Seat No.: ____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEM-VI Examination May 2011

Subject code: 160704

Subject Name: Theory of Computation

Date: 21-05-2011

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 Answer the following.
 - (a) Write Regular Expressions for the following languages of all strings in $\{0,1\}^*$
 - (i) Strings that do not end with 01.
 - (ii) Strings with odd numbers of 1's (Ones).
 - (b) Define one-to-one, onto and bijection function. Check whether the function f: R + --> R, $f(x) = x^2$ is one to one and onto.
 - (c) Define Nondeterministic Finite Automata (NFA) and write down recursive definition of δ^* for NFA- Λ .
 - (d) Give the recursive definition of PAL of Palindrome over any alphabet \sum .

Q.2 (a) Write definition of Finite Automata and draw FA for the strings: 07

- (i) The string with next to last symbol as 0.
- (ii) The string with number of 0s odd and number of 1s odd.
- (b) Using Principle of Mathematical Induction, prove that for every $n \ge 1$, 07 $\sum_{i=1}^{n} i = n (n+1)/2$

 $\sum_{i=0}^{i=n} i = n (n+1) / 2$

OR

(b) Using Principle of Mathematical Induction, prove that for every $n \ge 1$, 07 7+13+19+...+(6n+1) = n(3n+4)

Q.3 (a) Convert following NFA- Λ to NFA and FA.

q	δ (q, Λ)	δ(q, 0)	δ(q, 1)
Α	{B}	{A}	Ó
В	{ D }	{C}	Ó
С	Ó	Ó	{B}
D	Ó	{ D }	Ó

(b) For the following Regular Expression draw an NFA- Λ recognizing the **06** corresponding languages.

(ii) 001^{*}0^{*}11

OR

14

Enrolment No.

Time: 10.30 am - 01.00 pm

Total Marks: 70

08

⁽i) $(00 + 1)^* (10)^*$

Q.3	(a)	Draw Finite Automata (FA) for following languages: $L_1 = \{x \mid 00 \text{ is not a substring of } x \}$ $L_2 = \{x \mid x \text{ ends with } 01 \}$	09		
	(b)	Find FA accepting languages (i) $L_1 \cap L_2$ and (ii) $L_2 - L_1$ Compare FA, NFA and NFA- Λ with illustration.	05		
Q.4	(a)	For the language $L = \{ xcx^r / x \in \{a,b\}^* \}$ design a PDA(Push Down	08		
	(b)	Automata) and trace it for string "abcba". Define CFG. Prove that the following CFG is Ambiguous. $S \rightarrow S + S \mid S * S \mid (S) \mid a$ Write the unembiguous CFC for the above grammer	06		
		OR			
Q.4	(a)	Answer the following. (i) Design a CFG for the following language. $I = \{ 0^{i} 1^{j} 0^{k} (i > i + k) \}$	08		
		(ii) Give the difference between Top Down Parsing And Bottom Up Parsing.			
	(b)	Design and draw a deterministic PDA accepting "Balanced strings of Brackets" which are accepted by following CFG. S \rightarrow SS [S] { S } Λ	06		
Q.5	(a)	Explain the following Terms: (i) P and NP Completemness.	09		
		(ii) Equivalence Relation. (iii)Regular Grammar.			
	(b)	Define Turing Machine. Describe its capabilities. Also write short notes on Universal Turing Machine.	05		
	OR				
Q.5	(a)	Draw a Turing Machine(TM) to accept Palindromes over {a,b}. (Even as well as Odd Palindromes)	08		
	(b)	Explain in Brief: (i) Halting Problem. (ii)Chomsky Normal Form(CNF).	06		
