$\qquad$

## GUJARAT TECHNOLOGICAL UNIVERSITY <br> BE SEM-VI Examination May 2011 <br> Subject code: 160704 <br> Subject Name: Theory of Computation

Date: 21-05-2011
Time: $10.30 \mathrm{am} \mathbf{- 0 1 . 0 0} \mathrm{pm}$
Total Marks: 70

## Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 Answer the following.
(a) Write Regular Expressions for the following languages of all strings in $\{0,1\}^{*}$
(i) Strings that do not end with 01 .
(ii) Strings with odd numbers of 1 's (Ones).
(b) Define one-to-one, onto and bijection function.

Check whether the function $f: R+\ldots->R, f(x)=x^{2}$ is one to one and onto.
(c) Define Nondeterministic Finite Automata (NFA) and write down recursive definition of $\delta^{*}$ for NFA- $\Lambda$.
(d) Give the recursive definition of PAL of Palindrome over any alphabet $\sum$.
Q. 2 (a) Write definition of Finite Automata and draw FA for the strings:
(i) The string with next to last symbol as 0 .
(ii) The string with number of 0 s odd and number of 1 s odd.
(b) Using Principle of Mathematical Induction, prove that for every $\mathrm{n}>=1$,

## OR

(b) Using Principle of Mathematical Induction, prove that for every $\mathrm{n}>=1$,

$$
7+13+19+\ldots+(6 n+1)=n(3 n+4)
$$

Q. 3 (a) Convert following NFA- $\Lambda$ to NFA and FA.

| 9 | $\delta(\mathrm{q}, ~ \Lambda)$ | $\delta(q, 0)$ | $\delta(q, 1)$ |
| :---: | :---: | :---: | :---: |
| A | \{B\} | \{A\} | Ǿ |
| B | \{D\} | \{C\} | Ǿ |
| C | Ǿ | Ǿ | \{B\} |
| D | Ǿ | \{D | Ǿ |

(b) For the following Regular Expression draw an NFA- $\Lambda$ recognizing the 06 corresponding languages.
(i) $(00+1)^{*}(10)^{*}$
(ii) $001^{*} 0^{*} 11$
Q. 3 (a) Draw Finite Automata (FA) for following languages:
$\mathrm{L}_{1}=\{\mathrm{x} / 00$ is not a substring of x$\}$
$\mathrm{L}_{2}=\{\mathrm{x} / \mathrm{x}$ ends with 01$\}$
Find FA accepting languages (i) $L_{1} \cap L_{2}$ and (ii) $L_{2}-L_{1}$
(b) Compare FA, NFA and NFA- $\Lambda$ with illustration.
Q. 4 (a) For the language $L=\left\{\mathrm{xcx}^{\mathrm{r}} / \mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ design a PDA(Push Down Automata) and trace it for string "abcba".
(b) Define CFG. Prove that the following CFG is Ambiguous.
$\mathrm{S} \rightarrow \mathrm{S}+\mathrm{S}|\mathrm{S} * \mathrm{~S}| \mathrm{S}) \mid \mathrm{a}$
Write the unambiguous CFG for the above grammar.

## OR

Q. 4 (a) Answer the following.
(i) Design a CFG for the following language.

$$
\mathrm{L}=\left\{0^{\mathrm{i}} 1^{\mathrm{j}} 0^{\mathrm{k}} \quad / \mathrm{j}>\mathrm{i}+\mathrm{k}\right\}
$$

(ii) Give the difference between Top Down Parsing And Bottom Up Parsing.
(b) Design and draw a deterministic PDA accepting "Balanced strings of Brackets" which are accepted by following CFG.
$\mathrm{S} \rightarrow \mathrm{SS}|[\mathrm{S}]|\{\mathrm{S}\} \mid \Lambda$
Q. 5 (a) Explain the following Terms:
(i) P and NP Completemness.
(ii) Equivalence Relation.
(iii)Regular Grammar.
(b) Define Turing Machine. Describe its capabilities. Also write short notes 05 on Universal Turing Machine.

## OR

Q. 5 (a) Draw a Turing Machine(TM) to accept Palindromes over $\{\mathrm{a}, \mathrm{b}\}$. (Even as well as Odd Palindromes)
(b) Explain in Brief: 06
(i) Halting Problem.
(ii)Chomsky Normal Form(CNF).

