\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 B. E. - SEMESTER - VI • EXAMINATION - WINTER 2012

Subject code: 160704
 Date: 05/01/2013
 Subject Name: Theory Of Computation
 Time: $02.30 \mathrm{pm} \mathbf{- 0 5 . 0 0} \mathbf{~ p m}$
 Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 Answer the following. 14
(a) Write Regular Expressions for the following languages of all strings in $\{0,1\}^{*}$
(i) Strings that contains odd number of 0's (zeroes).
(ii) Strings that begin or end with 00 or 11.
(b) Prove that $\sqrt{ } 2$ (square root of 2) is Irrational by method of Contradiction.
(c) Define Context Free Grammar (CFG). Describe the language accepted by following CFG:
$\mathbf{S} \rightarrow \mathbf{a S a}|\mathbf{b S b}| \mathbf{a}|\mathbf{b}| \boldsymbol{\Lambda}$
(d) Define one-to-one, onto and bijection function.

Check whether the function $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}+\mathbf{f}(\mathbf{x})=\mathbf{x}^{\mathbf{2}}$ is "one to one" or "onto".
Q. 2 (a) Write definition of finite automata and draw FA for the strings:
(i)The string in $\{0,1\}^{*}$ ending in 10 or 11 .
(ii)The string corresponding to Regular expression $\{11\}^{*}\{00\}^{*}$
(b) Using Principle of Mathematical Induction, Prove that

For every $\mathrm{n}>=1$,
${ }^{\mathrm{n}}$
$\sum i^{2}=n(n+1)(2 n+1) / 6$
$\mathrm{i}=1$

OR

(b) Prove that the following CFG is Ambiguous.
$\mathbf{S} \rightarrow \mathbf{S}+\mathbf{S}|\mathbf{S} * \mathbf{S}| \mathbf{(S) | \mathbf { a }}$
Write the unambiguous CFG for the above grammar. Draw Parse tree for the string $a+a * a$.
Q. 3 (a) Convert following NFA- Λ to NFA and FA.

Q	$\boldsymbol{\delta}(\mathrm{q}, \mathrm{N})$	$\delta(\underline{q}, 0)$	$\boldsymbol{\delta}(\mathrm{q}, 1)$
A	\{B,D\}	\{A\}	Ǿ
B	Ǿ	\{C\}	\{E\}
C	Ǿ	Ǿ	\{B\}
D	Ǿ	\{E\}	\{D\}
E	Ǿ	Ǿ	Ǿ

(b) Compare FA , NFA and NFA- Λ. For the following Regular 06

Expression draw an NFA- Λ recognizing the corresponding language.

$$
(0+1)^{*}(10+01)^{*} 11
$$

OR

Q. 3 (a) Draw Finite Automata (FA) for following languages:
$\mathrm{L}_{1}=\left\{\mathrm{x} / 11\right.$ is not a substring of $\left.\mathrm{x}, \mathrm{x} \in\{0,1\}^{*}\right\}$
$L_{2}=\left\{x / x\right.$ ends with $\left.10, x \in\{0,1\}^{*}\right\}$
Find FA accepting languages (i) $L_{1} \cap L_{2}$ and (ii) $L_{1}-L_{2}$
(b) Prove Kleene's Theorem: Any Regular Language can be accepted by a Finite Automaton(FA).
Q. 4 (a) For the language $L=\left\{x c x^{r} / x \in\{a, b\}^{*}\right\}$ design a PDA(Push07

Down Automata) and trace it for string "bacab".
(b) Convert following CFG to equivalent Chomsky Normal 07 Form(CNF).
$\mathrm{S} \rightarrow \mathrm{AACD}|\mathrm{ACD}| \mathrm{AAC}|\mathrm{CD}| \mathrm{AC} \mid \mathrm{C}$
$\mathrm{A} \rightarrow \mathrm{aAb} \mid \mathrm{ab}$
$\mathrm{C} \rightarrow \mathrm{aC} \mid \mathrm{a}$
$\mathrm{D} \rightarrow \mathrm{aDa}|\mathrm{bDb}| \mathrm{aa} \mid \mathrm{bb}$

OR

Q. 4 (a) Design and draw a deterministic PDA accepting strings with more a's than b's. Trace it for the string "abbabaa".
(b) Answer the following.
(i) Design a CFG for the following language.

$$
\mathrm{L}=\left\{0^{\mathrm{i}} 1^{\mathrm{j}} 0^{\mathrm{k}} \quad / \mathrm{j}>\mathrm{i}+\mathrm{k}\right\}
$$

(ii) What do you mean by Regular Language? Explain the application of the Pumping Lemma to show a Language is Regular or Not.
Q. 5 (a) Draw a Turing Machine(TM) to accept Palindromes over $\{\mathrm{a}, \mathrm{b}\}$. (Even as well as Odd Palindromes)
(b) Explain in Brief:
(i) Halting Problem.
(ii) Basic Complexity Classes.

OR
Q. 5 Write short notes on the following:
(i) The Primitive Recursive Functions..
(ii) The Sets P, NP, PSpace and NPSpace.
(iii) Top Down Parsing And Bottom Up Parsing.
(iv) Universal Turing Machine.

