Seat 1	No.: _	Enrolment No.	Enrolment No				
	GUJARAT TECHNOLOGICAL UNIVERSITY						
		BE SEM-VI Examination-Nov/Dec-2011					
Subject code: 160704		ode: 160704 Date: 28/11/2	Date: 28/11/2011				
Subj	ect N	ame: Theory of Computation					
Tim	e: 10.	30 am -1.00 pm Total marks	: 70				
Instru		•					
		Attempt all questions.					
		Make suitable assumptions wherever necessary.					
	3.	Figures to the right indicate full marks.					
Q.1	(a)	Languages L1 and L2 are the subsets given below. Where $\sum = \{0, 1\}$	05				
		$L1 = \{ x \mid 00 \text{ is not a substring of } x \}$					
		$L2 = \{ x \mid x \text{ ends with } 01 \}$					
		Draw FAs recognizing the following languages					
		(i) L1 - L2 (ii) L1∩L2					
	(b)	Draw an DFA that recognize the language of all strings of 0's and 1's of	05				
	(~)	length at least 1 that, if they were interpreted as binary representation of	ŰŰ				
		integers, would represent evenly divisible by 3. Your DFA should accept					
		the string 0 but no other strings with leading 0's.					
	()		0.4				
	(c)	Enlist applications where the finite automaton is useful. Also Find a	04				
		string of minimum length in $\{0,1\}^*$ not in the language corresponding to					
		the regular expression : $1*(0+10)*1*$					
			~-				
0.2	(8)	Explain the procedure for converting the given DFA in to minimum	07				

Q.2 (a) Explain the procedure for converting the given DFA in to minimum 07 number of state DFA. Using this procedure convert the following DFA into minimum number of states DFA (minimized FA) where $\Sigma = \{0,1\}$.

Q	δ(q,a)	δ(q,b)
- +1	{3}	{2}
2	{4}	{1}
3	{5}	{4}
4	{4}	{4}
5	{3}	{2}

(b) For the following CFG's, describe the language it accepts.

05

- 1. $S \rightarrow SS | XaXaX |^{\wedge}$ $X \rightarrow bX |^{\wedge}$
- 2. $S \rightarrow aM \mid bS$ $M \rightarrow aF \mid bS$ $F \rightarrow aF \mid bF \mid ^{$

		3. $S \rightarrow aS \mid bS \mid a \mid b \mid \land$	
	(c)	Give definition of Context-Free Grammars.	02
		OR	
	(b)	Find CFG for the following languages.	05
		1. $L = \{ a^i b^j a^k j > i + k \}$	
		2. L = { $a^i b^j c^k i = j \text{ or } j = k $ }	
	(c)	Give definition of Regular Grammars.	02
Q.3	(a)	Give transition table for deterministic PDA recognizing the following	07
L	()	language.	•
		$\{a^{n}b^{n+m}a^{m} n,m \ge 0\}$	

(b) Draw a transition diagram for a Turing machine accepting the following 07 language. $\{a^{n}b^{n}c^{n} | n \ge 0\}$

OR

(a) Give transition table for deterministic PDA recognizing the following 07 Q.3 language.

 $\{a^{i}b^{j}c^{k} | i, j, k \ge 0 \text{ and } j = i \text{ or } j = k\}$

(b) Draw a transition diagram for a Turing machine accepting the following 07 language. $\{ x \in \{ a, b, c \}^* | n_a(x) = n_b(x) = n_c(x) \}$

Q.4 (a) Find unrestricted grammar to generate the following language,
$$\{a^n x b^n | \ge 0, x \in \{a, b\}^*, |x| = n\}$$
 07

(b) Given the context-free grammar G, find a CFG G' in Chomsky Normal 05 Form generating $L(G) - \{^{\wedge}\}$.

G has production $S \rightarrow S(S) |^{\wedge}$

Q.4

Q.5

Q.5

	O has production O V $O(O)$						02		
	(c)								
		OR							
(a) Consider the following NFA-^.							07		
		Q	δ(q, ^)	δ(q, 0)	δ(q, 1)				
		-A	{B}	{A}	Ø				
		В	{D}	{C}	Ø				
		С	Ø	Ø	{B}				
		+D	Ø	{D}	Ø				
		[1] Convert this N	IFA-^ into its ed	quivalent NFA.					
		[2] Take this NFA as an input and convert it into equivalent DFA							
	(b)	Define Pumping I	Lemma for Regu	ılar Languages.			05		
		Prove that the lang			ber} is not reg	ular.			
	(c)	Check the validity	of the followin	g equality with	proper reason.		02		
		(00*1)*1 =	1 + 0 (0 + 10))*11					
			× ×	, ,					
5	(a)	Give definitions o	f the following.				07		
	()	[1] Initial Fun	-						
		[2] Compositi	on						
			tive Recursive H	Functions					
	(b)	Give definitions o					07		
			ll-time Reducib						
		[2] NP-hard and NP-complete languages							
		[3] The Sets P, NP, PSpace and NPSpace							
				OR					
5	(a)	Show that the unc	omputability of	the given busy-	beaver functio	n implies	07		
	()	the unsolvability of				1			
		Busy Beaver function, $b : N \rightarrow N$ as follows, $b(0)$ is 0. For $n > 0$, $b(n)$ is							
		obtained by considering TMs having n nonhalting states and tape							
		alphabet $\{0, 1\}$.	C	e	U	1			
	(b)	Give definitions o	f the following.				07		
			plexity Classes						
		[2] Step-count							
				plexity of a Turi	ing Machine				
			Ŧ		-				