\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- VI ${ }^{\text {th }}$ SEMESTER-EXAMINATION - MAY- 2012

Subject code: 160704
Date: 17/05/2012

Subject Name: Theory of Computation

Time: 10:30 am - 01:00 pm
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define Mathematical Induction and prove the following:

$$
\sum_{n}^{n} t^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(b) Convert the following NFA into FA.

Q. 2 (a) Suppose that L_{1} and L_{2} are the subsets

Draw the FAs recognizing the following languages.

- $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$
- $\mathrm{L}_{1}-\mathrm{L}_{2}$
(b) Define Pumping Lemma. Use the Pumping Lemma to show that the following languages are not regular.
- $\mathrm{L}=\left\{0^{\mathrm{n}} 10^{2 \mathrm{n}} / n \geq 0\right\}$
- $\mathrm{L}=\left\{0^{\mathrm{i}} 1^{\mathrm{j}} 0^{\mathrm{k}} / k>i+j\right\}$

OR

(b) Define δ^{*} for! FA- NFA and NFA- Λ. Also Calculate $\delta^{*}(1$, ab) and
$\delta^{*}(1, \mathrm{abaab})$ from the following transition table.

q	$\delta(q, a)$	$\delta(q, b)$
1	$\{1,2\}$	$\{1\}$
2	$\{3\}$	$\{3\}$
3	$\{4\}$	$\{4\}$
4	$\{5\}$	$Ø$
5	$Ø$	$\{5\}$

Q. 3 (a) Minimize the following DFA (If Possible).

(b) Prove: There are context-free languages L_{1} and L_{2} so that $L_{1} \cap L_{2}$ is not a CFL and there is a CFL L so that L^{\prime} is not a CFL

OR
Q. 3 (a) Given the CFG G, find a CFG G ' in Chomsky Normal form generating
$\mathrm{L}(\mathrm{G})-\{\Lambda\}$
$S \rightarrow A a A|C A| B a B$
$A \longrightarrow a a B a|C D A| a a \mid D C$
$B \longrightarrow b B|b A B| b b \mid a S$
$C \longrightarrow C a|b C| D$
$D \longrightarrow b D \mid \Lambda$
(b) Define PDA and design PDA for $\mathrm{L}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{n}_{\mathrm{a}}(\mathrm{x})>\mathrm{n}_{\mathrm{b}}(\mathrm{x})\right\}$
Q. 4 (a) Prove: Any Regular Language can be accepted by a finite automaton 07 (Kleene's Theorem, Part - I)
(b) Explain Derivation Tree, Expression Tree and Ambiguity with Example.

OR
Q. 4 (a) Define CFG and Design a CFG for the following language.
$\mathrm{L}=\left\{0^{\mathrm{i}} 1^{\mathrm{j}} 0^{\mathrm{k}} / j>i+k\right\}$
(b) Attempt the following:

- Draw FA for $(11+110)^{*} 0$
- Write a Regular Expression for the String of 0's and 1's in which string ends with 1 and does not contain substring 00 .
Q. 5 (a) Draw the TM for $\mathrm{L}=\left\{\mathrm{ss} \mid \mathrm{s} \in(\mathrm{a}, \mathrm{b})^{*}\right\}$
(b) Explain Universal TM and Church Turing Thesis 07 OR
Q. 5 (a) Differentiate the NP Hard and NP Complete Problems. 07
(b) Explain Cook's Theorem. 07

