GUJARAT TECHNOLOGICAL UNIVERSITY B. E. - SEMESTER – VI • EXAMINATION – WINTER 2012

Subj	Date: 05/01/2013			
Subj Time	ect 1 e: 02	Name: Theory Of Computation 2.30 pm - 05.00 pm	Total Marks: 70	
Instr	ruct 1. 2. 3.	ions: Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	 Answer the following. Write Regular Expressions for the following language strings in {0,1}* (i) Strings that contains odd number of 0's (zeroe (ii) Strings that begin or end with 00 or 11. 	14 es of all s).	
	(b)) Prove that $\sqrt{2}$ (square root of 2) is Irrational by method of Contradiction		
	(c)	 Define Context Free Grammar (CFG). Describe the la accepted by following CFG: S → aSa bSb a b A 	nguage	
	(d)	Define one-to-one, onto and bijection function. Check whether the function f: $\mathbf{R} \rightarrow \mathbf{R}$ +, $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2$ is " or "onto".	one to one"	
Q.2	(a)	Write definition of finite automata and draw FA for th (i)The string in {0,1}* ending in 10 or 11.	the strings: 07	
	(b)	Using Principle of Mathematical Induction, Prove that For every $n \ge 1$,		
		$\sum_{i=1}^{n} i^2 = n (n+1)(2n+1)/6$		
	(b)	OR Prove that the following CFG is Ambiguous. $S \rightarrow S + S S * S (S) a$ Write the unambiguous CFG for the above grammar. Draw Parse tree for the string $a + a * a$.		
Q.3	(a)	(a) Convert following NFA- Λ to NFA and FA.		
		$O \qquad \delta(a, A) \qquad \delta(a, 0) \qquad \delta(a, 1)$		

Q	$\delta(\mathbf{q}, \Lambda)$	δ(q, 0)	δ(q, 1)
Α	{ B , D }	{A}	Ó
В	Ó	{ C }	{E}
С	Ó	Ó	{B}
D	Ó	{E}	{ D }
Ε	Ó	Ó	Ó

(b) Compare FA , NFA and NFA- Λ . For the following Regular 06

Expression draw an NFA- Λ recognizing the corresponding language.

 $(0+1)^{*}(10+01)^{*}11$

OR

- Q.3 (a) Draw Finite Automata (FA) for following languages:
 - $L_1 = \{x / 11 \text{ is not a substring of } x, x \in \{0,1\}^*\}$
 - $L_2 = \{x \mid x \text{ ends with } 10, x \in \{0,1\}^* \}$
 - Find FA accepting languages (i) $L_1 \cap L_2$ and (ii) $L_1 L_2$
 - (b) Prove Kleene's Theorem: Any Regular Language can be accepted 06 by a Finite Automaton(FA).
- Q.4 (a) For the language $L = \{ xcx^r / x \in \{a,b\}^* \}$ design a PDA(Push 07 Down Automata) and trace it for string "bacab".
 - (b) Convert following CFG to equivalent Chomsky Normal 07 Form(CNF). $S \rightarrow AACD | ACD | AAC | CD | AC | C$ $A \rightarrow aAb | ab$ $C \rightarrow aC | a$ $D \rightarrow aDa | bDb | aa | bb$ OR
- Q.4 (a) Design and draw a deterministic PDA accepting strings with more 06 a's than b's. Trace it for the string "abbabaa".
 - (b) Answer the following.

08

08

- (i) Design a CFG for the following language. $L = \{ 0^{i}1^{j}0^{k} / j > i + k \}$
- (ii) What do you mean by Regular Language? Explain the application of the Pumping Lemma to show a Language is Regular or Not.
- Q.5 (a) Draw a Turing Machine(TM) to accept Palindromes over {a,b}. 08 (Even as well as Odd Palindromes)
 - (b) Explain in Brief:
 - (i) Halting Problem.
 - (ii) Basic Complexity Classes.

OR

Q.5 Write short notes on the following:

14

06

- (i) The Primitive Recursive Functions..
- (ii) The Sets P, NP, PSpace and NPSpace.
- (iii) Top Down Parsing And Bottom Up Parsing.
- (iv) Universal Turing Machine.
