMINATION - SUMMER 2013

Subject Code: 160704

Date: 03-06-2013
Subject Name: Theory of Computation
Time: $10.30 \mathbf{a m} \mathbf{- 0 1 . 0 0} \mathbf{~ p m}$
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Answer the following
4. In the given relation determine the properties(reflexivity, symmetry, transitivity), which ones the relation has: $\mathrm{R}=\{(1,1),(2,2),(3,3),(1,2)\}$ and R = Ø
5. Show that for any language $\mathrm{L}, \mathrm{L}^{*}=\left(\mathrm{L}^{*}\right)^{*}=\left(\mathrm{L}^{+}\right)^{*}=\left(\mathrm{L}^{*}\right)^{+}$
6. Give the definition of ñTransitive Closure of a Relationò using induction.
(b) Answer the following
7. Define regular language and regular expressions.
8. Find regular expression for the following:

Language of all string that do not end with 01.
3. Describe the language corresponding to following: $(1+01) *(0+01) *$
Q. 2 (a) Answer the following
1.Draw FA for regular expression: $(111+100) * 0$
2. Let M1 and M2 be the FA in fig below for the language L1 and L2, find L1 U L2 and L1 ž L2.

(a)

(b)
(b) Answer the following

1. Write theorem: For any NFA $\mathrm{M}=\left(\mathrm{Q}, \mathbb{Z}, \mathrm{q}_{0}, \mathrm{~A}, \breve{\mathrm{u}}\right)$ accepting a language L , there is an FA M1 $=\left(\mathrm{Q}, \mathbb{Z}, \mathrm{q}_{1}, \mathrm{~A}_{1}, \breve{\mathrm{u}}_{1}\right)$ that also accepts L .

OR
(b) Write Kleene \hat{O} Theorem part-I, Any regular language can be accepted by a finite automation.
Q. 3 (a) Answer the following

1. For following NFA find minimum FA accepting same language 5

2. Use the pumping lemma to show that following language is not regular: $\mathrm{L}=$ \{ww|wi $\left.\{0,1\}^{*}\right\}$

2
(b) Write theorem: If L1 and L2 are context free languages, then the language L1 U L2, L1L2 and L1* are also CFLs.

OR

Q. 3 (a) Answer the following

1. For following NFA find minimum FA accepting same language 5

2. Use the pumping lemma to show that following language is not regular: $\mathrm{L}=$ $\left\{\mathrm{xy} \mid \mathrm{x}, \mathrm{y}\right.$ i $\{0,1\}^{*}$ and y is either x or $\left.\mathrm{x}^{\mathrm{r}}\right\}$
(b) Answer the following
1.Find context free grammar generating following language
$\left\{a^{\mathrm{i}} \mathrm{b}^{\mathrm{j}} \mathrm{c}^{\mathrm{k}} \mid \mathrm{i}=\mathrm{j}\right.$ or $\left.\mathrm{i}=\mathrm{k}\right\}$
3. Show that CFG S $\rightarrow \mathrm{a}|\mathrm{Sa}| \mathrm{bSS}|\mathrm{SSb}| \mathrm{SbS}$ is ambiguous.
4. find an equivalent unambiguous grammar for following:
$S \rightarrow A|B \quad A \rightarrow a A b| a b \quad B \rightarrow a b B \mid \emptyset$
Q. 4 (a) Explain bottom up parsing with example.

07
(b) Write TM accepting Palindrome.

OR

Q. 4 (a) Write transition table for PDA recognizing following language:
$\left\{a^{i} b^{j} c^{k} \mid j=i\right.$ or $\left.j=k\right\}$.
Q. 4 (b) Write TM accepting $\left\{\mathrm{ss} \mid\right.$ si $\left.\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
Q. 5 (a) Explain the following

1. Basic Complexity Classes.
2. P and NP Completeness.
(b) Explain the following
3. Primitive Recursive Operation \& Function.
4. ε Recursive Functions.
Q. 5 (a) Explain the following
5. Time and space complexity.
6. NP complete problem.
(b) Write theorem: Let $\mathrm{f}: \mathbb{E}^{*}{ }_{1} \rightarrow \mathbb{E}^{*}$. Then f is computable if and only if f is $\varepsilon \mathbf{0 7}$ recursive.
$* * * * * * * * * * * * *$
