

GUJARAT TECHNOLOGICAL UNIVERSITY BE- VIth SEMESTER-EXAMINATION – MAY- 2012

Draw the FAs recognizing the following languages.

- $L_1 \cap L_2$
- $L_1 L_2$

•

- (b) Define Pumping Lemma. Use the Pumping Lemma to show that the 07 following languages are not regular.
 - $L = \{ 0^n 1 0^{2n} / n \ge 0 \}$
 - L = { $0^{i} 1^{j} 0^{k} / k > i+j$ }

(b) Define δ^* for! FA- NFA and NFA-A. Also Calculate δ^* (1, ab) and 07

07

07

07

Seat No.:

Date: 17/05/2012

Enrolment No.

 δ^* (1, abaab) from the following transition table.

	8			
q	$\delta(q,a)$	$\delta(q,b)$		
1	{1,2}	{1}		
2	{ 3 }	{3}		
3	{4}	{4}		
4	{5}	Ø		
5	Ø	{5}		
να Γ	DEA (If Possible)			

Q.3 (a) Minimize the following DFA (If Possible).

(b) Prove: There are context-free languages L_1 and L_2 so that $L_1 \cap L_2$ is not **07** a CFL and there is a CFL *L* so that *L*' is not a CFL

OR

		UK	
Q.3	(a)	Given the CFG G , find a CFG G' in Chomsky Normal form generating	07
		$L(G) - \{\Lambda\}$	
		$S \longrightarrow AaA CA BaB$	
		A → aaBa CDA aa DC	
		$B \longrightarrow bB \mid bAB \mid bb \mid aS$	
		$C \rightarrow Ca/bC/D$	
		$D \longrightarrow bD / \Lambda$	
	(b)	Define PDA and design PDA for L = { $x \in \{a, b\}^* n_a(x) > n_b(x) \}$	07
Q.4	(a)	Prove: Any Regular Language can be accepted by a finite automaton	07
		(Kleene's Theorem, Part - I)	
	(b)	Explain Derivation Tree, Expression Tree and Ambiguity with Example.	07
		OR	
Q.4	(a)	Define CFG and Design a CFG for the following language.	07
		$L = \{ 0^{i} 1^{j} 0^{k} / j > i + k \}$	
	(b)	Attempt the following :	07
		• Draw FA for (11+110)* 0	
		• Write a Regular Expression for the String of 0's and 1's in	
		which string ends with 1 and does not contain substring 00.	
Q.5	(a)	Draw the TM for $L = \{ss \mid s \in (a, b)^*\}$	07
-	(b)	Explain Universal TM and Church Turing Thesis	07
		OR	
Q.5	(a)	Differentiate the NP Hard and NP Complete Problems.	07
	(b)	Explain Cook's Theorem.	07

07